4819: Language settings r=dureuill a=ManyTheFish

# Pull Request

## Related issue
Fixes #4749 

## What does this PR do?
- [Implement localized search](c0c6955c0d)
- [Implement localized attributes settings](bde827b055)

## Related PRD

- [PRD](https://www.notion.so/meilisearch/Define-language-settings-to-impact-relevancy-bee62e18b7584c4f87d18a7654855329)
- [Public usage](https://www.notion.so/meilisearch/v1-10-Language-settings-usage-26c5d98b553349d9abacbe7aff698e4e)


Co-authored-by: ManyTheFish <many@meilisearch.com>
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
This commit is contained in:
meili-bors[bot] 2024-07-25 09:00:33 +00:00 committed by GitHub
commit 76bc2c18e8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
45 changed files with 2004 additions and 498 deletions

37
Cargo.lock generated
View File

@ -934,19 +934,15 @@ dependencies = [
[[package]]
name = "charabia"
version = "0.8.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9868a22f10dee80498a8a2b6c641d80bf28ea4495fcf71c2dc4836c2dd23958c"
source = "git+https://github.com/meilisearch/charabia.git?branch=simplify-lang-detection#2992583137458afcebff5d44cae93fa46d9cf664"
dependencies = [
"aho-corasick",
"cow-utils",
"csv",
"deunicode",
"either",
"fst",
"irg-kvariants",
"jieba-rs",
"lindera",
"litemap",
"once_cell",
"pinyin",
"serde",
@ -954,7 +950,6 @@ dependencies = [
"unicode-normalization",
"wana_kana",
"whatlang",
"zerovec",
]
[[package]]
@ -1145,12 +1140,6 @@ version = "0.8.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e496a50fda8aacccc86d7529e2c1e0892dbd0f898a6b5645b5561b89c3210efa"
[[package]]
name = "cow-utils"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "79bb3adfaf5f75d24b01aee375f7555907840fa2800e5ec8fa3b9e2031830173"
[[package]]
name = "cpufeatures"
version = "0.2.12"
@ -1551,12 +1540,6 @@ dependencies = [
"syn 2.0.60",
]
[[package]]
name = "deunicode"
version = "1.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "339544cc9e2c4dc3fc7149fd630c5f22263a4fdf18a98afd0075784968b5cf00"
[[package]]
name = "digest"
version = "0.10.7"
@ -2666,8 +2649,7 @@ checksum = "28b29a3cd74f0f4598934efe3aeba42bae0eb4680554128851ebbecb02af14e6"
[[package]]
name = "irg-kvariants"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ef2af7c331f2536964a32b78a7d2e0963d78b42f4a76323b16cc7d94b1ddce26"
source = "git+https://github.com/meilisearch/charabia.git?branch=simplify-lang-detection#2992583137458afcebff5d44cae93fa46d9cf664"
dependencies = [
"csv",
"once_cell",
@ -3278,12 +3260,6 @@ dependencies = [
"unicode-segmentation",
]
[[package]]
name = "litemap"
version = "0.7.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "643cb0b8d4fcc284004d5fd0d67ccf61dfffadb7f75e1e71bc420f4688a3a704"
[[package]]
name = "lmdb-master-sys"
version = "0.2.2"
@ -6506,15 +6482,6 @@ dependencies = [
"syn 2.0.60",
]
[[package]]
name = "zerovec"
version = "0.10.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "aa2b893d79df23bfb12d5461018d408ea19dfafe76c2c7ef6d4eba614f8ff079"
dependencies = [
"zerofrom",
]
[[package]]
name = "zip"
version = "1.1.4"

View File

@ -286,6 +286,7 @@ pub(crate) mod test {
pagination: Setting::NotSet,
embedders: Setting::NotSet,
search_cutoff_ms: Setting::NotSet,
localized_attributes: Setting::NotSet,
_kind: std::marker::PhantomData,
};
settings.check()

View File

@ -379,6 +379,7 @@ impl<T> From<v5::Settings<T>> for v6::Settings<v6::Unchecked> {
v5::Setting::NotSet => v6::Setting::NotSet,
},
embedders: v6::Setting::NotSet,
localized_attributes: v6::Setting::NotSet,
search_cutoff_ms: v6::Setting::NotSet,
_kind: std::marker::PhantomData,
}

View File

@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
2 {uid: 2, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: None, method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000001, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------

View File

@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
2 {uid: 2, status: enqueued, details: { received_documents: 1, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: None, method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000001, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------

View File

@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: succeeded, details: { received_documents: 1, indexed_documents: Some(1) }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:

View File

@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
1 {uid: 1, status: enqueued, details: { received_documents: 1, indexed_documents: None }, kind: DocumentAdditionOrUpdate { index_uid: "doggos", primary_key: Some("id"), method: UpdateDocuments, content_file: 00000000-0000-0000-0000-000000000000, documents_count: 1, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:

View File

@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,]

View File

@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"A_fakerest": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(384), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet }), "B_small_hf": Set(EmbeddingSettings { source: Set(HuggingFace), model: Set("sentence-transformers/all-MiniLM-L6-v2"), revision: Set("e4ce9877abf3edfe10b0d82785e83bdcb973e22e"), api_key: NotSet, dimensions: NotSet, document_template: Set("{{doc.doggo}} the {{doc.breed}} best doggo"), url: NotSet, request: NotSet, response: NotSet, distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []

View File

@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: enqueued, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued [0,]

View File

@ -6,7 +6,7 @@ source: index-scheduler/src/lib.rs
[]
----------------------------------------------------------------------
### All Tasks:
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet })}), search_cutoff_ms: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
0 {uid: 0, status: succeeded, details: { settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> } }, kind: SettingsUpdate { index_uid: "doggos", new_settings: Settings { displayed_attributes: WildcardSetting(NotSet), searchable_attributes: WildcardSetting(NotSet), filterable_attributes: NotSet, sortable_attributes: NotSet, ranking_rules: NotSet, stop_words: NotSet, non_separator_tokens: NotSet, separator_tokens: NotSet, dictionary: NotSet, synonyms: NotSet, distinct_attribute: NotSet, proximity_precision: NotSet, typo_tolerance: NotSet, faceting: NotSet, pagination: NotSet, embedders: Set({"default": Set(EmbeddingSettings { source: Set(Rest), model: NotSet, revision: NotSet, api_key: Set("My super secret"), dimensions: Set(4), document_template: NotSet, url: Set("http://localhost:7777"), request: Set(String("{{text}}")), response: Set(String("{{embedding}}")), distribution: NotSet })}), search_cutoff_ms: NotSet, localized_attributes: NotSet, _kind: PhantomData<meilisearch_types::settings::Unchecked> }, is_deletion: false, allow_index_creation: true }}
----------------------------------------------------------------------
### Status:
enqueued []

View File

@ -256,6 +256,7 @@ InvalidSearchCropLength , InvalidRequest , BAD_REQUEST ;
InvalidSearchCropMarker , InvalidRequest , BAD_REQUEST ;
InvalidSearchFacets , InvalidRequest , BAD_REQUEST ;
InvalidSearchSemanticRatio , InvalidRequest , BAD_REQUEST ;
InvalidSearchLocales , InvalidRequest , BAD_REQUEST ;
InvalidFacetSearchFacetName , InvalidRequest , BAD_REQUEST ;
InvalidSimilarId , InvalidRequest , BAD_REQUEST ;
InvalidSearchFilter , InvalidRequest , BAD_REQUEST ;
@ -297,6 +298,7 @@ InvalidSettingsSeparatorTokens , InvalidRequest , BAD_REQUEST ;
InvalidSettingsDictionary , InvalidRequest , BAD_REQUEST ;
InvalidSettingsSynonyms , InvalidRequest , BAD_REQUEST ;
InvalidSettingsTypoTolerance , InvalidRequest , BAD_REQUEST ;
InvalidSettingsLocalizedAttributes , InvalidRequest , BAD_REQUEST ;
InvalidState , Internal , INTERNAL_SERVER_ERROR ;
InvalidStoreFile , Internal , INTERNAL_SERVER_ERROR ;
InvalidSwapDuplicateIndexFound , InvalidRequest , BAD_REQUEST ;

View File

@ -7,6 +7,7 @@ pub mod features;
pub mod index_uid;
pub mod index_uid_pattern;
pub mod keys;
pub mod locales;
pub mod settings;
pub mod star_or;
pub mod task_view;

View File

@ -0,0 +1,157 @@
use deserr::Deserr;
use milli::LocalizedAttributesRule;
use serde::{Deserialize, Serialize};
use serde_json::json;
/// Generate a Locale enum and its From and Into implementations for milli::tokenizer::Language.
///
/// this enum implements `Deserr` in order to be used in the API.
macro_rules! make_locale {
($($language:tt), +) => {
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr, Serialize, Deserialize, Ord, PartialOrd)]
#[deserr(rename_all = camelCase)]
#[serde(rename_all = "camelCase")]
pub enum Locale {
$($language),+,
}
impl From<milli::tokenizer::Language> for Locale {
fn from(other: milli::tokenizer::Language) -> Locale {
match other {
$(milli::tokenizer::Language::$language => Locale::$language), +
}
}
}
impl From<Locale> for milli::tokenizer::Language {
fn from(other: Locale) -> milli::tokenizer::Language {
match other {
$(Locale::$language => milli::tokenizer::Language::$language), +,
}
}
}
#[derive(Debug)]
pub struct LocaleFormatError {
pub invalid_locale: String,
}
impl std::fmt::Display for LocaleFormatError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let valid_locales = [$(Locale::$language),+].iter().map(|l| format!("`{}`", json!(l).as_str().unwrap())).collect::<Vec<_>>().join(", ");
write!(f, "Unsupported locale `{}`, expected one of {}", self.invalid_locale, valid_locales)
}
}
};
}
make_locale! {
Epo,
Eng,
Rus,
Cmn,
Spa,
Por,
Ita,
Ben,
Fra,
Deu,
Ukr,
Kat,
Ara,
Hin,
Jpn,
Heb,
Yid,
Pol,
Amh,
Jav,
Kor,
Nob,
Dan,
Swe,
Fin,
Tur,
Nld,
Hun,
Ces,
Ell,
Bul,
Bel,
Mar,
Kan,
Ron,
Slv,
Hrv,
Srp,
Mkd,
Lit,
Lav,
Est,
Tam,
Vie,
Urd,
Tha,
Guj,
Uzb,
Pan,
Aze,
Ind,
Tel,
Pes,
Mal,
Ori,
Mya,
Nep,
Sin,
Khm,
Tuk,
Aka,
Zul,
Sna,
Afr,
Lat,
Slk,
Cat,
Tgl,
Hye
}
impl std::error::Error for LocaleFormatError {}
impl std::str::FromStr for Locale {
type Err = LocaleFormatError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
milli::tokenizer::Language::from_code(s)
.map(Self::from)
.ok_or(LocaleFormatError { invalid_locale: s.to_string() })
}
}
#[derive(Debug, Clone, PartialEq, Eq, Deserr, Serialize, Deserialize)]
#[deserr(rename_all = camelCase)]
#[serde(rename_all = "camelCase")]
pub struct LocalizedAttributesRuleView {
pub attribute_patterns: Vec<String>,
pub locales: Vec<Locale>,
}
impl From<LocalizedAttributesRule> for LocalizedAttributesRuleView {
fn from(rule: LocalizedAttributesRule) -> Self {
Self {
attribute_patterns: rule.attribute_patterns,
locales: rule.locales.into_iter().map(|l| l.into()).collect(),
}
}
}
impl From<LocalizedAttributesRuleView> for LocalizedAttributesRule {
fn from(view: LocalizedAttributesRuleView) -> Self {
Self {
attribute_patterns: view.attribute_patterns,
locales: view.locales.into_iter().map(|l| l.into()).collect(),
}
}
}

