mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-01-23 19:57:30 +01:00
Merge #203
203: Make the MatchingWords return the number of matching bytes r=Kerollmops a=LegendreM Make the MatchingWords return the number of matching bytes using a custom Levenshtein algorithm. Fix #138 Co-authored-by: many <maxime@meilisearch.com>
This commit is contained in:
commit
7d36d664a7
210
milli/src/search/matching_words.rs
Normal file
210
milli/src/search/matching_words.rs
Normal file
@ -0,0 +1,210 @@
|
|||||||
|
use std::collections::HashSet;
|
||||||
|
use std::cmp::{min, Reverse};
|
||||||
|
use std::collections::BTreeMap;
|
||||||
|
use std::ops::{Index, IndexMut};
|
||||||
|
|
||||||
|
use levenshtein_automata::{DFA, Distance};
|
||||||
|
|
||||||
|
use crate::search::query_tree::{Operation, Query};
|
||||||
|
|
||||||
|
use super::build_dfa;
|
||||||
|
|
||||||
|
type IsPrefix = bool;
|
||||||
|
|
||||||
|
/// Structure created from a query tree
|
||||||
|
/// referencing words that match the given query tree.
|
||||||
|
#[derive(Default)]
|
||||||
|
pub struct MatchingWords {
|
||||||
|
dfas: Vec<(DFA, String, u8, IsPrefix)>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl MatchingWords {
|
||||||
|
pub fn from_query_tree(tree: &Operation) -> Self {
|
||||||
|
// fetch matchable words from the query tree
|
||||||
|
let mut dfas: Vec<_> = fetch_queries(tree)
|
||||||
|
.into_iter()
|
||||||
|
// create DFAs for each word
|
||||||
|
.map(|(w, t, p)| (build_dfa(w, t, p), w.to_string(), t, p))
|
||||||
|
.collect();
|
||||||
|
// Sort word by len in DESC order prioritizing the longuest word,
|
||||||
|
// in order to highlight the longuest part of the matched word.
|
||||||
|
dfas.sort_unstable_by_key(|(_dfa, query_word, _typo, _is_prefix)| Reverse(query_word.len()));
|
||||||
|
Self { dfas }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the number of matching bytes if the word matches one of the query words.
|
||||||
|
pub fn matching_bytes(&self, word: &str) -> Option<usize> {
|
||||||
|
self.dfas.iter().find_map(|(dfa, query_word, typo, is_prefix)| match dfa.eval(word) {
|
||||||
|
Distance::Exact(t) if t <= *typo => {
|
||||||
|
if *is_prefix {
|
||||||
|
let (_dist, len) = prefix_damerau_levenshtein(query_word.as_bytes(), word.as_bytes());
|
||||||
|
Some(len)
|
||||||
|
} else {
|
||||||
|
Some(word.len())
|
||||||
|
}
|
||||||
|
},
|
||||||
|
_otherwise => None,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Lists all words which can be considered as a match for the query tree.
|
||||||
|
fn fetch_queries(tree: &Operation) -> HashSet<(&str, u8, IsPrefix)> {
|
||||||
|
fn resolve_ops<'a>(tree: &'a Operation, out: &mut HashSet<(&'a str, u8, IsPrefix)>) {
|
||||||
|
match tree {
|
||||||
|
Operation::Or(_, ops) | Operation::And(ops) | Operation::Consecutive(ops) => {
|
||||||
|
ops.as_slice().iter().for_each(|op| resolve_ops(op, out));
|
||||||
|
},
|
||||||
|
Operation::Query(Query { prefix, kind }) => {
|
||||||
|
let typo = if kind.is_exact() { 0 } else { kind.typo() };
|
||||||
|
out.insert((kind.word(), typo, *prefix));
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut queries = HashSet::new();
|
||||||
|
resolve_ops(tree, &mut queries);
|
||||||
|
queries
|
||||||
|
}
|
||||||
|
|
||||||
|
// A simple wrapper around vec so we can get contiguous but index it like it's 2D array.
