mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-12-23 21:20:24 +01:00
Lazily embed, don't fail hybrid search on embedding failure
This commit is contained in:
parent
fabc9cf14a
commit
6ebb6b55a6
@ -12,6 +12,7 @@ use tracing::debug;
|
||||
use crate::analytics::{Analytics, FacetSearchAggregator};
|
||||
use crate::extractors::authentication::policies::*;
|
||||
use crate::extractors::authentication::GuardedData;
|
||||
use crate::routes::indexes::search::search_kind;
|
||||
use crate::search::{
|
||||
add_search_rules, perform_facet_search, HybridQuery, MatchingStrategy, SearchQuery,
|
||||
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
|
||||
@ -73,9 +74,10 @@ pub async fn search(
|
||||
|
||||
let index = index_scheduler.index(&index_uid)?;
|
||||
let features = index_scheduler.features();
|
||||
let search_kind = search_kind(&search_query, &index_scheduler, &index)?;
|
||||
let _permit = search_queue.try_get_search_permit().await?;
|
||||
let search_result = tokio::task::spawn_blocking(move || {
|
||||
perform_facet_search(&index, search_query, facet_query, facet_name, features)
|
||||
perform_facet_search(&index, search_query, facet_query, facet_name, features, search_kind)
|
||||
})
|
||||
.await?;
|
||||
|
||||
|
@ -8,19 +8,19 @@ use meilisearch_types::error::deserr_codes::*;
|
||||
use meilisearch_types::error::ResponseError;
|
||||
use meilisearch_types::index_uid::IndexUid;
|
||||
use meilisearch_types::milli;
|
||||
use meilisearch_types::milli::vector::DistributionShift;
|
||||
use meilisearch_types::serde_cs::vec::CS;
|
||||
use serde_json::Value;
|
||||
use tracing::{debug, warn};
|
||||
use tracing::debug;
|
||||
|
||||
use crate::analytics::{Analytics, SearchAggregator};
|
||||
use crate::error::MeilisearchHttpError;
|
||||
use crate::extractors::authentication::policies::*;
|
||||
use crate::extractors::authentication::GuardedData;
|
||||
use crate::extractors::sequential_extractor::SeqHandler;
|
||||
use crate::metrics::MEILISEARCH_DEGRADED_SEARCH_REQUESTS;
|
||||
use crate::search::{
|
||||
add_search_rules, perform_search, HybridQuery, MatchingStrategy, SearchQuery, SemanticRatio,
|
||||
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
|
||||
add_search_rules, perform_search, HybridQuery, MatchingStrategy, SearchKind, SearchQuery,
|
||||
SemanticRatio, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
|
||||
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO,
|
||||
};
|
||||
use crate::search_queue::SearchQueue;
|
||||
@ -204,11 +204,11 @@ pub async fn search_with_url_query(
|
||||
let index = index_scheduler.index(&index_uid)?;
|
||||
let features = index_scheduler.features();
|
||||
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)?;
|
||||
let search_kind = search_kind(&query, index_scheduler.get_ref(), &index)?;
|
||||
|
||||
let _permit = search_queue.try_get_search_permit().await?;
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution))
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features, search_kind))
|
||||
.await?;
|
||||
if let Ok(ref search_result) = search_result {
|
||||
aggregate.succeed(search_result);
|
||||
@ -245,11 +245,11 @@ pub async fn search_with_post(
|
||||
|
||||
let features = index_scheduler.features();
|
||||
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)?;
|
||||
let search_kind = search_kind(&query, index_scheduler.get_ref(), &index)?;
|
||||
|
||||
let _permit = search_queue.try_get_search_permit().await?;
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution))
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features, search_kind))
|
||||
.await?;
|
||||
if let Ok(ref search_result) = search_result {
|
||||
aggregate.succeed(search_result);
|
||||
@ -265,76 +265,49 @@ pub async fn search_with_post(
|
||||
Ok(HttpResponse::Ok().json(search_result))
|
||||
}
|
||||
|
||||
pub fn embed(
|
||||
query: &mut SearchQuery,
|
||||
pub fn search_kind(
|
||||
query: &SearchQuery,
|
||||
index_scheduler: &IndexScheduler,
|
||||
index: &milli::Index,
|
||||
) -> Result<Option<DistributionShift>, ResponseError> {
|
||||
match (&query.hybrid, &query.vector, &query.q) {
|
||||
(Some(HybridQuery { semantic_ratio: _, embedder }), None, Some(q))
|
||||
if !q.trim().is_empty() =>
|
||||
{
|
||||
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
|
||||
let embedders = index_scheduler.embedders(embedder_configs)?;
|
||||
|
||||
let embedder = if let Some(embedder_name) = embedder {
|
||||
embedders.get(embedder_name)
|
||||
} else {
|
||||
embedders.get_default()
|
||||
};
|
||||
|
||||
let embedder = embedder
|
||||
.ok_or(milli::UserError::InvalidEmbedder("default".to_owned()))
|
||||
.map_err(milli::Error::from)?