View File

@ -17,6 +17,7 @@ use serde::{Deserialize, Serialize, Serializer};
use crate::deserr::DeserrJsonError;
use crate::error::deserr_codes::*;
use crate::facet_values_sort::FacetValuesSort;
use crate::locales::LocalizedAttributesRuleView;
/// The maximum number of results that the engine
/// will be able to return in one search call.
@ -198,6 +199,9 @@ pub struct Settings<T> {
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default, error = DeserrJsonError<InvalidSettingsSearchCutoffMs>)]
pub search_cutoff_ms: Setting<u64>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default, error = DeserrJsonError<InvalidSettingsLocalizedAttributes>)]
pub localized_attributes: Setting<Vec<LocalizedAttributesRuleView>>,
#[serde(skip)]
#[deserr(skip)]
@ -261,6 +265,7 @@ impl Settings<Checked> {
pagination: Setting::Reset,
embedders: Setting::Reset,
search_cutoff_ms: Setting::Reset,
localized_attributes: Setting::Reset,
_kind: PhantomData,
}
}
@ -284,7 +289,8 @@ impl Settings<Checked> {
pagination,
embedders,
search_cutoff_ms,
..
localized_attributes: localized_attributes_rules,
_kind,
} = self;
Settings {
@ -305,6 +311,7 @@ impl Settings<Checked> {
pagination,
embedders,
search_cutoff_ms,
localized_attributes: localized_attributes_rules,
_kind: PhantomData,
}
}
@ -352,6 +359,7 @@ impl Settings<Unchecked> {
pagination: self.pagination,
embedders: self.embedders,
search_cutoff_ms: self.search_cutoff_ms,
localized_attributes: self.localized_attributes,
_kind: PhantomData,
}
}
@ -402,6 +410,7 @@ pub fn apply_settings_to_builder(
pagination,
embedders,
search_cutoff_ms,
localized_attributes: localized_attributes_rules,
_kind,
} = settings;
@ -485,6 +494,13 @@ pub fn apply_settings_to_builder(
Setting::NotSet => (),
}
match localized_attributes_rules {
Setting::Set(ref rules) => builder
.set_localized_attributes_rules(rules.iter().cloned().map(|r| r.into()).collect()),
Setting::Reset => builder.reset_localized_attributes_rules(),
Setting::NotSet => (),
}
match typo_tolerance {
Setting::Set(ref value) => {
match value.enabled {
@ -679,6 +695,8 @@ pub fn settings(
let search_cutoff_ms = index.search_cutoff(rtxn)?;
let localized_attributes_rules = index.localized_attributes_rules(rtxn)?;
let mut settings = Settings {
displayed_attributes: match displayed_attributes {
Some(attrs) => Setting::Set(attrs),
@ -711,6 +729,10 @@ pub fn settings(
Some(cutoff) => Setting::Set(cutoff),
None => Setting::Reset,
},
localized_attributes: match localized_attributes_rules {
Some(rules) => Setting::Set(rules.into_iter().map(|r| r.into()).collect()),
None => Setting::Reset,
},
_kind: PhantomData,
};
@ -902,6 +924,7 @@ pub(crate) mod test {
faceting: Setting::NotSet,
pagination: Setting::NotSet,
embedders: Setting::NotSet,
localized_attributes: Setting::NotSet,
search_cutoff_ms: Setting::NotSet,
_kind: PhantomData::<Unchecked>,
};
@ -930,6 +953,7 @@ pub(crate) mod test {
faceting: Setting::NotSet,
pagination: Setting::NotSet,
embedders: Setting::NotSet,
localized_attributes: Setting::NotSet,
search_cutoff_ms: Setting::NotSet,
_kind: PhantomData::<Unchecked>,
};

View File

@ -1,4 +1,4 @@
use std::collections::{BinaryHeap, HashMap, HashSet};
use std::collections::{BTreeSet, BinaryHeap, HashMap, HashSet};
use std::fs;
use std::mem::take;
use std::path::{Path, PathBuf};
@ -10,6 +10,7 @@ use actix_web::HttpRequest;
use byte_unit::Byte;
use index_scheduler::IndexScheduler;
use meilisearch_auth::{AuthController, AuthFilter};
use meilisearch_types::locales::Locale;
use meilisearch_types::InstanceUid;
use once_cell::sync::Lazy;
use regex::Regex;
@ -653,6 +654,9 @@ pub struct SearchAggregator {
// every time a search is done, we increment the counter linked to the used settings
matching_strategy: HashMap<String, usize>,
// List of the unique Locales passed as parameter
locales: BTreeSet<Locale>,
// pagination
max_limit: usize,
max_offset: usize,
@ -707,6 +711,7 @@ impl SearchAggregator {
attributes_to_search_on,
hybrid,
ranking_score_threshold,
locales,
} = query;
let mut ret = Self::default();
@ -774,6 +779,10 @@ impl SearchAggregator {
ret.matching_strategy.insert(format!("{:?}", matching_strategy), 1);
if let Some(locales) = locales {
ret.locales = locales.iter().copied().collect();
}
ret.highlight_pre_tag = *highlight_pre_tag != DEFAULT_HIGHLIGHT_PRE_TAG();
ret.highlight_post_tag = *highlight_post_tag != DEFAULT_HIGHLIGHT_POST_TAG();
ret.crop_marker = *crop_marker != DEFAULT_CROP_MARKER();
@ -859,6 +868,7 @@ impl SearchAggregator {
total_degraded,
total_used_negative_operator,
ranking_score_threshold,
ref mut locales,
} = other;
if self.timestamp.is_none() {
@ -947,6 +957,9 @@ impl SearchAggregator {
self.show_ranking_score |= show_ranking_score;
self.show_ranking_score_details |= show_ranking_score_details;
self.ranking_score_threshold |= ranking_score_threshold;
// locales
self.locales.append(locales);
}
pub fn into_event(self, user: &User, event_name: &str) -> Option<Track> {
@ -991,6 +1004,7 @@ impl SearchAggregator {
total_degraded,
total_used_negative_operator,
ranking_score_threshold,
locales,
} = self;
if total_received == 0 {
@ -1060,6 +1074,7 @@ impl SearchAggregator {
"matching_strategy": {
"most_used_strategy": matching_strategy.iter().max_by_key(|(_, v)| *v).map(|(k, _)| json!(k)).unwrap_or_else(|| json!(null)),
},
"locales": locales,
"scoring": {
"show_ranking_score": show_ranking_score,
"show_ranking_score_details": show_ranking_score_details,
@ -1150,6 +1165,7 @@ impl MultiSearchAggregator {
attributes_to_search_on: _,
hybrid: _,
ranking_score_threshold: _,
locales: _,
} = query;
index_uid.as_str()
@ -1307,6 +1323,7 @@ impl FacetSearchAggregator {
attributes_to_search_on,
hybrid,
ranking_score_threshold,
locales,
} = query;
let mut ret = Self::default();
@ -1322,7 +1339,8 @@ impl FacetSearchAggregator {
|| *matching_strategy != MatchingStrategy::default()
|| attributes_to_search_on.is_some()
|| hybrid.is_some()
|| ranking_score_threshold.is_some();
|| ranking_score_threshold.is_some()
|| locales.is_some();
ret
}

View File

@ -6,6 +6,7 @@ use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::ResponseError;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::locales::Locale;
use serde_json::Value;
use tracing::debug;
@ -48,6 +49,8 @@ pub struct FacetSearchQuery {
pub attributes_to_search_on: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchRankingScoreThreshold>, default)]
pub ranking_score_threshold: Option<RankingScoreThreshold>,
#[deserr(default, error = DeserrJsonError<InvalidSearchLocales>, default)]
pub locales: Option<Vec<Locale>>,
}
pub async fn search(
@ -67,6 +70,7 @@ pub async fn search(
let facet_query = query.facet_query.clone();
let facet_name = query.facet_name.clone();
let locales = query.locales.clone().map(|l| l.into_iter().map(Into::into).collect());
let mut search_query = SearchQuery::from(query);
// Tenant token search_rules.
@ -86,6 +90,7 @@ pub async fn search(
facet_name,
search_kind,
index_scheduler.features(),
locales,
)
})
.await?;
@ -113,6 +118,7 @@ impl From<FacetSearchQuery> for SearchQuery {
attributes_to_search_on,
hybrid,
ranking_score_threshold,
locales,
} = value;
SearchQuery {
@ -141,6 +147,7 @@ impl From<FacetSearchQuery> for SearchQuery {
attributes_to_search_on,
hybrid,
ranking_score_threshold,
locales,
}
}
}

View File

@ -7,6 +7,7 @@ use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError};
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::ResponseError;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::locales::Locale;
use meilisearch_types::milli;
use meilisearch_types::serde_cs::vec::CS;
use serde_json::Value;
@ -89,6 +90,8 @@ pub struct SearchQueryGet {
pub hybrid_semantic_ratio: Option<SemanticRatioGet>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchRankingScoreThreshold>)]
pub ranking_score_threshold: Option<RankingScoreThresholdGet>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchLocales>)]
pub locales: Option<CS<Locale>>,
}
#[derive(Debug, Clone, Copy, PartialEq, deserr::Deserr)]
@ -175,6 +178,7 @@ impl From<SearchQueryGet> for SearchQuery {
attributes_to_search_on: other.attributes_to_search_on.map(|o| o.into_iter().collect()),
hybrid,
ranking_score_threshold: other.ranking_score_threshold.map(|o| o.0),
locales: other.locales.map(|o| o.into_iter().collect()),
}
}
}

View File

@ -474,6 +474,28 @@ make_setting_route!(
}
);
make_setting_route!(
"/localized-attributes",
put,
Vec<meilisearch_types::locales::LocalizedAttributesRuleView>,
meilisearch_types::deserr::DeserrJsonError<
meilisearch_types::error::deserr_codes::InvalidSettingsLocalizedAttributes,
>,
localized_attributes,
"localizedAttributes",
analytics,
|rules: &Option<Vec<meilisearch_types::locales::LocalizedAttributesRuleView>>, req: &HttpRequest| {
use serde_json::json;
analytics.publish(
"LocalizedAttributesRules Updated".to_string(),
json!({
"locales": rules.as_ref().map(|rules| rules.iter().flat_map(|rule| rule.locales.iter().cloned()).collect::<std::collections::BTreeSet<_>>())
}),
Some(req),
);
}
);
make_setting_route!(
"/ranking-rules",
put,
@ -786,6 +808,7 @@ pub async fn update_all(
},
"embedders": crate::routes::indexes::settings::embedder_analytics(new_settings.embedders.as_ref().set()),
"search_cutoff_ms": new_settings.search_cutoff_ms.as_ref().set(),
"locales": new_settings.localized_attributes.as_ref().set().map(|rules| rules.iter().flat_map(|rule| rule.locales.iter().cloned()).collect::<std::collections::BTreeSet<_>>()),
}),
Some(&req),
);

View File

@ -380,9 +380,6 @@ pub fn perform_federated_search(
let criteria = index.criteria(&rtxn)?;
// stuff we need for the hitmaker
let script_lang_map = index.script_language(&rtxn)?;
let dictionary = index.dictionary(&rtxn)?;
let dictionary: Option<Vec<_>> =
dictionary.as_ref().map(|x| x.iter().map(String::as_str).collect());
@ -494,6 +491,7 @@ pub fn perform_federated_search(
sort: query.sort,
show_ranking_score: query.show_ranking_score,
show_ranking_score_details: query.show_ranking_score_details,
locales: query.locales.map(|l| l.iter().copied().map(Into::into).collect()),
};
let milli::SearchResult {
@ -509,11 +507,7 @@ pub fn perform_federated_search(
degraded |= query_degraded;
used_negative_operator |= query_used_negative_operator;
let tokenizer = HitMaker::tokenizer(
&script_lang_map,
dictionary.as_deref(),
separators.as_deref(),
);
let tokenizer = HitMaker::tokenizer(dictionary.as_deref(), separators.as_deref());
let formatter_builder = HitMaker::formatter_builder(matching_words, tokenizer);