|
||||||
|
struct N2Array<T> {
|
||||||
|
y_size: usize,
|
||||||
|
buf: Vec<T>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: Clone> N2Array<T> {
|
||||||
|
fn new(x: usize, y: usize, value: T) -> N2Array<T> {
|
||||||
|
N2Array {
|
||||||
|
y_size: y,
|
||||||
|
buf: vec![value; x * y],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Index<(usize, usize)> for N2Array<T> {
|
||||||
|
type Output = T;
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn index(&self, (x, y): (usize, usize)) -> &T {
|
||||||
|
&self.buf[(x * self.y_size) + y]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> IndexMut<(usize, usize)> for N2Array<T> {
|
||||||
|
#[inline]
|
||||||
|
fn index_mut(&mut self, (x, y): (usize, usize)) -> &mut T {
|
||||||
|
&mut self.buf[(x * self.y_size) + y]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the distance between the source word and the target word,
|
||||||
|
/// and the number of byte matching in the target word.
|
||||||
|
fn prefix_damerau_levenshtein(source: &[u8], target: &[u8]) -> (u32, usize) {
|
||||||
|
let (n, m) = (source.len(), target.len());
|
||||||
|
|
||||||
|
if n == 0 {
|
||||||
|
return (m as u32, 0);
|
||||||
|
}
|
||||||
|
if m == 0 {
|
||||||
|
return (n as u32, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
if n == m && source == target {
|
||||||
|
return (0, m);
|
||||||
|
}
|
||||||
|
|
||||||
|
let inf = n + m;
|
||||||
|
let mut matrix = N2Array::new(n + 2, m + 2, 0);
|
||||||
|
|
||||||
|
matrix[(0, 0)] = inf;
|
||||||
|
for i in 0..n + 1 {
|
||||||
|
matrix[(i + 1, 0)] = inf;
|
||||||
|
matrix[(i + 1, 1)] = i;
|
||||||
|
}
|
||||||
|
for j in 0..m + 1 {
|
||||||
|
matrix[(0, j + 1)] = inf;
|
||||||
|
matrix[(1, j + 1)] = j;
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut last_row = BTreeMap::new();
|
||||||
|
|
||||||
|
for (row, char_s) in source.iter().enumerate() {
|
||||||
|
let mut last_match_col = 0;
|
||||||
|
let row = row + 1;
|
||||||
|
|
||||||
|
for (col, char_t) in target.iter().enumerate() {
|
||||||
|
let col = col + 1;
|
||||||
|
let last_match_row = *last_row.get(&char_t).unwrap_or(&0);
|
||||||
|
let cost = if char_s == char_t { 0 } else { 1 };
|
||||||
|
|
||||||
|
let dist_add = matrix[(row, col + 1)] + 1;
|
||||||
|
let dist_del = matrix[(row + 1, col)] + 1;
|
||||||
|
let dist_sub = matrix[(row, col)] + cost;
|
||||||
|
let dist_trans = matrix[(last_match_row, last_match_col)]
|
||||||
|
+ (row - last_match_row - 1)
|
||||||
|
+ 1
|
||||||
|
+ (col - last_match_col - 1);
|
||||||
|
|
||||||
|
let dist = min(min(dist_add, dist_del), min(dist_sub, dist_trans));
|
||||||
|
|
||||||
|
matrix[(row + 1, col + 1)] = dist;
|
||||||
|
|
||||||
|
if cost == 0 {
|
||||||
|
last_match_col = col;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
last_row.insert(char_s, row);
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut minimum = (u32::max_value(), 0);
|
||||||
|
|
||||||
|
for x in 0..=m {
|
||||||
|
let dist = matrix[(n + 1, x + 1)] as u32;
|
||||||
|
if dist < minimum.0 {
|
||||||
|
minimum = (dist, x)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
minimum
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
use crate::MatchingWords;
|
||||||
|
use crate::search::query_tree::{Operation, Query, QueryKind};
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn matched_length() {
|
||||||
|
let query = "Levenste";
|
||||||
|
let text = "Levenshtein";
|
||||||
|
|
||||||
|
