Clean up the fetch algorithm

This commit is contained in:
Clément Renault 2019-10-23 12:06:21 +02:00
parent 03eb7898e7
commit 7d9cf8d713
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4
2 changed files with 124 additions and 134 deletions

View File

@ -29,8 +29,13 @@ impl AutomatonProducer {
postings_list_store: store::PostingsLists,
synonyms_store: store::Synonyms,
) -> MResult<(AutomatonProducer, QueryEnhancer)> {
let (automatons, query_enhancer) =
generate_automatons(reader, query, main_store, postings_list_store, synonyms_store)?;
let (automatons, query_enhancer) = generate_automatons(
reader,
query,
main_store,
postings_list_store,
synonyms_store,
)?;
Ok((AutomatonProducer { automatons }, query_enhancer))
}
@ -41,9 +46,25 @@ impl AutomatonProducer {
}
#[derive(Debug)]
pub enum AutomatonGroup {
Normal(Vec<Automaton>),
PhraseQuery(Vec<Automaton>),
pub struct AutomatonGroup {
pub is_phrase_query: bool,
pub automatons: Vec<Automaton>,
}
impl AutomatonGroup {
fn normal(automatons: Vec<Automaton>) -> AutomatonGroup {
AutomatonGroup {
is_phrase_query: false,
automatons,
}
}
fn phrase_query(automatons: Vec<Automaton>) -> AutomatonGroup {
AutomatonGroup {
is_phrase_query: true,
automatons,
}
}
}
#[derive(Debug)]
@ -143,8 +164,7 @@ fn generate_automatons(
main_store: store::Main,
postings_lists_store: store::PostingsLists,
synonym_store: store::Synonyms,
) -> MResult<(Vec<AutomatonGroup>, QueryEnhancer)>
{
) -> MResult<(Vec<AutomatonGroup>, QueryEnhancer)> {
let has_end_whitespace = query.chars().last().map_or(false, char::is_whitespace);
let query_words: Vec<_> = split_query_string(query).map(str::to_lowercase).collect();
let synonyms = match main_store.synonyms_fst(reader)? {
@ -173,7 +193,7 @@ fn generate_automatons(
original_automatons.push(automaton);
}
automatons.push(AutomatonGroup::Normal(original_automatons));
automatons.push(AutomatonGroup::normal(original_automatons));
for n in 1..=NGRAMS {
let mut ngrams = query_words.windows(n).enumerate().peekable();
@ -225,14 +245,16 @@ fn generate_automatons(
Automaton::non_exact(automaton_index, n, synonym)
};
automaton_index += 1;
automatons.push(AutomatonGroup::Normal(vec![automaton]));
automatons.push(AutomatonGroup::normal(vec![automaton]));
}
}
}
}
if n == 1 {
if let Some((left, right)) = split_best_frequency(reader, &normalized, postings_lists_store)? {
if let Some((left, right)) =
split_best_frequency(reader, &normalized, postings_lists_store)?
{
let a = Automaton::exact(automaton_index, 1, left);
enhancer_builder.declare(query_range.clone(), automaton_index, &[left]);
automaton_index += 1;
@ -241,7 +263,7 @@ fn generate_automatons(
enhancer_builder.declare(query_range.clone(), automaton_index, &[left]);
automaton_index += 1;
automatons.push(AutomatonGroup::PhraseQuery(vec![a, b]));
automatons.push(AutomatonGroup::phrase_query(vec![a, b]));
}
} else {
// automaton of concatenation of query words
@ -253,7 +275,7 @@ fn generate_automatons(
let automaton = Automaton::exact(automaton_index, n, &normalized);
automaton_index += 1;
automatons.push(AutomatonGroup::Normal(vec![automaton]));
automatons.push(AutomatonGroup::normal(vec![automaton]));
}
}
}
@ -261,10 +283,7 @@ fn generate_automatons(
// order automatons, the most important first,
// we keep the original automatons at the front.
automatons[1..].sort_by_key(|group| {
let a = match group {
AutomatonGroup::Normal(group) => group.first().unwrap(),
AutomatonGroup::PhraseQuery(group) => group.first().unwrap(),
};
let a = group.automatons.first().unwrap();
(Reverse(a.is_exact), a.ngram)
});