|
||||
.0;
|
||||
|
||||
let distribution = embedder.distribution();
|
||||
|
||||
let embeddings = embedder
|
||||
.embed(vec![q.to_owned()])
|
||||
.map_err(milli::vector::Error::from)
|
||||
.map_err(milli::Error::from)?
|
||||
.pop()
|
||||
.expect("No vector returned from embedding");
|
||||
|
||||
if embeddings.iter().nth(1).is_some() {
|
||||
warn!("Ignoring embeddings past the first one in long search query");
|
||||
query.vector = Some(embeddings.iter().next().unwrap().to_vec());
|
||||
} else {
|
||||
query.vector = Some(embeddings.into_inner());
|
||||
}
|
||||
Ok(distribution)
|
||||
) -> Result<SearchKind, ResponseError> {
|
||||
// regardless of anything, always do a semantic search when we don't have a vector and the query is whitespace or missing
|
||||
if query.vector.is_none() {
|
||||
match &query.q {
|
||||
Some(q) if q.trim().is_empty() => return Ok(SearchKind::KeywordOnly),
|
||||
None => return Ok(SearchKind::KeywordOnly),
|
||||
_ => {}
|
||||
}
|
||||
(Some(hybrid), vector, _) => {
|
||||
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
|
||||
let embedders = index_scheduler.embedders(embedder_configs)?;
|
||||
}
|
||||
|
||||
let embedder = if let Some(embedder_name) = &hybrid.embedder {
|
||||
embedders.get(embedder_name)
|
||||
} else {
|
||||
embedders.get_default()
|
||||
};
|
||||
|
||||
let embedder = embedder
|
||||
.ok_or(milli::UserError::InvalidEmbedder("default".to_owned()))
|
||||
.map_err(milli::Error::from)?
|
||||
.0;
|
||||
|
||||
if let Some(vector) = vector {
|
||||
if vector.len() != embedder.dimensions() {
|
||||
return Err(meilisearch_types::milli::Error::UserError(
|
||||
meilisearch_types::milli::UserError::InvalidVectorDimensions {
|
||||
expected: embedder.dimensions(),
|
||||
found: vector.len(),
|
||||
},
|
||||
)
|
||||
.into());
|
||||
}
|
||||
}
|
||||
|
||||
Ok(embedder.distribution())
|
||||
match &query.hybrid {
|
||||
Some(HybridQuery { semantic_ratio, embedder }) if **semantic_ratio == 1.0 => {
|
||||
Ok(SearchKind::semantic(
|
||||
index_scheduler,
|
||||
index,
|
||||
embedder.as_deref(),
|
||||
query.vector.as_ref().map(Vec::len),
|
||||
)?)
|
||||
}
|
||||
_ => Ok(None),
|
||||
Some(HybridQuery { semantic_ratio, embedder: _ }) if **semantic_ratio == 0.0 => {
|
||||
Ok(SearchKind::KeywordOnly)
|
||||
}
|
||||
Some(HybridQuery { semantic_ratio, embedder }) => Ok(SearchKind::hybrid(
|
||||
index_scheduler,
|
||||
index,
|
||||
embedder.as_deref(),
|
||||
**semantic_ratio,
|
||||
query.vector.as_ref().map(Vec::len),
|
||||
)?),
|
||||
None => match (query.q.as_deref(), query.vector.as_deref()) {
|
||||
(_query, None) => Ok(SearchKind::KeywordOnly),
|
||||
(None, Some(_vector)) => Ok(SearchKind::semantic(
|
||||
index_scheduler,
|
||||
index,
|
||||
None,
|
||||
query.vector.as_ref().map(Vec::len),
|
||||
)?),
|
||||
(Some(_), Some(_)) => Err(MeilisearchHttpError::MissingSearchHybrid.into()),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -13,7 +13,7 @@ use crate::analytics::{Analytics, MultiSearchAggregator};
|
||||
use crate::extractors::authentication::policies::ActionPolicy;
|
||||
use crate::extractors::authentication::{AuthenticationError, GuardedData};
|
||||
use crate::extractors::sequential_extractor::SeqHandler;
|
||||
use crate::routes::indexes::search::embed;
|
||||
use crate::routes::indexes::search::search_kind;
|
||||
use crate::search::{
|
||||
add_search_rules, perform_search, SearchQueryWithIndex, SearchResultWithIndex,
|
||||
};
|
||||
@ -81,11 +81,11 @@ pub async fn multi_search_with_post(
|
||||
})
|
||||
.with_index(query_index)?;
|
||||
|
||||
let distribution =
|
||||
embed(&mut query, index_scheduler.get_ref(), &index).with_index(query_index)?;