let (dist, length) = prefix_damerau_levenshtein(query.as_bytes(), text.as_bytes());
|
||||||
|
assert_eq!(dist, 1);
|
||||||
|
assert_eq!(&text[..length], "Levenshte");
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn matching_words() {
|
||||||
|
let query_tree = Operation::Or(false, vec![
|
||||||
|
Operation::And(vec![
|
||||||
|
Operation::Query(Query { prefix: true, kind: QueryKind::exact("split".to_string()) }),
|
||||||
|
Operation::Query(Query { prefix: false, kind: QueryKind::exact("this".to_string()) }),
|
||||||
|
Operation::Query(Query { prefix: true, kind: QueryKind::tolerant(1, "world".to_string()) }),
|
||||||
|
]),
|
||||||
|
]);
|
||||||
|
|
||||||
|
let matching_words = MatchingWords::from_query_tree(&query_tree);
|
||||||
|
|
||||||
|
assert_eq!(matching_words.matching_bytes("word"), Some(4));
|
||||||
|
assert_eq!(matching_words.matching_bytes("nyc"), None);
|
||||||
|
assert_eq!(matching_words.matching_bytes("world"), Some(5));
|
||||||
|
assert_eq!(matching_words.matching_bytes("splitted"), Some(5));
|
||||||
|
assert_eq!(matching_words.matching_bytes("thisnew"), None);
|
||||||
|
assert_eq!(matching_words.matching_bytes("borld"), Some(5));
|
||||||
|
assert_eq!(matching_words.matching_bytes("wordsplit"), Some(4));
|
||||||
|
}
|
||||||
|
}
|
@ -17,7 +17,7 @@ use crate::search::criteria::r#final::{Final, FinalResult};
|
|||||||
use crate::{Index, DocumentId};
|
use crate::{Index, DocumentId};
|
||||||
|
|
||||||
pub use self::facet::{FacetCondition, FacetDistribution, FacetIter, Operator};
|
pub use self::facet::{FacetCondition, FacetDistribution, FacetIter, Operator};
|
||||||
pub use self::query_tree::MatchingWords;
|
pub use self::matching_words::MatchingWords;
|
||||||
use self::query_tree::QueryTreeBuilder;
|
use self::query_tree::QueryTreeBuilder;
|
||||||
|
|
||||||
// Building these factories is not free.
|
// Building these factories is not free.
|
||||||
@ -29,6 +29,7 @@ mod criteria;
|
|||||||
mod distinct;
|
mod distinct;
|
||||||
mod facet;
|
mod facet;
|
||||||
mod query_tree;
|
mod query_tree;
|
||||||
|
mod matching_words;
|
||||||
|
|
||||||
pub struct Search<'a> {
|
pub struct Search<'a> {
|
||||||
query: Option<String>,
|
query: Option<String>,
|
||||||
|
@ -1,14 +1,11 @@
|
|||||||
use std::collections::HashSet;
|
|
||||||
use std::{fmt, cmp, mem};
|
use std::{fmt, cmp, mem};
|
||||||
|
|
||||||
use fst::Set;
|
use fst::Set;
|
||||||
use levenshtein_automata::{DFA, Distance};
|
|
||||||
use meilisearch_tokenizer::{TokenKind, tokenizer::TokenStream};
|
use meilisearch_tokenizer::{TokenKind, tokenizer::TokenStream};
|
||||||
use roaring::RoaringBitmap;
|
use roaring::RoaringBitmap;
|
||||||
use slice_group_by::GroupBy;
|
use slice_group_by::GroupBy;
|
||||||
|
|
||||||
use crate::Index;
|
use crate::Index;
|
||||||
use super::build_dfa;
|
|
||||||
|
|
||||||
type IsOptionalWord = bool;
|
type IsOptionalWord = bool;
|
||||||
type IsPrefix = bool;
|
type IsPrefix = bool;
|
||||||
@ -294,48 +291,6 @@ fn synonyms(ctx: &impl Context, word: &[&str]) -> heed::Result<Option<Vec<Operat
|
|||||||
}))
|
}))
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The query tree builder is the interface to build a query tree.
|
|
||||||
#[derive(Default)]
|
|
||||||
pub struct MatchingWords {
|
|
||||||
dfas: Vec<(DFA, u8)>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl MatchingWords {
|
|
||||||
/// List all words which can be considered as a match for the query tree.