View File

@ -1,6 +1,6 @@
use core::fmt;
use std::cmp::min;
use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet};
use std::collections::{BTreeMap, BTreeSet, HashSet};
use std::str::FromStr;
use std::sync::Arc;
use std::time::{Duration, Instant};
@ -15,16 +15,17 @@ use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::{Code, ResponseError};
use meilisearch_types::heed::RoTxn;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::locales::Locale;
use meilisearch_types::milli::score_details::{ScoreDetails, ScoringStrategy};
use meilisearch_types::milli::vector::parsed_vectors::ExplicitVectors;
use meilisearch_types::milli::vector::Embedder;
use meilisearch_types::milli::{FacetValueHit, OrderBy, SearchForFacetValues, TimeBudget};
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
use meilisearch_types::{milli, Document};
use milli::tokenizer::TokenizerBuilder;
use milli::tokenizer::{Language, TokenizerBuilder};
use milli::{
AscDesc, FieldId, FieldsIdsMap, Filter, FormatOptions, Index, MatchBounds, MatcherBuilder,
SortError, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
AscDesc, FieldId, FieldsIdsMap, Filter, FormatOptions, Index, LocalizedAttributesRule,
MatchBounds, MatcherBuilder, SortError, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
};
use regex::Regex;
use serde::Serialize;
@ -100,6 +101,8 @@ pub struct SearchQuery {
pub attributes_to_search_on: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchRankingScoreThreshold>, default)]
pub ranking_score_threshold: Option<RankingScoreThreshold>,
#[deserr(default, error = DeserrJsonError<InvalidSearchLocales>, default)]
pub locales: Option<Vec<Locale>>,
}
#[derive(Debug, Clone, Copy, PartialEq, Deserr)]
@ -169,6 +172,7 @@ impl fmt::Debug for SearchQuery {
matching_strategy,
attributes_to_search_on,
ranking_score_threshold,
locales,
} = self;
let mut debug = f.debug_struct("SearchQuery");
@ -250,6 +254,10 @@ impl fmt::Debug for SearchQuery {
debug.field("ranking_score_threshold", &ranking_score_threshold);
}
if let Some(locales) = locales {
debug.field("locales", &locales);
}
debug.finish()
}
}
@ -425,6 +433,8 @@ pub struct SearchQueryWithIndex {
pub attributes_to_search_on: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchRankingScoreThreshold>, default)]
pub ranking_score_threshold: Option<RankingScoreThreshold>,
#[deserr(default, error = DeserrJsonError<InvalidSearchLocales>, default)]
pub locales: Option<Vec<Locale>>,
#[deserr(default)]
pub federation_options: Option<FederationOptions>,
@ -477,6 +487,7 @@ impl SearchQueryWithIndex {
attributes_to_search_on,
hybrid,
ranking_score_threshold,
locales,
} = self;
(
index_uid,
@ -506,6 +517,7 @@ impl SearchQueryWithIndex {
attributes_to_search_on,
hybrid,
ranking_score_threshold,
locales,
// do not use ..Default::default() here,
// rather add any missing field from `SearchQuery` to `SearchQueryWithIndex`
},
@ -866,6 +878,10 @@ fn prepare_search<'t>(
search.sort_criteria(sort);
}
if let Some(ref locales) = query.locales {
search.locales(locales.iter().copied().map(Into::into).collect());
}
Ok((search, is_finite_pagination, max_total_hits, offset))
}
@ -917,6 +933,7 @@ pub fn perform_search(
highlight_pre_tag,
highlight_post_tag,
crop_marker,
locales,
// already used in prepare_search
vector: _,
hybrid: _,
@ -941,6 +958,7 @@ pub fn perform_search(
sort,
show_ranking_score,
show_ranking_score_details,
locales: locales.map(|l| l.iter().copied().map(Into::into).collect()),
};
let documents = make_hits(
@ -1046,6 +1064,7 @@ struct AttributesFormat {
sort: Option<Vec<String>>,
show_ranking_score: bool,
show_ranking_score_details: bool,
locales: Option<Vec<Language>>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
@ -1093,19 +1112,16 @@ struct HitMaker<'a> {
show_ranking_score_details: bool,
sort: Option<Vec<String>>,
show_matches_position: bool,
locales: Option<Vec<Language>>,
}
impl<'a> HitMaker<'a> {
pub fn tokenizer<'b>(
script_lang_map: &'b HashMap<milli::tokenizer::Script, Vec<milli::tokenizer::Language>>,
dictionary: Option<&'b [&'b str]>,
separators: Option<&'b [&'b str]>,
) -> milli::tokenizer::Tokenizer<'b> {
let mut tokenizer_builder = TokenizerBuilder::default();
tokenizer_builder.create_char_map(true);
if !script_lang_map.is_empty() {
tokenizer_builder.allow_list(script_lang_map);
}
if let Some(separators) = separators {
tokenizer_builder.separators(separators);
@ -1218,6 +1234,7 @@ impl<'a> HitMaker<'a> {
show_ranking_score_details: format.show_ranking_score_details,
show_matches_position: format.show_matches_position,
sort: format.sort,
locales: format.locales,
})
}
@ -1273,6 +1290,9 @@ impl<'a> HitMaker<'a> {
document.insert("_vectors".into(), vectors.into());
}
let localized_attributes =
self.index.localized_attributes_rules(self.rtxn)?.unwrap_or_default();
let (matches_position, formatted) = format_fields(
&displayed_document,
&self.fields_ids_map,
@ -1280,6 +1300,8 @@ impl<'a> HitMaker<'a> {
&self.formatted_options,
self.show_matches_position,
&self.displayed_ids,
self.locales.as_deref(),
&localized_attributes,
)?;
if let Some(sort) = self.sort.as_ref() {
@ -1312,8 +1334,6 @@ fn make_hits<'a>(
) -> Result<Vec<SearchHit>, MeilisearchHttpError> {
let mut documents = Vec::new();
let script_lang_map = index.script_language(rtxn)?;
let dictionary = index.dictionary(rtxn)?;
let dictionary: Option<Vec<_>> =
dictionary.as_ref().map(|x| x.iter().map(String::as_str).collect());
@ -1321,8 +1341,7 @@ fn make_hits<'a>(
let separators: Option<Vec<_>> =
separators.as_ref().map(|x| x.iter().map(String::as_str).collect());
let tokenizer =
HitMaker::tokenizer(&script_lang_map, dictionary.as_deref(), separators.as_deref());
let tokenizer = HitMaker::tokenizer(dictionary.as_deref(), separators.as_deref());
let formatter_builder = HitMaker::formatter_builder(matching_words, tokenizer);
@ -1341,6 +1360,7 @@ pub fn perform_facet_search(
facet_name: String,
search_kind: SearchKind,
features: RoFeatures,
locales: Option<Vec<Language>>,
) -> Result<FacetSearchResult, ResponseError> {
let before_search = Instant::now();
let rtxn = index.read_txn()?;
@ -1349,6 +1369,14 @@ pub fn perform_facet_search(
None => TimeBudget::default(),
};
let localized_attributes = index.localized_attributes_rules(&rtxn)?.unwrap_or_default();
let locales = locales.or_else(|| {
localized_attributes
.into_iter()
.find(|attr| attr.match_str(&facet_name))
.map(|attr| attr.locales)
});
let (search, _, _, _) =
prepare_search(index, &rtxn, &search_query, &search_kind, time_budget, features)?;
let mut facet_search = SearchForFacetValues::new(
@ -1363,6 +1391,10 @@ pub fn perform_facet_search(
facet_search.max_values(max_facets as usize);
}
if let Some(locales) = locales {
facet_search.locales(locales);
}
Ok(FacetSearchResult {
facet_hits: facet_search.execute()?,
facet_query,
@ -1443,6 +1475,7 @@ pub fn perform_similar(
sort: None,
show_ranking_score,
show_ranking_score_details,
locales: None,
};
let hits = make_hits(
@ -1624,6 +1657,7 @@ fn make_document(
Ok(document)
}
#[allow(clippy::too_many_arguments)]
fn format_fields(
document: &Document,
field_ids_map: &FieldsIdsMap,
@ -1631,6 +1665,8 @@ fn format_fields(
formatted_options: &BTreeMap<FieldId, FormatOptions>,
compute_matches: bool,
displayable_ids: &BTreeSet<FieldId>,
locales: Option<&[Language]>,
localized_attributes: &[LocalizedAttributesRule],
) -> Result<(Option<MatchesPosition>, Document), MeilisearchHttpError> {
let mut matches_position = compute_matches.then(BTreeMap::new);
let mut document = document.clone();
@ -1663,7 +1699,22 @@ fn format_fields(
.reduce(|acc, option| acc.merge(option));
let mut infos = Vec::new();
*value = format_value(std::mem::take(value), builder, format, &mut infos, compute_matches);
// if no locales has been provided, we try to find the locales in the localized_attributes.
let locales = locales.or_else(|| {
localized_attributes
.iter()
.find(|rule| rule.match_str(key))
.map(LocalizedAttributesRule::locales)
});
*value = format_value(
std::mem::take(value),
builder,
format,
&mut infos,
compute_matches,
locales,
);
if let Some(matches) = matches_position.as_mut() {
if !infos.is_empty() {
@ -1688,10 +1739,11 @@ fn format_value(
format_options: Option<FormatOptions>,
infos: &mut Vec<MatchBounds>,
compute_matches: bool,
locales: Option<&[Language]>,
) -> Value {
match value {
Value::String(old_string) => {
let mut matcher = builder.build(&old_string);
let mut matcher = builder.build(&old_string, locales);
if compute_matches {
let matches = matcher.matches();
infos.extend_from_slice(&matches[..]);
@ -1718,6 +1770,7 @@ fn format_value(
}),
infos,
compute_matches,
locales,
)
})
.collect(),
@ -1737,6 +1790,7 @@ fn format_value(
}),
infos,
compute_matches,
locales,
),
)
})
@ -1745,7 +1799,7 @@ fn format_value(
Value::Number(number) => {
let s = number.to_string();
let mut matcher = builder.build(&s);
let mut matcher = builder.build(&s, locales);
if compute_matches {
let matches = matcher.matches();
infos.extend_from_slice(&matches[..]);

View File

@ -78,7 +78,8 @@ async fn import_dump_v1_movie_raw() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -240,7 +241,8 @@ async fn import_dump_v1_movie_with_settings() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -388,7 +390,8 @@ async fn import_dump_v1_rubygems_with_settings() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -522,7 +525,8 @@ async fn import_dump_v2_movie_raw() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -668,7 +672,8 @@ async fn import_dump_v2_movie_with_settings() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -813,7 +818,8 @@ async fn import_dump_v2_rubygems_with_settings() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -947,7 +953,8 @@ async fn import_dump_v3_movie_raw() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -1093,7 +1100,8 @@ async fn import_dump_v3_movie_with_settings() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -1238,7 +1246,8 @@ async fn import_dump_v3_rubygems_with_settings() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -1372,7 +1381,8 @@ async fn import_dump_v4_movie_raw() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -1518,7 +1528,8 @@ async fn import_dump_v4_movie_with_settings() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -1663,7 +1674,8 @@ async fn import_dump_v4_rubygems_with_settings() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###
);
@ -1909,7 +1921,8 @@ async fn import_dump_v6_containing_experimental_features() {
"pagination": {
"maxTotalHits": 1000
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###);
@ -2087,7 +2100,8 @@ async fn generate_and_import_dump_containing_vectors() {
"documentTemplate": "{{doc.doggo}}"
}
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###);

File diff suppressed because it is too large Load Diff

View File

@ -7,6 +7,7 @@ mod facet_search;
mod formatted;
mod geo;
mod hybrid;
mod locales;
mod matching_strategy;
mod multi;
mod pagination;

View File

@ -55,7 +55,7 @@ async fn get_settings() {
let (response, code) = index.settings().await;
assert_eq!(code, 200);
let settings = response.as_object().unwrap();
assert_eq!(settings.keys().len(), 16);
assert_eq!(settings.keys().len(), 17);
assert_eq!(settings["displayedAttributes"], json!(["*"]));
assert_eq!(settings["searchableAttributes"], json!(["*"]));
assert_eq!(settings["filterableAttributes"], json!([]));
@ -195,7 +195,8 @@ async fn secrets_are_hidden_in_settings() {
"response": "{{embedding}}"
}
},
"searchCutoffMs": null
"searchCutoffMs": null,
"localizedAttributes": null
}
"###);