|
||||
let search_kind =
|
||||
search_kind(&query, index_scheduler.get_ref(), &index).with_index(query_index)?;
|
||||
|
||||
let search_result = tokio::task::spawn_blocking(move || {
|
||||
perform_search(&index, query, features, distribution)
|
||||
perform_search(&index, query, features, search_kind)
|
||||
})
|
||||
.await
|
||||
.with_index(query_index)?;
|
||||
|
@ -1,6 +1,7 @@
|
||||
use std::cmp::min;
|
||||
use std::collections::{BTreeMap, BTreeSet, HashSet};
|
||||
use std::str::FromStr;
|
||||
use std::sync::Arc;
|
||||
use std::time::{Duration, Instant};
|
||||
|
||||
use deserr::Deserr;
|
||||
@ -10,10 +11,11 @@ use indexmap::IndexMap;
|
||||
use meilisearch_auth::IndexSearchRules;
|
||||
use meilisearch_types::deserr::DeserrJsonError;
|
||||
use meilisearch_types::error::deserr_codes::*;
|
||||
use meilisearch_types::error::ResponseError;
|
||||
use meilisearch_types::heed::RoTxn;
|
||||
use meilisearch_types::index_uid::IndexUid;
|
||||
use meilisearch_types::milli::score_details::{self, ScoreDetails, ScoringStrategy};
|
||||
use meilisearch_types::milli::vector::DistributionShift;
|
||||
use meilisearch_types::milli::vector::Embedder;
|
||||
use meilisearch_types::milli::{FacetValueHit, OrderBy, SearchForFacetValues, TimeBudget};
|
||||
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
|
||||
use meilisearch_types::{milli, Document};
|
||||
@ -90,13 +92,75 @@ pub struct SearchQuery {
|
||||
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
|
||||
#[deserr(error = DeserrJsonError<InvalidHybridQuery>, rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct HybridQuery {
|
||||
/// TODO validate that sementic ratio is between 0.0 and 1,0
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchSemanticRatio>, default)]
|
||||
pub semantic_ratio: SemanticRatio,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
|
||||
pub embedder: Option<String>,
|
||||
}
|
||||
|
||||
pub enum SearchKind {
|
||||
KeywordOnly,
|
||||
SemanticOnly { embedder_name: String, embedder: Arc<Embedder> },
|
||||
Hybrid { embedder_name: String, embedder: Arc<Embedder>, semantic_ratio: f32 },
|
||||
}
|
||||
impl SearchKind {
|
||||
pub(crate) fn semantic(
|
||||
index_scheduler: &index_scheduler::IndexScheduler,
|
||||
index: &Index,
|
||||
embedder_name: Option<&str>,
|
||||
vector_len: Option<usize>,
|
||||
) -> Result<Self, ResponseError> {
|
||||
let (embedder_name, embedder) =
|
||||
Self::embedder(index_scheduler, index, embedder_name, vector_len)?;
|
||||
Ok(Self::SemanticOnly { embedder_name, embedder })
|
||||
}
|
||||
|
||||
pub(crate) fn hybrid(
|
||||
index_scheduler: &index_scheduler::IndexScheduler,
|
||||
index: &Index,
|
||||
embedder_name: Option<&str>,
|
||||
semantic_ratio: f32,
|
||||
vector_len: Option<usize>,
|
||||
) -> Result<Self, ResponseError> {
|
||||
let (embedder_name, embedder) =
|
||||
Self::embedder(index_scheduler, index, embedder_name, vector_len)?;
|
||||
Ok(Self::Hybrid { embedder_name, embedder, semantic_ratio })
|
||||
}
|
||||
|
||||
fn embedder(
|
||||
index_scheduler: &index_scheduler::IndexScheduler,
|
||||
index: &Index,
|
||||
embedder_name: Option<&str>,
|
||||
vector_len: Option<usize>,
|
||||
) -> Result<(String, Arc<Embedder>), ResponseError> {
|
||||
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
|
||||
let embedders = index_scheduler.embedders(embedder_configs)?;
|
||||
|
||||
let embedder_name = embedder_name.unwrap_or_else(|| embedders.get_default_embedder_name());
|
||||
|
||||
let embedder = embedders.get(embedder_name);
|
||||
|
||||
let embedder = embedder
|
||||
.ok_or(milli::UserError::InvalidEmbedder(embedder_name.to_owned()))
|
||||
.map_err(milli::Error::from)?