|
|
||||||
pub fn from_query_tree(tree: &Operation) -> Self {
|
|
||||||
Self {
|
|
||||||
dfas: fetch_queries(tree).into_iter().map(|(w, t, p)| (build_dfa(w, t, p), t)).collect()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Return true if the word match.
|
|
||||||
pub fn matches(&self, word: &str) -> bool {
|
|
||||||
self.dfas.iter().any(|(dfa, typo)| match dfa.eval(word) {
|
|
||||||
Distance::Exact(t) => t <= *typo,
|
|
||||||
Distance::AtLeast(_) => false,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Lists all words which can be considered as a match for the query tree.
|
|
||||||
fn fetch_queries(tree: &Operation) -> HashSet<(&str, u8, IsPrefix)> {
|
|
||||||
fn resolve_ops<'a>(tree: &'a Operation, out: &mut HashSet<(&'a str, u8, IsPrefix)>) {
|
|
||||||
match tree {
|
|
||||||
Operation::Or(_, ops) | Operation::And(ops) | Operation::Consecutive(ops) => {
|
|
||||||
ops.as_slice().iter().for_each(|op| resolve_ops(op, out));
|
|
||||||
},
|
|
||||||
Operation::Query(Query { prefix, kind }) => {
|
|
||||||
let typo = if kind.is_exact() { 0 } else { kind.typo() };
|
|
||||||
out.insert((kind.word(), typo, *prefix));
|
|
||||||
},
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
let mut queries = HashSet::new();
|
|
||||||
resolve_ops(tree, &mut queries);
|
|
||||||
queries
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Main function that creates the final query tree from the primitive query.
|
/// Main function that creates the final query tree from the primitive query.
|
||||||
fn create_query_tree(
|
fn create_query_tree(
|
||||||
ctx: &impl Context,
|
ctx: &impl Context,
|
||||||
@ -561,7 +516,7 @@ pub fn maximum_proximity(operation: &Operation) -> usize {
|
|||||||
mod test {
|
mod test {
|
||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
|
|
||||||
use maplit::{hashmap, hashset};
|
use maplit::hashmap;
|
||||||
use meilisearch_tokenizer::{Analyzer, AnalyzerConfig};
|
use meilisearch_tokenizer::{Analyzer, AnalyzerConfig};
|
||||||
use rand::{Rng, SeedableRng, rngs::StdRng};
|
use rand::{Rng, SeedableRng, rngs::StdRng};
|
||||||
|
|
||||||
@ -951,39 +906,6 @@ mod test {
|
|||||||
assert_eq!(expected, query_tree);
|
assert_eq!(expected, query_tree);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn fetching_words() {
|
|
||||||
let query = "wordsplit nyc world";
|
|
||||||
let analyzer = Analyzer::new(AnalyzerConfig::<Vec<u8>>::default());
|
|
||||||
let result = analyzer.analyze(query);
|
|
||||||
let tokens = result.tokens();
|
|
||||||
|
|
||||||
let context = TestContext::default();
|
|
||||||
let (query_tree, _) = context.build(false, true, None, tokens).unwrap().unwrap();
|
|
||||||
|
|
||||||
let expected = hashset!{
|
|
||||||
("word", 0, false),
|
|
||||||
("nyc", 0, false),
|
|
||||||
("wordsplit", 2, false),
|
|
||||||
("wordsplitnycworld", 2, true),
|
|
||||||
("nature", 0, false),
|
|
||||||
("new", 0, false),
|
|
||||||
("city", 0, false),
|
|
||||||
("world", 1, true),
|
|
||||||
("york", 0, false),
|
|
||||||
("split", 0, false),
|
|
||||||
("nycworld", 1, true),
|
|
||||||
("earth", 0, false),
|
|
||||||
("wordsplitnyc", 2, false),
|
|
||||||
};
|
|
||||||
|
|
||||||
let mut keys = context.postings.keys().collect::<Vec<_>>();
|
|
||||||
keys.sort_unstable();
|
|
||||||
|
|
||||||
let words = fetch_queries(&query_tree);
|
|
||||||
assert_eq!(expected, words);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn words_limit() {
|
fn words_limit() {
|
||||||
let query = "\"hey my\" good friend";
|
let query = "\"hey my\" good friend";
|
||||||
|
Loading…
x
Reference in New Issue
Block a user