View File

@ -17,7 +17,7 @@ bincode = "1.3.3"
bstr = "1.9.1"
bytemuck = { version = "1.16.1", features = ["extern_crate_alloc"] }
byteorder = "1.5.0"
charabia = { version = "0.8.12", default-features = false }
charabia = { git = "https://github.com/meilisearch/charabia.git", branch = "simplify-lang-detection", default-features = false }
concat-arrays = "0.1.2"
crossbeam-channel = "0.5.13"
deserr = "0.6.2"

View File

@ -68,6 +68,7 @@ fn main() -> Result<(), Box<dyn Error>> {
logger,
TimeBudget::max(),
None,
None,
)?;
if let Some((logger, dir)) = detailed_logger {
logger.finish(&mut ctx, Path::new(dir))?;

View File

@ -7,7 +7,6 @@ mod fst_set_codec;
mod obkv_codec;
mod roaring_bitmap;
mod roaring_bitmap_length;
mod script_language_codec;
mod str_beu32_codec;
mod str_ref;
mod str_str_u8_codec;
@ -26,7 +25,6 @@ pub use self::roaring_bitmap::{BoRoaringBitmapCodec, CboRoaringBitmapCodec, Roar
pub use self::roaring_bitmap_length::{
BoRoaringBitmapLenCodec, CboRoaringBitmapLenCodec, RoaringBitmapLenCodec,
};
pub use self::script_language_codec::ScriptLanguageCodec;
pub use self::str_beu32_codec::{StrBEU16Codec, StrBEU32Codec};
pub use self::str_str_u8_codec::{U8StrStrCodec, UncheckedU8StrStrCodec};

View File

@ -1,39 +0,0 @@
use std::borrow::Cow;
use std::ffi::CStr;
use std::str;
use charabia::{Language, Script};
use heed::BoxedError;
pub struct ScriptLanguageCodec;
impl<'a> heed::BytesDecode<'a> for ScriptLanguageCodec {
type DItem = (Script, Language);
fn bytes_decode(bytes: &'a [u8]) -> Result<Self::DItem, BoxedError> {
let cstr = CStr::from_bytes_until_nul(bytes)?;
let script = cstr.to_str()?;
let script_name = Script::from_name(script);
// skip '\0' byte between the two strings.
let lan = str::from_utf8(&bytes[script.len() + 1..])?;
let lan_name = Language::from_name(lan);
Ok((script_name, lan_name))
}
}
impl<'a> heed::BytesEncode<'a> for ScriptLanguageCodec {
type EItem = (Script, Language);
fn bytes_encode((script, lan): &Self::EItem) -> Result<Cow<'a, [u8]>, BoxedError> {
let script_name = script.name().as_bytes();
let lan_name = lan.name().as_bytes();
let mut bytes = Vec::with_capacity(script_name.len() + lan_name.len() + 1);
bytes.extend_from_slice(script_name);
bytes.push(0);
bytes.extend_from_slice(lan_name);
Ok(Cow::Owned(bytes))
}
}

View File

@ -4,7 +4,6 @@ use std::convert::TryInto;
use std::fs::File;
use std::path::Path;
use charabia::{Language, Script};
use heed::types::*;
use heed::{CompactionOption, Database, RoTxn, RwTxn, Unspecified};
use roaring::RoaringBitmap;
@ -19,9 +18,7 @@ use crate::heed_codec::facet::{
FacetGroupKeyCodec, FacetGroupValueCodec, FieldDocIdFacetF64Codec, FieldDocIdFacetStringCodec,
FieldIdCodec, OrderedF64Codec,
};
use crate::heed_codec::{
BEU16StrCodec, FstSetCodec, ScriptLanguageCodec, StrBEU16Codec, StrRefCodec,
};
use crate::heed_codec::{BEU16StrCodec, FstSetCodec, StrBEU16Codec, StrRefCodec};
use crate::order_by_map::OrderByMap;
use crate::proximity::ProximityPrecision;
use crate::vector::parsed_vectors::RESERVED_VECTORS_FIELD_NAME;
@ -29,8 +26,8 @@ use crate::vector::{Embedding, EmbeddingConfig};
use crate::{
default_criteria, CboRoaringBitmapCodec, Criterion, DocumentId, ExternalDocumentsIds,
FacetDistribution, FieldDistribution, FieldId, FieldIdMapMissingEntry, FieldIdWordCountCodec,
FieldidsWeightsMap, GeoPoint, ObkvCodec, Result, RoaringBitmapCodec, RoaringBitmapLenCodec,
Search, U8StrStrCodec, Weight, BEU16, BEU32, BEU64,
FieldidsWeightsMap, GeoPoint, LocalizedAttributesRule, ObkvCodec, Result, RoaringBitmapCodec,
RoaringBitmapLenCodec, Search, U8StrStrCodec, Weight, BEU16, BEU32, BEU64,
};
pub const DEFAULT_MIN_WORD_LEN_ONE_TYPO: u8 = 5;
@ -73,6 +70,7 @@ pub mod main_key {
pub const PROXIMITY_PRECISION: &str = "proximity-precision";
pub const EMBEDDING_CONFIGS: &str = "embedding_configs";
pub const SEARCH_CUTOFF: &str = "search_cutoff";
pub const LOCALIZED_ATTRIBUTES_RULES: &str = "localized_attributes_rules";
}
pub mod db_name {
@ -101,7 +99,6 @@ pub mod db_name {
pub const VECTOR_EMBEDDER_CATEGORY_ID: &str = "vector-embedder-category-id";
pub const VECTOR_ARROY: &str = "vector-arroy";
pub const DOCUMENTS: &str = "documents";
pub const SCRIPT_LANGUAGE_DOCIDS: &str = "script_language_docids";
}
#[derive(Clone)]
@ -142,9 +139,6 @@ pub struct Index {
/// Maps the word prefix and a field id with all the docids where the prefix appears inside the field
pub word_prefix_fid_docids: Database<StrBEU16Codec, CboRoaringBitmapCodec>,
/// Maps the script and language with all the docids that corresponds to it.
pub script_language_docids: Database<ScriptLanguageCodec, RoaringBitmapCodec>,
/// Maps the facet field id and the docids for which this field exists
pub facet_id_exists_docids: Database<FieldIdCodec, CboRoaringBitmapCodec>,
/// Maps the facet field id and the docids for which this field is set as null
@ -198,8 +192,6 @@ impl Index {
env.create_database(&mut wtxn, Some(EXACT_WORD_PREFIX_DOCIDS))?;
let word_pair_proximity_docids =
env.create_database(&mut wtxn, Some(WORD_PAIR_PROXIMITY_DOCIDS))?;
let script_language_docids =
env.create_database(&mut wtxn, Some(SCRIPT_LANGUAGE_DOCIDS))?;
let word_position_docids = env.create_database(&mut wtxn, Some(WORD_POSITION_DOCIDS))?;
let word_fid_docids = env.create_database(&mut wtxn, Some(WORD_FIELD_ID_DOCIDS))?;
let field_id_word_count_docids =
@ -243,7 +235,6 @@ impl Index {
word_prefix_docids,
exact_word_prefix_docids,
word_pair_proximity_docids,
script_language_docids,
word_position_docids,
word_fid_docids,
word_prefix_position_docids,
@ -1562,46 +1553,32 @@ impl Index {
self.main.remap_key_type::<Str>().delete(txn, main_key::PROXIMITY_PRECISION)
}
/* script language docids */
/// Retrieve all the documents ids that correspond with (Script, Language) key, `None` if it is any.
pub fn script_language_documents_ids(
pub fn localized_attributes_rules(
&self,
rtxn: &RoTxn<'_>,
key: &(Script, Language),
) -> heed::Result<Option<RoaringBitmap>> {
self.script_language_docids.get(rtxn, key)
) -> heed::Result<Option<Vec<LocalizedAttributesRule>>> {
self.main
.remap_types::<Str, SerdeJson<Vec<LocalizedAttributesRule>>>()
.get(rtxn, main_key::LOCALIZED_ATTRIBUTES_RULES)
}
pub fn script_language(
pub(crate) fn put_localized_attributes_rules(
&self,
rtxn: &RoTxn<'_>,
) -> heed::Result<HashMap<Script, Vec<Language>>> {
let mut script_language: HashMap<Script, Vec<Language>> = HashMap::new();
let mut script_language_doc_count: Vec<(Script, Language, u64)> = Vec::new();
let mut total = 0;
for sl in self.script_language_docids.iter(rtxn)? {
let ((script, language), docids) = sl?;
txn: &mut RwTxn<'_>,
val: Vec<LocalizedAttributesRule>,
) -> heed::Result<()> {
self.main.remap_types::<Str, SerdeJson<Vec<LocalizedAttributesRule>>>().put(
txn,
main_key::LOCALIZED_ATTRIBUTES_RULES,
&val,
)
}
// keep only Languages that contains at least 1 document.
let remaining_documents_count = docids.len();
total += remaining_documents_count;
if remaining_documents_count > 0 {
script_language_doc_count.push((script, language, remaining_documents_count));
}
}
let threshold = total / 20; // 5% (arbitrary)
for (script, language, count) in script_language_doc_count {
if count > threshold {
if let Some(languages) = script_language.get_mut(&script) {
(*languages).push(language);
} else {
script_language.insert(script, vec![language]);
}
}
}
Ok(script_language)
pub(crate) fn delete_localized_attributes_rules(
&self,
txn: &mut RwTxn<'_>,
) -> heed::Result<bool> {
self.main.remap_key_type::<Str>().delete(txn, main_key::LOCALIZED_ATTRIBUTES_RULES)
}
/// Put the embedding configs:

View File

@ -16,6 +16,7 @@ pub mod facet;
mod fields_ids_map;
pub mod heed_codec;
pub mod index;
mod localized_attributes_rules;
pub mod order_by_map;
pub mod prompt;
pub mod proximity;
@ -62,6 +63,8 @@ pub use self::heed_codec::{
UncheckedU8StrStrCodec,
};
pub use self::index::Index;
pub use self::localized_attributes_rules::LocalizedAttributesRule;
use self::localized_attributes_rules::LocalizedFieldIds;
pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
pub use self::search::similar::Similar;
pub use self::search::{

View File

@ -0,0 +1,114 @@
use std::collections::HashMap;
use charabia::Language;
use serde::{Deserialize, Serialize};
use crate::fields_ids_map::FieldsIdsMap;
use crate::FieldId;
/// A rule that defines which locales are supported for a given attribute.
///
/// The rule is a list of attribute patterns and a list of locales.
/// The attribute patterns are matched against the attribute name.
/// The pattern `*` matches any attribute name.
/// The pattern `attribute_name*` matches any attribute name that starts with `attribute_name`.
/// The pattern `*attribute_name` matches any attribute name that ends with `attribute_name`.
/// The pattern `*attribute_name*` matches any attribute name that contains `attribute_name`.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct LocalizedAttributesRule {
pub attribute_patterns: Vec<String>,
pub locales: Vec<Language>,
}
impl LocalizedAttributesRule {
pub fn new(attribute_patterns: Vec<String>, locales: Vec<Language>) -> Self {
Self { attribute_patterns, locales }
}
pub fn match_str(&self, str: &str) -> bool {
self.attribute_patterns.iter().any(|pattern| match_pattern(pattern.as_str(), str))
}
pub fn locales(&self) -> &[Language] {
&self.locales
}
}
fn match_pattern(pattern: &str, str: &str) -> bool {
if pattern == "*" {
true
} else if pattern.starts_with('*') && pattern.ends_with('*') {
str.contains(&pattern[1..pattern.len() - 1])
} else if let Some(pattern) = pattern.strip_prefix('*') {
str.ends_with(pattern)
} else if let Some(pattern) = pattern.strip_suffix('*') {
str.starts_with(pattern)
} else {
pattern == str
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct LocalizedFieldIds {
field_id_to_locales: HashMap<FieldId, Vec<Language>>,
}
impl LocalizedFieldIds {
pub fn new<I: Iterator<Item = FieldId>>(
rules: &Option<Vec<LocalizedAttributesRule>>,
fields_ids_map: &FieldsIdsMap,
fields_ids: I,
) -> Self {
let mut field_id_to_locales = HashMap::new();
if let Some(rules) = rules {
let fields = fields_ids.filter_map(|field_id| {
fields_ids_map.name(field_id).map(|field_name| (field_id, field_name))
});
for (field_id, field_name) in fields {
let mut locales = Vec::new();
for rule in rules {
if rule.match_str(field_name) {
locales.extend(rule.locales.iter());
// Take the first rule that matches
break;
}
}
if !locales.is_empty() {
locales.sort();
locales.dedup();
field_id_to_locales.insert(field_id, locales);
}
}
}
Self { field_id_to_locales }
}
pub fn locales(&self, fields_id: FieldId) -> Option<&[Language]> {
self.field_id_to_locales.get(&fields_id).map(Vec::as_slice)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_match_pattern() {
assert!(match_pattern("*", "test"));
assert!(match_pattern("test*", "test"));
assert!(match_pattern("test*", "testa"));
assert!(match_pattern("*test", "test"));
assert!(match_pattern("*test", "atest"));
assert!(match_pattern("*test*", "test"));
assert!(match_pattern("*test*", "atesta"));
assert!(match_pattern("*test*", "atest"));
assert!(match_pattern("*test*", "testa"));
assert!(!match_pattern("test*test", "test"));
assert!(!match_pattern("*test", "testa"));
assert!(!match_pattern("test*", "atest"));
}
}