|
||||
.0;
|
||||
|
||||
if let Some(vector_len) = vector_len {
|
||||
if vector_len != embedder.dimensions() {
|
||||
return Err(meilisearch_types::milli::Error::UserError(
|
||||
meilisearch_types::milli::UserError::InvalidVectorDimensions {
|
||||
expected: embedder.dimensions(),
|
||||
found: vector_len,
|
||||
},
|
||||
)
|
||||
.into());
|
||||
}
|
||||
}
|
||||
|
||||
Ok((embedder_name.to_owned(), embedder))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Deserr)]
|
||||
#[deserr(try_from(f32) = TryFrom::try_from -> InvalidSearchSemanticRatio)]
|
||||
pub struct SemanticRatio(f32);
|
||||
@ -385,7 +449,7 @@ fn prepare_search<'t>(
|
||||
rtxn: &'t RoTxn,
|
||||
query: &'t SearchQuery,
|
||||
features: RoFeatures,
|
||||
distribution: Option<DistributionShift>,
|
||||
search_kind: &SearchKind,
|
||||
time_budget: TimeBudget,
|
||||
) -> Result<(milli::Search<'t>, bool, usize, usize), MeilisearchHttpError> {
|
||||
let mut search = index.search(rtxn);
|
||||
@ -399,32 +463,30 @@ fn prepare_search<'t>(
|
||||
features.check_vector("Passing `hybrid` as a query parameter")?;
|
||||
}
|
||||
|
||||
if query.hybrid.is_none() && query.q.is_some() && query.vector.is_some() {
|
||||
return Err(MeilisearchHttpError::MissingSearchHybrid);
|
||||
}
|
||||
|
||||
search.distribution_shift(distribution);
|
||||
|
||||
if let Some(ref vector) = query.vector {
|
||||
match &query.hybrid {
|
||||
// If semantic ratio is 0.0, only the query search will impact the search results,
|
||||
// skip the vector
|
||||
Some(hybrid) if *hybrid.semantic_ratio == 0.0 => (),
|
||||
_otherwise => {
|
||||
search.vector(vector.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(ref q) = query.q {
|
||||
match &query.hybrid {
|
||||
// If semantic ratio is 1.0, only the vector search will impact the search results,
|
||||
// skip the query
|
||||
Some(hybrid) if *hybrid.semantic_ratio == 1.0 => (),
|
||||
_otherwise => {
|
||||
match search_kind {
|
||||
SearchKind::KeywordOnly => {
|
||||
if let Some(q) = &query.q {
|
||||
search.query(q);
|
||||
}
|
||||
}
|
||||
SearchKind::SemanticOnly { embedder_name, embedder } => {
|
||||
let vector = match query.vector.clone() {
|
||||
Some(vector) => vector,
|
||||
None => embedder
|
||||
.embed_one(query.q.clone().unwrap())
|
||||
.map_err(milli::vector::Error::from)
|
||||
.map_err(milli::Error::from)?,
|
||||
};
|
||||
|
||||
search.semantic(embedder_name.clone(), embedder.clone(), Some(vector));
|
||||
}
|
||||
SearchKind::Hybrid { embedder_name, embedder, semantic_ratio: _ } => {
|
||||
if let Some(q) = &query.q {
|
||||
search.query(q);
|
||||
}
|
||||
// will be embedded in hybrid search if necessary
|
||||
search.semantic(embedder_name.clone(), embedder.clone(), query.vector.clone());
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(ref searchable) = query.attributes_to_search_on {
|
||||
@ -447,10 +509,6 @@ fn prepare_search<'t>(
|
||||
ScoringStrategy::Skip
|
||||
});
|
||||
|
||||
if let Some(HybridQuery { embedder: Some(embedder), .. }) = &query.hybrid {
|
||||
search.embedder_name(embedder);
|
||||
}
|
||||
|
||||
// compute the offset on the limit depending on the pagination mode.