View File

@ -149,60 +149,20 @@ fn fetch_raw_documents(
let mut highlights = Vec::new();
for group in automatons_groups {
match group {
AutomatonGroup::Normal(automatons) => {
for automaton in automatons {
let Automaton { index, is_exact, query_len, .. } = automaton;
let dfa = automaton.dfa();
let words = match main_store.words_fst(reader)? {
Some(words) => words,
None => return Ok(Vec::new()),
};
let mut stream = words.search(&dfa).into_stream();
while let Some(input) = stream.next() {
let distance = dfa.eval(input).to_u8();
let is_exact = *is_exact && distance == 0 && input.len() == *query_len;
let doc_indexes = match postings_lists_store.postings_list(reader, input)? {
Some(doc_indexes) => doc_indexes,
None => continue,
};
matches.reserve(doc_indexes.len());
highlights.reserve(doc_indexes.len());
for di in doc_indexes.as_ref() {
let attribute = searchables.map_or(Some(di.attribute), |r| r.get(di.attribute));
if let Some(attribute) = attribute {
let match_ = TmpMatch {
query_index: *index as u32,
distance,
attribute,
word_index: di.word_index,
is_exact,
};
let highlight = Highlight {
attribute: di.attribute,
char_index: di.char_index,
char_length: di.char_length,
};
matches.push((di.document_id, match_));
highlights.push((di.document_id, highlight));
}
}
}
}
},
AutomatonGroup::PhraseQuery(automatons) => {
let mut tmp_matches = Vec::new();
let AutomatonGroup {
is_phrase_query,
automatons,
} = group;
let phrase_query_len = automatons.len();
let mut tmp_matches = Vec::new();
for (id, automaton) in automatons.into_iter().enumerate() {
let Automaton { index, is_exact, query_len, .. } = automaton;
let Automaton {
index,
is_exact,
query_len,
..
} = automaton;
let dfa = automaton.dfa();
let words = match main_store.words_fst(reader)? {
@ -245,6 +205,7 @@ fn fetch_raw_documents(
}
}
if *is_phrase_query {
tmp_matches.sort_unstable_by_key(|(id, _, m, _)| (*id, m.attribute, m.word_index));
for group in tmp_matches.linear_group_by_key(|(id, _, m, _)| (*id, m.attribute)) {
for window in group.windows(2) {
@ -255,7 +216,6 @@ fn fetch_raw_documents(
// if matches must follow and actually follows themselves
if ia + 1 == ib && ma.word_index + 1 == mb.word_index {
// TODO we must make it work for phrase query longer than 2
// if the second match is the last phrase query word
if ib + 1 == phrase_query_len {
@ -270,6 +230,10 @@ fn fetch_raw_documents(
}
}
}
} else {
for (id, _, match_, highlight) in tmp_matches {
matches.push((id, match_));
highlights.push((id, highlight));
}
}
}
@ -442,8 +406,13 @@ where
let start_processing = Instant::now();
let mut raw_documents_processed = Vec::with_capacity(range.len());
let (automaton_producer, query_enhancer) =
AutomatonProducer::new(reader, query, main_store, postings_lists_store, synonyms_store)?;
let (automaton_producer, query_enhancer) = AutomatonProducer::new(
reader,
query,
main_store,
postings_lists_store,
synonyms_store,
)?;
let automaton_producer = automaton_producer.into_iter();
let mut automatons = Vec::new();
@ -555,8 +524,13 @@ where
let start_processing = Instant::now();
let mut raw_documents_processed = Vec::new();
let (automaton_producer, query_enhancer) =
AutomatonProducer::new(reader, query, main_store, postings_lists_store, synonyms_store)?;
let (automaton_producer, query_enhancer) = AutomatonProducer::new(
reader,
query,
main_store,
postings_lists_store,
synonyms_store,
)?;
let automaton_producer = automaton_producer.into_iter();
let mut automatons = Vec::new();
@ -1778,7 +1752,6 @@ mod tests {
let store = TempDatabase::from_iter(vec![
("search", &[doc_index(0, 0)][..]),
("engine", &[doc_index(0, 1)][..]),
("search", &[doc_index(1, 0)][..]),
("slow", &[doc_index(1, 1)][..]),
("engine", &[doc_index(1, 2)][..]),
@ -1806,12 +1779,10 @@ mod tests {
("search", &[doc_index(0, 0)][..]),
("search", &[doc_index(0, 1)][..]),
("engine", &[doc_index(0, 2)][..]),
("search", &[doc_index(1, 0)][..]),
("slow", &[doc_index(1, 1)][..]),
("search", &[doc_index(1, 2)][..]),
("engine", &[doc_index(1, 3)][..]),
("search", &[doc_index(1, 0)][..]),
("search", &[doc_index(1, 1)][..]),
("slow", &[doc_index(1, 2)][..]),