View File

@ -3,7 +3,7 @@ use std::collections::BinaryHeap;
use std::ops::ControlFlow;
use charabia::normalizer::NormalizerOption;
use charabia::Normalize;
use charabia::{Language, Normalize, StrDetection, Token};
use fst::automaton::{Automaton, Str};
use fst::{IntoStreamer, Streamer};
use roaring::RoaringBitmap;
@ -23,6 +23,7 @@ pub struct SearchForFacetValues<'a> {
search_query: Search<'a>,
max_values: usize,
is_hybrid: bool,
locales: Option<Vec<Language>>,
}
impl<'a> SearchForFacetValues<'a> {
@ -37,6 +38,7 @@ impl<'a> SearchForFacetValues<'a> {
search_query,
max_values: DEFAULT_MAX_NUMBER_OF_VALUES_PER_FACET,
is_hybrid,
locales: None,
}
}
@ -50,6 +52,11 @@ impl<'a> SearchForFacetValues<'a> {
self
}
pub fn locales(&mut self, locales: Vec<Language>) -> &mut Self {
self.locales = Some(locales);
self
}
fn one_original_value_of(
&self,
field_id: FieldId,
@ -109,8 +116,7 @@ impl<'a> SearchForFacetValues<'a> {
match self.query.as_ref() {
Some(query) => {
let options = NormalizerOption { lossy: true, ..Default::default() };
let query = query.normalize(&options);
let query = normalize_facet_string(query, self.locales.as_deref());
let query = query.as_ref();
let authorize_typos = self.search_query.index.authorize_typos(rtxn)?;
@ -330,3 +336,15 @@ impl ValuesCollection {
}
}
}
fn normalize_facet_string(facet_string: &str, locales: Option<&[Language]>) -> String {
let options = NormalizerOption { lossy: true, ..Default::default() };
let mut detection = StrDetection::new(facet_string, locales);
let token = Token {
lemma: std::borrow::Cow::Borrowed(facet_string),
script: detection.script(),
language: detection.language(),
..Default::default()
};
token.normalize(&options).lemma.into_owned()
}

View File

@ -174,6 +174,7 @@ impl<'a> Search<'a> {
semantic: self.semantic.clone(),
time_budget: self.time_budget.clone(),
ranking_score_threshold: self.ranking_score_threshold,
locales: self.locales.clone(),
};
let semantic = search.semantic.take();

View File

@ -1,6 +1,7 @@
use std::fmt;
use std::sync::Arc;
use charabia::Language;
use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA};
use once_cell::sync::Lazy;
use roaring::bitmap::RoaringBitmap;
@ -52,6 +53,7 @@ pub struct Search<'a> {
semantic: Option<SemanticSearch>,
time_budget: TimeBudget,
ranking_score_threshold: Option<f64>,
locales: Option<Vec<Language>>,
}
impl<'a> Search<'a> {
@ -72,6 +74,7 @@ impl<'a> Search<'a> {
rtxn,
index,
semantic: None,
locales: None,
time_budget: TimeBudget::max(),
ranking_score_threshold: None,
}
@ -160,6 +163,11 @@ impl<'a> Search<'a> {
self
}
pub fn locales(&mut self, locales: Vec<Language>) -> &mut Search<'a> {
self.locales = Some(locales);
self
}
pub fn execute_for_candidates(&self, has_vector_search: bool) -> Result<RoaringBitmap> {
if has_vector_search {
let ctx = SearchContext::new(self.index, self.rtxn)?;
@ -232,6 +240,7 @@ impl<'a> Search<'a> {
&mut DefaultSearchLogger,
self.time_budget.clone(),
self.ranking_score_threshold,
self.locales.as_ref(),
)?,
};
@ -272,6 +281,7 @@ impl fmt::Debug for Search<'_> {
semantic,
time_budget,
ranking_score_threshold,
locales,
} = self;
f.debug_struct("Search")
.field("query", query)
@ -292,6 +302,7 @@ impl fmt::Debug for Search<'_> {
)
.field("time_budget", time_budget)
.field("ranking_score_threshold", ranking_score_threshold)
.field("locales", locales)
.finish()
}
}

View File

@ -1,6 +1,6 @@
use std::borrow::Cow;
use charabia::{SeparatorKind, Token, Tokenizer};
use charabia::{Language, SeparatorKind, Token, Tokenizer};
pub use matching_words::MatchingWords;
use matching_words::{MatchType, PartialMatch, WordId};
use serde::Serialize;
@ -46,7 +46,11 @@ impl<'m> MatcherBuilder<'m> {
self
}
pub fn build<'t>(&self, text: &'t str) -> Matcher<'t, 'm, '_> {
pub fn build<'t, 'lang>(
&self,
text: &'t str,
locales: Option<&'lang [Language]>,
) -> Matcher<'t, 'm, '_, 'lang> {
let crop_marker = match &self.crop_marker {
Some(marker) => marker.as_str(),
None => DEFAULT_CROP_MARKER,
@ -68,6 +72,7 @@ impl<'m> MatcherBuilder<'m> {
highlight_prefix,
highlight_suffix,
matches: None,
locales,
}
}
}
@ -107,17 +112,18 @@ pub struct MatchBounds {
/// Structure used to analyze a string, compute words that match,
/// and format the source string, returning a highlighted and cropped sub-string.
pub struct Matcher<'t, 'tokenizer, 'b> {
pub struct Matcher<'t, 'tokenizer, 'b, 'lang> {
text: &'t str,
matching_words: &'b MatchingWords,
tokenizer: &'b Tokenizer<'tokenizer>,
locales: Option<&'lang [Language]>,
crop_marker: &'b str,
highlight_prefix: &'b str,
highlight_suffix: &'b str,
matches: Option<(Vec<Token<'t>>, Vec<Match>)>,
}
impl<'t, 'tokenizer> Matcher<'t, 'tokenizer, '_> {
impl<'t, 'tokenizer> Matcher<'t, 'tokenizer, '_, '_> {
/// Iterates over tokens and save any of them that matches the query.
fn compute_matches(&mut self) -> &mut Self {
/// some words are counted as matches only if they are close together and in the good order,
@ -173,7 +179,8 @@ impl<'t, 'tokenizer> Matcher<'t, 'tokenizer, '_> {
false
}
let tokens: Vec<_> = self.tokenizer.tokenize(self.text).collect();
let tokens: Vec<_> =
self.tokenizer.tokenize_with_allow_list(self.text, self.locales).collect();
let mut matches = Vec::new();
let mut words_positions = tokens
@ -530,6 +537,7 @@ mod tests {
&mut crate::DefaultSearchLogger,
TimeBudget::max(),
None,
None,
)
.unwrap();
@ -553,19 +561,19 @@ mod tests {
// Text without any match.
let text = "A quick brown fox can not jump 32 feet, right? Brr, it is cold!";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no crop and no highlight should return complete text.
assert_eq!(&matcher.format(format_options), &text);
// Text containing all matches.
let text = "Natalie risk her future to build a world with the boy she loves. Emily Henry: The Love That Split The World.";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no crop and no highlight should return complete text.
assert_eq!(&matcher.format(format_options), &text);
// Text containing some matches.
let text = "Natalie risk her future to build a world with the boy she loves.";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no crop and no highlight should return complete text.
assert_eq!(&matcher.format(format_options), &text);
}
@ -580,23 +588,23 @@ mod tests {
// empty text.
let text = "";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
assert_eq!(&matcher.format(format_options), "");
// text containing only separators.
let text = ":-)";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
assert_eq!(&matcher.format(format_options), ":-)");
// Text without any match.
let text = "A quick brown fox can not jump 32 feet, right? Brr, it is cold!";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no crop should return complete text, because there is no matches.
assert_eq!(&matcher.format(format_options), &text);
// Text containing all matches.
let text = "Natalie risk her future to build a world with the boy she loves. Emily Henry: The Love That Split The World.";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no crop should return complete text with highlighted matches.
insta::assert_snapshot!(
matcher.format(format_options),
@ -605,7 +613,7 @@ mod tests {
// Text containing some matches.
let text = "Natalie risk her future to build a world with the boy she loves.";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no crop should return complete text with highlighted matches.
insta::assert_snapshot!(
matcher.format(format_options),
@ -622,7 +630,7 @@ mod tests {
// Text containing prefix match.
let text = "Ŵôřlḑôle";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no crop should return complete text with highlighted matches.
insta::assert_snapshot!(
matcher.format(format_options),
@ -631,7 +639,7 @@ mod tests {
// Text containing unicode match.
let text = "Ŵôřlḑ";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no crop should return complete text with highlighted matches.
insta::assert_snapshot!(
matcher.format(format_options),
@ -643,7 +651,7 @@ mod tests {
// Text containing unicode match.
let text = "Westfália";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no crop should return complete text with highlighted matches.
insta::assert_snapshot!(
matcher.format(format_options),
@ -661,7 +669,7 @@ mod tests {
// empty text.
let text = "";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
insta::assert_snapshot!(
matcher.format(format_options),
@""
@ -669,7 +677,7 @@ mod tests {
// text containing only separators.
let text = ":-)";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
insta::assert_snapshot!(
matcher.format(format_options),
@":-)"
@ -677,7 +685,7 @@ mod tests {
// Text without any match.
let text = "A quick brown fox can not jump 32 feet, right? Brr, it is cold!";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no highlight should return 10 first words with a marker at the end.
insta::assert_snapshot!(
matcher.format(format_options),
@ -686,7 +694,7 @@ mod tests {
// Text without any match starting by a separator.
let text = "(A quick brown fox can not jump 32 feet, right? Brr, it is cold!)";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no highlight should return 10 first words with a marker at the end.
insta::assert_snapshot!(
matcher.format(format_options),
@ -695,7 +703,7 @@ mod tests {
// Test phrase propagation
let text = "Natalie risk her future. Split The World is a book written by Emily Henry. I never read it.";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// should crop the phrase instead of croping around the match.
insta::assert_snapshot!(
matcher.format(format_options),
@ -704,7 +712,7 @@ mod tests {
// Text containing some matches.
let text = "Natalie risk her future to build a world with the boy she loves.";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no highlight should return 10 last words with a marker at the start.
insta::assert_snapshot!(
matcher.format(format_options),
@ -713,7 +721,7 @@ mod tests {
// Text containing all matches.
let text = "Natalie risk her future to build a world with the boy she loves. Emily Henry: The Love That Split The World.";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// no highlight should return 10 last words with a marker at the start.
insta::assert_snapshot!(
matcher.format(format_options),
@ -722,7 +730,7 @@ mod tests {
// Text containing a match unordered and a match ordered.
let text = "The world split void void void void void void void void void split the world void void";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// crop should return 10 last words with a marker at the start.
insta::assert_snapshot!(
matcher.format(format_options),
@ -731,7 +739,7 @@ mod tests {
// Text containing matches with different density.
let text = "split void the void void world void void void void void void void void void void split the world void void";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// crop should return 10 last words with a marker at the start.
insta::assert_snapshot!(
matcher.format(format_options),
@ -740,7 +748,7 @@ mod tests {
// Text containing matches with same word.
let text = "split split split split split split void void void void void void void void void void split the world void void";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// crop should return 10 last words with a marker at the start.
insta::assert_snapshot!(
matcher.format(format_options),
@ -758,7 +766,7 @@ mod tests {
// empty text.
let text = "";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
insta::assert_snapshot!(
matcher.format(format_options),
@""
@ -766,7 +774,7 @@ mod tests {
// text containing only separators.
let text = ":-)";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
insta::assert_snapshot!(
matcher.format(format_options),
@":-)"
@ -774,7 +782,7 @@ mod tests {
// Text without any match.
let text = "A quick brown fox can not jump 32 feet, right? Brr, it is cold!";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// both should return 10 first words with a marker at the end.
insta::assert_snapshot!(
matcher.format(format_options),
@ -783,7 +791,7 @@ mod tests {
// Text containing some matches.
let text = "Natalie risk her future to build a world with the boy she loves.";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// both should return 10 last words with a marker at the start and highlighted matches.
insta::assert_snapshot!(
matcher.format(format_options),
@ -792,7 +800,7 @@ mod tests {
// Text containing all matches.
let text = "Natalie risk her future to build a world with the boy she loves. Emily Henry: The Love That Split The World.";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// both should return 10 last words with a marker at the start and highlighted matches.
insta::assert_snapshot!(
matcher.format(format_options),
@ -801,7 +809,7 @@ mod tests {
// Text containing a match unordered and a match ordered.
let text = "The world split void void void void void void void void void split the world void void";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// crop should return 10 last words with a marker at the start.
insta::assert_snapshot!(
matcher.format(format_options),
@ -824,7 +832,7 @@ mod tests {
let text = "The groundbreaking invention had the power to split the world between those who embraced progress and those who resisted change!";
let builder = MatcherBuilder::new_test(&rtxn, &temp_index, "\"the world\"");
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// should return 10 words with a marker at the start as well the end, and the highlighted matches.
insta::assert_snapshot!(
matcher.format(format_options),
@ -832,7 +840,7 @@ mod tests {
);
let builder = MatcherBuilder::new_test(&rtxn, &temp_index, "those \"and those\"");
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// should highlight "those" and the phrase "and those".
insta::assert_snapshot!(
matcher.format(format_options),
@ -851,7 +859,7 @@ mod tests {
// set a smaller crop size
let format_options = FormatOptions { highlight: false, crop: Some(2) };
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// because crop size < query size, partially format matches.
insta::assert_snapshot!(
matcher.format(format_options),
@ -860,7 +868,7 @@ mod tests {
// set a smaller crop size
let format_options = FormatOptions { highlight: false, crop: Some(1) };
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// because crop size < query size, partially format matches.
insta::assert_snapshot!(
matcher.format(format_options),
@ -869,7 +877,7 @@ mod tests {
// set crop size to 0
let format_options = FormatOptions { highlight: false, crop: Some(0) };
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
// because crop size is 0, crop is ignored.
insta::assert_snapshot!(
matcher.format(format_options),
@ -889,7 +897,7 @@ mod tests {
let format_options = FormatOptions { highlight: true, crop: None };
let text = "the do or die can't be he do and or isn't he";
let mut matcher = builder.build(text);
let mut matcher = builder.build(text, None);
insta::assert_snapshot!(
matcher.format(format_options),
@"_the_ _do_ _or_ die can't be he do and or isn'_t_ _he_"

