Display the _semanticSimilarity even if the _vectors field is not displayed

This commit is contained in:
Kerollmops 2023-06-20 15:54:28 +02:00 committed by Clément Renault
parent 737aec1705
commit 7aa1275337
No known key found for this signature in database
GPG key ID: 92ADA4E935E71FA4
3 changed files with 53 additions and 20 deletions

View file

@ -17,7 +17,7 @@ use meilisearch_types::{milli, Document};
use milli::tokenizer::TokenizerBuilder;
use milli::{
AscDesc, FieldId, FieldsIdsMap, Filter, FormatOptions, Index, MatchBounds, MatcherBuilder,
SortError, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
SortError, TermsMatchingStrategy, VectorOrArrayOfVectors, DEFAULT_VALUES_PER_FACET,
};
use ordered_float::OrderedFloat;
use regex::Regex;
@ -432,7 +432,6 @@ pub fn perform_search(
formatter_builder.highlight_suffix(query.highlight_post_tag);
let mut documents = Vec::new();
let documents_iter = index.documents(&rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
@ -460,7 +459,9 @@ pub fn perform_search(
}
if let Some(vector) = query.vector.as_ref() {
insert_semantic_similarity(&vector, &mut document);
if let Some(vectors) = extract_field("_vectors", &fields_ids_map, obkv)? {
insert_semantic_similarity(vector, vectors, &mut document);
}
}
let ranking_score =
@ -548,20 +549,18 @@ fn insert_geo_distance(sorts: &[String], document: &mut Document) {
}
}
fn insert_semantic_similarity(query: &[f32], document: &mut Document) {
if let Some(value) = document.get("_vectors") {
let vectors: Vec<Vec<f32>> = match serde_json::from_value(value.clone()) {
Ok(Either::Left(vector)) => vec![vector],
Ok(Either::Right(vectors)) => vectors,
fn insert_semantic_similarity(query: &[f32], vectors: Value, document: &mut Document) {
let vectors =
match serde_json::from_value(vectors).map(VectorOrArrayOfVectors::into_array_of_vectors) {
Ok(vectors) => vectors,
Err(_) => return,
};
let similarity = vectors
.into_iter()
.map(|v| OrderedFloat(dot_product_similarity(query, &v)))
.max()
.map(OrderedFloat::into_inner);
document.insert("_semanticSimilarity".to_string(), json!(similarity));
}
let similarity = vectors
.into_iter()
.map(|v| OrderedFloat(dot_product_similarity(query, &v)))
.max()
.map(OrderedFloat::into_inner);
document.insert("_semanticSimilarity".to_string(), json!(similarity));
}
fn compute_formatted_options(
@ -691,6 +690,22 @@ fn make_document(
Ok(document)
}
/// Extract the JSON value under the field name specified
/// but doesn't support nested objects.
fn extract_field(
field_name: &str,
field_ids_map: &FieldsIdsMap,
obkv: obkv::KvReaderU16,
) -> Result<Option<serde_json::Value>, MeilisearchHttpError> {
match field_ids_map.id(field_name) {
Some(fid) => match obkv.get(fid) {
Some(value) => Ok(serde_json::from_slice(value).map(Some)?),
None => Ok(None),
},
None => Ok(None),
}
}
fn format_fields<A: AsRef<[u8]>>(
document: &Document,
field_ids_map: &FieldsIdsMap,