View File

@ -24,7 +24,7 @@ mod tests;
use std::collections::HashSet;
use bucket_sort::{bucket_sort, BucketSortOutput};
use charabia::TokenizerBuilder;
use charabia::{Language, TokenizerBuilder};
use db_cache::DatabaseCache;
use exact_attribute::ExactAttribute;
use graph_based_ranking_rule::{Exactness, Fid, Position, Proximity, Typo};
@ -639,6 +639,7 @@ pub fn execute_search(
query_graph_logger: &mut dyn SearchLogger<QueryGraph>,
time_budget: TimeBudget,
ranking_score_threshold: Option<f64>,
locales: Option<&Vec<Language>>,
) -> Result<PartialSearchResult> {
check_sort_criteria(ctx, sort_criteria.as_ref())?;
@ -670,9 +671,8 @@ pub fn execute_search(
tokbuilder.words_dict(dictionary);
}
let script_lang_map = ctx.index.script_language(ctx.txn)?;
if !script_lang_map.is_empty() {
tokbuilder.allow_list(&script_lang_map);
if let Some(locales) = locales {
tokbuilder.allow_list(locales);
}
let tokenizer = tokbuilder.build();

View File

@ -24,7 +24,7 @@ pub struct ExtractedTokens {
#[tracing::instrument(level = "trace", skip_all, target = "search::query")]
pub fn located_query_terms_from_tokens(
ctx: &mut SearchContext<'_>,
query: NormalizedTokenIter<'_, '_>,
query: NormalizedTokenIter<'_, '_, '_, '_>,
words_limit: Option<usize>,
) -> Result<ExtractedTokens> {
let nbr_typos = number_of_typos_allowed(ctx)?;

View File

@ -36,7 +36,6 @@ impl<'t, 'i> ClearDocuments<'t, 'i> {
field_id_word_count_docids,
word_prefix_position_docids,
word_prefix_fid_docids,
script_language_docids,
facet_id_f64_docids,
facet_id_string_docids,
facet_id_normalized_string_strings,
@ -83,7 +82,6 @@ impl<'t, 'i> ClearDocuments<'t, 'i> {
field_id_word_count_docids.clear(self.wtxn)?;
word_prefix_position_docids.clear(self.wtxn)?;
word_prefix_fid_docids.clear(self.wtxn)?;
script_language_docids.clear(self.wtxn)?;
facet_id_f64_docids.clear(self.wtxn)?;
facet_id_normalized_string_strings.clear(self.wtxn)?;
facet_id_string_fst.clear(self.wtxn)?;

View File

@ -1,10 +1,9 @@
use std::collections::HashMap;
use std::convert::TryInto;
use std::fs::File;
use std::io::BufReader;
use std::{io, mem, str};
use charabia::{Language, Script, SeparatorKind, Token, TokenKind, Tokenizer, TokenizerBuilder};
use charabia::{SeparatorKind, Token, TokenKind, Tokenizer, TokenizerBuilder};
use obkv::{KvReader, KvWriterU16};
use roaring::RoaringBitmap;
use serde_json::Value;
@ -15,8 +14,6 @@ use crate::update::del_add::{del_add_from_two_obkvs, DelAdd, KvReaderDelAdd};
use crate::update::settings::{InnerIndexSettings, InnerIndexSettingsDiff};
use crate::{FieldId, Result, MAX_POSITION_PER_ATTRIBUTE, MAX_WORD_LENGTH};
pub type ScriptLanguageDocidsMap = HashMap<(Script, Language), (RoaringBitmap, RoaringBitmap)>;
/// Extracts the word and positions where this word appear and
/// prefixes it by the document id.
///
@ -28,7 +25,7 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
indexer: GrenadParameters,
settings_diff: &InnerIndexSettingsDiff,
max_positions_per_attributes: Option<u32>,
) -> Result<(grenad::Reader<BufReader<File>>, ScriptLanguageDocidsMap)> {
) -> Result<grenad::Reader<BufReader<File>>> {
let max_positions_per_attributes = max_positions_per_attributes
.map_or(MAX_POSITION_PER_ATTRIBUTE, |max| max.min(MAX_POSITION_PER_ATTRIBUTE));
let max_memory = indexer.max_memory_by_thread();
@ -36,7 +33,6 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
// initialize destination values.
let mut documents_ids = RoaringBitmap::new();
let mut script_language_docids = HashMap::new();
let mut docid_word_positions_sorter = create_sorter(
grenad::SortAlgorithm::Stable,
keep_latest_obkv,
@ -61,13 +57,9 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
.map(|s| s.iter().map(String::as_str).collect());
let old_dictionary: Option<Vec<_>> =
settings_diff.old.dictionary.as_ref().map(|s| s.iter().map(String::as_str).collect());
let mut del_builder = tokenizer_builder(
old_stop_words,
old_separators.as_deref(),
old_dictionary.as_deref(),
None,
);
let del_tokenizer = del_builder.build();
let del_builder =
tokenizer_builder(old_stop_words, old_separators.as_deref(), old_dictionary.as_deref());
let del_tokenizer = del_builder.into_tokenizer();
let new_stop_words = settings_diff.new.stop_words.as_ref();
let new_separators: Option<Vec<_>> = settings_diff
@ -77,13 +69,9 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
.map(|s| s.iter().map(String::as_str).collect());
let new_dictionary: Option<Vec<_>> =
settings_diff.new.dictionary.as_ref().map(|s| s.iter().map(String::as_str).collect());
let mut add_builder = tokenizer_builder(
new_stop_words,
new_separators.as_deref(),
new_dictionary.as_deref(),
None,
);
let add_tokenizer = add_builder.build();
let add_builder =
tokenizer_builder(new_stop_words, new_separators.as_deref(), new_dictionary.as_deref());
let add_tokenizer = add_builder.into_tokenizer();
// iterate over documents.
let mut cursor = obkv_documents.into_cursor()?;
@ -109,7 +97,7 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
let (del, add): (Result<_>, Result<_>) = rayon::join(
|| {
// deletions
lang_safe_tokens_from_document(
tokens_from_document(
&obkv,
&settings_diff.old,
&del_tokenizer,
@ -120,7 +108,7 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
},
|| {
// additions
lang_safe_tokens_from_document(
tokens_from_document(
&obkv,
&settings_diff.new,
&add_tokenizer,
@ -131,8 +119,8 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
},
);
let (del_obkv, del_script_language_word_count) = del?;
let (add_obkv, add_script_language_word_count) = add?;
let del_obkv = del?;
let add_obkv = add?;
// merge deletions and additions.
// transforming two KV<FieldId, KV<u16, String>> into one KV<FieldId, KV<DelAdd, KV<u16, String>>>
@ -150,31 +138,10 @@ pub fn extract_docid_word_positions<R: io::Read + io::Seek>(
key_buffer.extend_from_slice(&field_id.to_be_bytes());
docid_word_positions_sorter.insert(&key_buffer, value)?;
}
// update script_language_docids deletions.
for (script, languages_frequency) in del_script_language_word_count {
for (language, _) in languages_frequency {
let entry = script_language_docids
.entry((script, language))
.or_insert_with(|| (RoaringBitmap::new(), RoaringBitmap::new()));
entry.0.push(document_id);
}
}
// update script_language_docids additions.
for (script, languages_frequency) in add_script_language_word_count {
for (language, _) in languages_frequency {
let entry = script_language_docids
.entry((script, language))
.or_insert_with(|| (RoaringBitmap::new(), RoaringBitmap::new()));
entry.1.push(document_id);
}
}
}
// the returned sorter is serialized as: key: (DocId, FieldId), value: KV<DelAdd, KV<u16, String>>.
sorter_into_reader(docid_word_positions_sorter, indexer)
.map(|reader| (reader, script_language_docids))
}
/// Check if any searchable fields of a document changed.
@ -205,7 +172,6 @@ fn tokenizer_builder<'a>(
stop_words: Option<&'a fst::Set<Vec<u8>>>,
allowed_separators: Option<&'a [&str]>,
dictionary: Option<&'a [&str]>,
script_language: Option<&'a HashMap<Script, Vec<Language>>>,
) -> TokenizerBuilder<'a, Vec<u8>> {
let mut tokenizer_builder = TokenizerBuilder::new();
if let Some(stop_words) = stop_words {
@ -218,96 +184,23 @@ fn tokenizer_builder<'a>(
tokenizer_builder.separators(separators);
}
if let Some(script_language) = script_language {
tokenizer_builder.allow_list(script_language);
}
tokenizer_builder
}
/// Extract words mapped with their positions of a document,
/// ensuring no Language detection mistakes was made.
fn lang_safe_tokens_from_document<'a>(
obkv: &KvReader<'_, FieldId>,
settings: &InnerIndexSettings,
tokenizer: &Tokenizer<'_>,
max_positions_per_attributes: u32,
del_add: DelAdd,
buffers: &'a mut Buffers,
) -> Result<(&'a [u8], HashMap<Script, Vec<(Language, usize)>>)> {
let mut script_language_word_count = HashMap::new();
tokens_from_document(
obkv,
&settings.searchable_fields_ids,
tokenizer,
max_positions_per_attributes,
del_add,
buffers,
&mut script_language_word_count,
)?;
// if we detect a potetial mistake in the language detection,
// we rerun the extraction forcing the tokenizer to detect the most frequently detected Languages.
// context: https://github.com/meilisearch/meilisearch/issues/3565
if script_language_word_count
.values()
.map(Vec::as_slice)
.any(potential_language_detection_error)
{
// build an allow list with the most frequent detected languages in the document.
let script_language: HashMap<_, _> =
script_language_word_count.iter().filter_map(most_frequent_languages).collect();
// if the allow list is empty, meaning that no Language is considered frequent,
// then we don't rerun the extraction.
if !script_language.is_empty() {
// build a new temporary tokenizer including the allow list.
let stop_words = settings.stop_words.as_ref();
let separators: Option<Vec<_>> = settings
.allowed_separators
.as_ref()
.map(|s| s.iter().map(String::as_str).collect());
let dictionary: Option<Vec<_>> =
settings.dictionary.as_ref().map(|s| s.iter().map(String::as_str).collect());
let mut builder =
tokenizer_builder(stop_words, separators.as_deref(), dictionary.as_deref(), None);
let tokenizer = builder.build();
script_language_word_count.clear();
// rerun the extraction.
tokens_from_document(
obkv,
&settings.searchable_fields_ids,
&tokenizer,
max_positions_per_attributes,
del_add,
buffers,
&mut script_language_word_count,
)?;
}
}
// returns a (KV<FieldId, KV<u16, String>>, HashMap<Script, Vec<(Language, usize)>>)
Ok((&buffers.obkv_buffer, script_language_word_count))
}
/// Extract words mapped with their positions of a document.
fn tokens_from_document<'a>(
obkv: &KvReader<'a, FieldId>,
searchable_fields: &[FieldId],
settings: &InnerIndexSettings,
tokenizer: &Tokenizer<'_>,
max_positions_per_attributes: u32,
del_add: DelAdd,
buffers: &'a mut Buffers,
script_language_word_count: &mut HashMap<Script, Vec<(Language, usize)>>,
) -> Result<&'a [u8]> {
buffers.obkv_buffer.clear();
let mut document_writer = KvWriterU16::new(&mut buffers.obkv_buffer);
for (field_id, field_bytes) in obkv.iter() {
// if field is searchable.
if searchable_fields.as_ref().contains(&field_id) {
if settings.searchable_fields_ids.contains(&field_id) {
// extract deletion or addition only.
if let Some(field_bytes) = KvReaderDelAdd::new(field_bytes).get(del_add) {
// parse json.
@ -322,20 +215,11 @@ fn tokens_from_document<'a>(
buffers.field_buffer.clear();
if let Some(field) = json_to_string(&value, &mut buffers.field_buffer) {
// create an iterator of token with their positions.
let tokens = process_tokens(tokenizer.tokenize(field))
let locales = settings.localized_searchable_fields_ids.locales(field_id);
let tokens = process_tokens(tokenizer.tokenize_with_allow_list(field, locales))
.take_while(|(p, _)| (*p as u32) < max_positions_per_attributes);
for (index, token) in tokens {
// if a language has been detected for the token, we update the counter.
if let Some(language) = token.language {
let script = token.script;
let entry = script_language_word_count.entry(script).or_default();
match entry.iter_mut().find(|(l, _)| *l == language) {
Some((_, n)) => *n += 1,
None => entry.push((language, 1)),
}
}
// keep a word only if it is not empty and fit in a LMDB key.
let token = token.lemma().trim();
if !token.is_empty() && token.len() <= MAX_WORD_LENGTH {
@ -423,39 +307,6 @@ fn process_tokens<'a>(
.filter(|(_, t)| t.is_word())
}
fn potential_language_detection_error(languages_frequency: &[(Language, usize)]) -> bool {
if languages_frequency.len() > 1 {
let threshold = compute_language_frequency_threshold(languages_frequency);
languages_frequency.iter().any(|(_, c)| *c <= threshold)
} else {
false
}
}
fn most_frequent_languages(
(script, languages_frequency): (&Script, &Vec<(Language, usize)>),
) -> Option<(Script, Vec<Language>)> {
if languages_frequency.len() > 1 {
let threshold = compute_language_frequency_threshold(languages_frequency);
let languages: Vec<_> =
languages_frequency.iter().filter(|(_, c)| *c > threshold).map(|(l, _)| *l).collect();
if languages.is_empty() {
None
} else {
Some((*script, languages))
}
} else {
None
}
}
fn compute_language_frequency_threshold(languages_frequency: &[(Language, usize)]) -> usize {
let total: usize = languages_frequency.iter().map(|(_, c)| c).sum();
total / 10 // 10% is a completely arbitrary value.
}
#[derive(Default)]
struct Buffers {
// the field buffer for each fields desserialization, and must be cleared between each field.

View File

@ -5,6 +5,7 @@ use std::iter::FromIterator;
use std::{io, str};
use charabia::normalizer::{Normalize, NormalizerOption};
use charabia::{Language, StrDetection, Token};
use heed::types::SerdeJson;
use heed::BytesEncode;
@ -26,10 +27,9 @@ use crate::{FieldId, Result, MAX_FACET_VALUE_LENGTH};
pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
docid_fid_facet_string: grenad::Reader<R>,
indexer: GrenadParameters,
_settings_diff: &InnerIndexSettingsDiff,
settings_diff: &InnerIndexSettingsDiff,
) -> Result<(grenad::Reader<BufReader<File>>, grenad::Reader<BufReader<File>>)> {
let max_memory = indexer.max_memory_by_thread();
let options = NormalizerOption { lossy: true, ..Default::default() };
let mut facet_string_docids_sorter = create_sorter(
grenad::SortAlgorithm::Stable,
@ -54,12 +54,8 @@ pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
while let Some((key, deladd_original_value_bytes)) = cursor.move_on_next()? {
let deladd_reader = KvReaderDelAdd::new(deladd_original_value_bytes);
// nothing to do if we delete and re-add the value.
if deladd_reader.get(DelAdd::Deletion).is_some()
&& deladd_reader.get(DelAdd::Addition).is_some()
{
continue;
}
let is_same_value = deladd_reader.get(DelAdd::Deletion).is_some()
&& deladd_reader.get(DelAdd::Addition).is_some();
let (field_id_bytes, bytes) = try_split_array_at(key).unwrap();
let field_id = FieldId::from_be_bytes(field_id_bytes);
@ -72,29 +68,66 @@ pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
// Facet search normalization
{
let mut hyper_normalized_value = normalized_value.normalize(&options);
let normalized_truncated_facet: String;
if hyper_normalized_value.len() > MAX_FACET_VALUE_LENGTH {
normalized_truncated_facet = hyper_normalized_value
.char_indices()
.take_while(|(idx, _)| *idx < MAX_FACET_VALUE_LENGTH)
.map(|(_, c)| c)
.collect();
hyper_normalized_value = normalized_truncated_facet.into();
}
let locales = settings_diff.old.localized_faceted_fields_ids.locales(field_id);
let old_hyper_normalized_value = normalize_facet_string(normalized_value, locales);
let locales = settings_diff.new.localized_faceted_fields_ids.locales(field_id);
let new_hyper_normalized_value = normalize_facet_string(normalized_value, locales);
let set = BTreeSet::from_iter(std::iter::once(normalized_value));
buffer.clear();
let mut obkv = KvWriterDelAdd::new(&mut buffer);
for (deladd_key, _) in deladd_reader.iter() {
let val = SerdeJson::bytes_encode(&set).map_err(heed::Error::Encoding)?;
obkv.insert(deladd_key, val)?;
}
obkv.finish()?;
// if the facet string is the same, we can put the deletion and addition in the same obkv.
if old_hyper_normalized_value == new_hyper_normalized_value {
// nothing to do if we delete and re-add the value.
if is_same_value {
continue;
}
let key = (field_id, hyper_normalized_value.as_ref());
let key_bytes = BEU16StrCodec::bytes_encode(&key).map_err(heed::Error::Encoding)?;
normalized_facet_string_docids_sorter.insert(key_bytes, &buffer)?;
buffer.clear();
let mut obkv = KvWriterDelAdd::new(&mut buffer);
for (deladd_key, _) in deladd_reader.iter() {
let val = SerdeJson::bytes_encode(&set).map_err(heed::Error::Encoding)?;
obkv.insert(deladd_key, val)?;
}
obkv.finish()?;
let key: (u16, &str) = (field_id, new_hyper_normalized_value.as_ref());
let key_bytes = BEU16StrCodec::bytes_encode(&key).map_err(heed::Error::Encoding)?;
normalized_facet_string_docids_sorter.insert(key_bytes, &buffer)?;
} else {
// if the facet string is different, we need to insert the deletion and addition in different obkv because the related key is different.
// deletion
if deladd_reader.get(DelAdd::Deletion).is_some() {
// insert old value
let val = SerdeJson::bytes_encode(&set).map_err(heed::Error::Encoding)?;
buffer.clear();
let mut obkv = KvWriterDelAdd::new(&mut buffer);
obkv.insert(DelAdd::Deletion, val)?;
obkv.finish()?;
let key: (u16, &str) = (field_id, old_hyper_normalized_value.as_ref());
let key_bytes =
BEU16StrCodec::bytes_encode(&key).map_err(heed::Error::Encoding)?;
normalized_facet_string_docids_sorter.insert(key_bytes, &buffer)?;
}
// addition
if deladd_reader.get(DelAdd::Addition).is_some() {
// insert new value
let val = SerdeJson::bytes_encode(&set).map_err(heed::Error::Encoding)?;
buffer.clear();
let mut obkv = KvWriterDelAdd::new(&mut buffer);
obkv.insert(DelAdd::Addition, val)?;
obkv.finish()?;
let key: (u16, &str) = (field_id, new_hyper_normalized_value.as_ref());
let key_bytes =
BEU16StrCodec::bytes_encode(&key).map_err(heed::Error::Encoding)?;
normalized_facet_string_docids_sorter.insert(key_bytes, &buffer)?;
}
}
}
// nothing to do if we delete and re-add the value.
if is_same_value {
continue;
}
let key = FacetGroupKey { field_id, level: 0, left_bound: normalized_value };
@ -112,3 +145,24 @@ pub fn extract_facet_string_docids<R: io::Read + io::Seek>(
let normalized = sorter_into_reader(normalized_facet_string_docids_sorter, indexer)?;
sorter_into_reader(facet_string_docids_sorter, indexer).map(|s| (s, normalized))
}
/// Normalizes the facet string and truncates it to the max length.
fn normalize_facet_string(facet_string: &str, locales: Option<&[Language]>) -> String {
let options = NormalizerOption { lossy: true, ..Default::default() };
let mut detection = StrDetection::new(facet_string, locales);
let token = Token {
lemma: std::borrow::Cow::Borrowed(facet_string),
script: detection.script(),
language: detection.language(),
..Default::default()
};
// truncate the facet string to the max length
token
.normalize(&options)
.lemma
.char_indices()
.take_while(|(idx, _)| *idx < MAX_FACET_VALUE_LENGTH)
.map(|(_, c)| c)
.collect()
}

View File

@ -345,21 +345,17 @@ fn send_and_extract_flattened_documents_data(
let (docid_word_positions_chunk, fid_docid_facet_values_chunks): (Result<_>, Result<_>) =
rayon::join(
|| {
let (docid_word_positions_chunk, script_language_pair) =
extract_docid_word_positions(
flattened_documents_chunk.clone(),
indexer,
&settings_diff,
max_positions_per_attributes,
)?;
let docid_word_positions_chunk = extract_docid_word_positions(
flattened_documents_chunk.clone(),
indexer,
&settings_diff,
max_positions_per_attributes,
)?;
// send docid_word_positions_chunk to DB writer
let docid_word_positions_chunk =
unsafe { as_cloneable_grenad(&docid_word_positions_chunk)? };
let _ =
lmdb_writer_sx.send(Ok(TypedChunk::ScriptLanguageDocids(script_language_pair)));
Ok(docid_word_positions_chunk)
},
|| {

View File

@ -3388,44 +3388,6 @@ mod tests {
wtxn.commit().unwrap();
}
#[test]
#[cfg(feature = "all-tokenizations")]
fn stored_detected_script_and_language_should_not_return_deleted_documents() {
use charabia::{Language, Script};
let index = TempIndex::new();
let mut wtxn = index.write_txn().unwrap();
index
.add_documents_using_wtxn(
&mut wtxn,
documents!([
{ "id": "0", "title": "The quick (\"brown\") fox can't jump 32.3 feet, right? Brr, it's 29.3°F!" },
{ "id": "1", "title": "人人生而自由﹐在尊嚴和權利上一律平等。他們賦有理性和良心﹐並應以兄弟關係的精神互相對待。" },
{ "id": "2", "title": "הַשּׁוּעָל הַמָּהִיר (״הַחוּם״) לֹא יָכוֹל לִקְפֹּץ 9.94 מֶטְרִים, נָכוֹן? ברר, 1.5°C- בַּחוּץ!" },
{ "id": "3", "title": "関西国際空港限定トートバッグ すもももももももものうち" },
{ "id": "4", "title": "ภาษาไทยง่ายนิดเดียว" },
{ "id": "5", "title": "The quick 在尊嚴和權利上一律平等。" },
]))
.unwrap();
let key_cmn = (Script::Cj, Language::Cmn);
let cj_cmn_docs =
index.script_language_documents_ids(&wtxn, &key_cmn).unwrap().unwrap_or_default();
let mut expected_cj_cmn_docids = RoaringBitmap::new();
expected_cj_cmn_docids.push(1);
expected_cj_cmn_docids.push(5);
assert_eq!(cj_cmn_docs, expected_cj_cmn_docids);
delete_documents(&mut wtxn, &index, &["1"]);
wtxn.commit().unwrap();
let rtxn = index.read_txn().unwrap();
let cj_cmn_docs =
index.script_language_documents_ids(&rtxn, &key_cmn).unwrap().unwrap_or_default();
let mut expected_cj_cmn_docids = RoaringBitmap::new();
expected_cj_cmn_docids.push(5);
assert_eq!(cj_cmn_docs, expected_cj_cmn_docids);
}
#[test]
fn delete_words_exact_attributes() {
let index = TempIndex::new();

View File

@ -1,10 +1,9 @@
use std::collections::{BTreeSet, HashMap};
use std::collections::BTreeSet;
use std::convert::TryInto;
use std::fs::File;
use std::io::{self, BufReader};
use bytemuck::allocation::pod_collect_to_vec;
use charabia::{Language, Script};
use grenad::{Merger, MergerBuilder};
use heed::types::Bytes;
use heed::{BytesDecode, RwTxn};
@ -94,7 +93,6 @@ pub(crate) enum TypedChunk {
add_to_user_provided: RoaringBitmap,
remove_from_user_provided: RoaringBitmap,
},
ScriptLanguageDocids(HashMap<(Script, Language), (RoaringBitmap, RoaringBitmap)>),
}
impl TypedChunk {
@ -113,8 +111,7 @@ impl TypedChunk {
| (FieldIdFacetExistsDocids(_), FieldIdFacetExistsDocids(_))
| (FieldIdFacetIsNullDocids(_), FieldIdFacetIsNullDocids(_))
| (FieldIdFacetIsEmptyDocids(_), FieldIdFacetIsEmptyDocids(_))
| (GeoPoints(_), GeoPoints(_))
| (ScriptLanguageDocids(_), ScriptLanguageDocids(_)) => true,
| (GeoPoints(_), GeoPoints(_)) => true,
(
VectorPoints { embedder_name: left, expected_dimension: left_dim, .. },
VectorPoints { embedder_name: right, expected_dimension: right_dim, .. },
@ -775,33 +772,6 @@ pub(crate) fn write_typed_chunk_into_index(
tracing::debug!("Finished vector chunk for {}", embedder_name);
}
TypedChunk::ScriptLanguageDocids(_) => {
let span = tracing::trace_span!(target: "indexing::write_db", "script_language_docids");
let _entered = span.enter();
for typed_chunk in typed_chunks {
let TypedChunk::ScriptLanguageDocids(sl_map) = typed_chunk else { unreachable!() };
for (key, (deletion, addition)) in sl_map {
let mut db_key_exists = false;
let final_value = match index.script_language_docids.get(wtxn, &key)? {
Some(db_values) => {
db_key_exists = true;
(db_values - deletion) | addition
}
None => addition,
};
if final_value.is_empty() {
// If the database entry exists, delete it.
if db_key_exists {
index.script_language_docids.delete(wtxn, &key)?;
}
} else {
index.script_language_docids.put(wtxn, &key, &final_value)?;
}
}
}
}
}
Ok((RoaringBitmap::new(), is_merged_database))

View File

@ -28,7 +28,7 @@ use crate::vector::settings::{
WriteBackToDocuments,
};
use crate::vector::{Embedder, EmbeddingConfig, EmbeddingConfigs};
use crate::{FieldId, FieldsIdsMap, Index, Result};
use crate::{FieldId, FieldsIdsMap, Index, LocalizedAttributesRule, LocalizedFieldIds, Result};
#[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub enum Setting<T> {
@ -159,6 +159,7 @@ pub struct Settings<'a, 't, 'i> {
proximity_precision: Setting<ProximityPrecision>,
embedder_settings: Setting<BTreeMap<String, Setting<EmbeddingSettings>>>,
search_cutoff: Setting<u64>,
localized_attributes_rules: Setting<Vec<LocalizedAttributesRule>>,
}
impl<'a, 't, 'i> Settings<'a, 't, 'i> {
@ -193,6 +194,7 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
proximity_precision: Setting::NotSet,
embedder_settings: Setting::NotSet,
search_cutoff: Setting::NotSet,
localized_attributes_rules: Setting::NotSet,
indexer_config,
}
}
@ -391,6 +393,14 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
self.search_cutoff = Setting::Reset;
}
pub fn set_localized_attributes_rules(&mut self, value: Vec<LocalizedAttributesRule>) {
self.localized_attributes_rules = Setting::Set(value);
}
pub fn reset_localized_attributes_rules(&mut self) {
self.localized_attributes_rules = Setting::Reset;
}
#[tracing::instrument(
level = "trace"
skip(self, progress_callback, should_abort, settings_diff),
@ -1118,6 +1128,23 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
Ok(changed)
}
fn update_localized_attributes_rules(&mut self) -> Result<()> {
match &self.localized_attributes_rules {
Setting::Set(new) => {
let old = self.index.localized_attributes_rules(self.wtxn)?;
if old.as_ref() != Some(new) {
self.index.put_localized_attributes_rules(self.wtxn, new.clone())?;
}
}
Setting::Reset => {
self.index.delete_localized_attributes_rules(self.wtxn)?;
}
Setting::NotSet => (),
}
Ok(())
}
pub fn execute<FP, FA>(mut self, progress_callback: FP, should_abort: FA) -> Result<()>
where
FP: Fn(UpdateIndexingStep) + Sync,
@ -1151,6 +1178,7 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
self.update_searchable()?;
self.update_exact_attributes()?;
self.update_proximity_precision()?;
self.update_localized_attributes_rules()?;
let embedding_config_updates = self.update_embedding_configs()?;
@ -1229,6 +1257,8 @@ impl InnerIndexSettingsDiff {
|| old_settings.allowed_separators != new_settings.allowed_separators
|| old_settings.dictionary != new_settings.dictionary
|| old_settings.proximity_precision != new_settings.proximity_precision
|| old_settings.localized_searchable_fields_ids
!= new_settings.localized_searchable_fields_ids
};
let cache_exact_attributes = old_settings.exact_attributes != new_settings.exact_attributes;
@ -1304,6 +1334,7 @@ impl InnerIndexSettingsDiff {
}
(existing_fields - old_faceted_fields) != (existing_fields - new_faceted_fields)
|| self.old.localized_faceted_fields_ids != self.new.localized_faceted_fields_ids
}
pub fn reindex_vectors(&self) -> bool {
@ -1341,6 +1372,8 @@ pub(crate) struct InnerIndexSettings {
pub geo_fields_ids: Option<(FieldId, FieldId)>,
pub non_searchable_fields_ids: Vec<FieldId>,
pub non_faceted_fields_ids: Vec<FieldId>,
pub localized_searchable_fields_ids: LocalizedFieldIds,
pub localized_faceted_fields_ids: LocalizedFieldIds,
}
impl InnerIndexSettings {
@ -1382,6 +1415,17 @@ impl InnerIndexSettings {
}
None => None,
};
let localized_attributes_rules = index.localized_attributes_rules(rtxn)?;
let localized_searchable_fields_ids = LocalizedFieldIds::new(
&localized_attributes_rules,
&fields_ids_map,
searchable_fields_ids.iter().cloned(),
);
let localized_faceted_fields_ids = LocalizedFieldIds::new(
&localized_attributes_rules,
&fields_ids_map,
faceted_fields_ids.iter().cloned(),
);
let vectors_fids = fields_ids_map.nested_ids(RESERVED_VECTORS_FIELD_NAME);
searchable_fields_ids.retain(|id| !vectors_fids.contains(id));
@ -1403,6 +1447,8 @@ impl InnerIndexSettings {
geo_fields_ids,
non_searchable_fields_ids: vectors_fids.clone(),
non_faceted_fields_ids: vectors_fids.clone(),
localized_searchable_fields_ids,
localized_faceted_fields_ids,
})
}
@ -1418,6 +1464,12 @@ impl InnerIndexSettings {
index.put_faceted_fields(wtxn, &new_facets)?;
self.faceted_fields_ids = index.faceted_fields_ids(wtxn)?;
let localized_attributes_rules = index.localized_attributes_rules(wtxn)?;
self.localized_faceted_fields_ids = LocalizedFieldIds::new(
&localized_attributes_rules,
&self.fields_ids_map,
self.faceted_fields_ids.iter().cloned(),
);
Ok(())
}
@ -1441,8 +1493,13 @@ impl InnerIndexSettings {
&self.fields_ids_map,
)?;
}
let searchable_fields_ids = index.searchable_fields_ids(wtxn)?;
self.searchable_fields_ids = searchable_fields_ids;
self.searchable_fields_ids = index.searchable_fields_ids(wtxn)?;
let localized_attributes_rules = index.localized_attributes_rules(wtxn)?;
self.localized_searchable_fields_ids = LocalizedFieldIds::new(
&localized_attributes_rules,
&self.fields_ids_map,
self.searchable_fields_ids.iter().cloned(),
);
Ok(())
}
@ -2573,6 +2630,7 @@ mod tests {
proximity_precision,
embedder_settings,
search_cutoff,
localized_attributes_rules,
} = settings;
assert!(matches!(searchable_fields, Setting::NotSet));
assert!(matches!(displayed_fields, Setting::NotSet));
@ -2597,6 +2655,7 @@ mod tests {
assert!(matches!(proximity_precision, Setting::NotSet));
assert!(matches!(embedder_settings, Setting::NotSet));
assert!(matches!(search_cutoff, Setting::NotSet));
assert!(matches!(localized_attributes_rules, Setting::NotSet));
})
.unwrap();
}