|
||||
let (offset, limit) = if is_finite_pagination {
|
||||
let limit = query.hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT);
|
||||
@ -494,7 +552,7 @@ pub fn perform_search(
|
||||
index: &Index,
|
||||
query: SearchQuery,
|
||||
features: RoFeatures,
|
||||
distribution: Option<DistributionShift>,
|
||||
search_kind: SearchKind,
|
||||
) -> Result<SearchResult, MeilisearchHttpError> {
|
||||
let before_search = Instant::now();
|
||||
let rtxn = index.read_txn()?;
|
||||
@ -504,7 +562,7 @@ pub fn perform_search(
|
||||
};
|
||||
|
||||
let (search, is_finite_pagination, max_total_hits, offset) =
|
||||
prepare_search(index, &rtxn, &query, features, distribution, time_budget)?;
|
||||
prepare_search(index, &rtxn, &query, features, &search_kind, time_budget)?;
|
||||
|
||||
let milli::SearchResult {
|
||||
documents_ids,
|
||||
@ -514,12 +572,9 @@ pub fn perform_search(
|
||||
degraded,
|
||||
used_negative_operator,
|
||||
..
|
||||
} = match &query.hybrid {
|
||||
Some(hybrid) => match *hybrid.semantic_ratio {
|
||||
ratio if ratio == 0.0 || ratio == 1.0 => search.execute()?,
|
||||
ratio => search.execute_hybrid(ratio)?,
|
||||
},
|
||||
None => search.execute()?,
|
||||
} = match &search_kind {
|
||||
SearchKind::KeywordOnly | SearchKind::SemanticOnly { .. } => search.execute()?,
|
||||
SearchKind::Hybrid { semantic_ratio, .. } => search.execute_hybrid(*semantic_ratio)?,
|
||||
};
|
||||
|
||||
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
|
||||
@ -726,6 +781,7 @@ pub fn perform_facet_search(
|
||||
facet_query: Option<String>,
|
||||
facet_name: String,
|
||||
features: RoFeatures,
|
||||
search_kind: SearchKind,
|
||||
) -> Result<FacetSearchResult, MeilisearchHttpError> {
|
||||
let before_search = Instant::now();
|
||||
let rtxn = index.read_txn()?;
|
||||
@ -735,9 +791,12 @@ pub fn perform_facet_search(
|
||||
};
|
||||
|
||||
let (search, _, _, _) =
|
||||
prepare_search(index, &rtxn, &search_query, features, None, time_budget)?;
|
||||
let mut facet_search =
|
||||
SearchForFacetValues::new(facet_name, search, search_query.hybrid.is_some());
|
||||
prepare_search(index, &rtxn, &search_query, features, &search_kind, time_budget)?;
|
||||
let mut facet_search = SearchForFacetValues::new(
|
||||
facet_name,
|
||||
search,
|
||||
matches!(search_kind, SearchKind::Hybrid { .. }),
|
||||
);
|
||||
if let Some(facet_query) = &facet_query {
|
||||
facet_search.query(facet_query);
|
||||
}
|
||||
|
@ -1499,14 +1499,6 @@ impl Index {
|
||||
.unwrap_or_default())
|
||||
}
|
||||
|
||||
pub fn default_embedding_name(&self, rtxn: &RoTxn<'_>) -> Result<String> {
|
||||
let configs = self.embedding_configs(rtxn)?;
|
||||
Ok(match configs.as_slice() {
|
||||
[(ref first_name, _)] => first_name.clone(),
|
||||
_ => "default".to_owned(),
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn put_search_cutoff(&self, wtxn: &mut RwTxn<'_>, cutoff: u64) -> heed::Result<()> {
|
||||
self.main.remap_types::<Str, BEU64>().put(wtxn, main_key::SEARCH_CUTOFF, &cutoff)
|
||||
}
|
||||
|
@ -61,7 +61,7 @@ pub use self::index::Index;
|
||||
pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
|
||||
pub use self::search::{
|
||||
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
|
||||
Search, SearchResult, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
|
||||
Search, SearchResult, SemanticSearch, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
|
||||
};
|
||||
|
||||
pub type Result<T> = std::result::Result<T, error::Error>;
|
||||
|
@ -92,9 +92,15 @@ impl<'a> SearchForFacetValues<'a> {
|
||||
None => return Ok(Vec::new()),
|
||||
};
|
||||
|
||||
let search_candidates = self
|
||||
.search_query
|
||||
.execute_for_candidates(self.is_hybrid || self.search_query.vector.is_some())?;
|
||||
let search_candidates = self.search_query.execute_for_candidates(
|
||||
self.is_hybrid
|
||||
|| self
|
||||
.search_query
|
||||
.semantic
|
||||
.as_ref()
|
||||
.and_then(|semantic| semantic.vector.as_ref())
|
||||
.is_some(),
|
||||
)?;
|
||||
|
||||
let mut results = match index.sort_facet_values_by(rtxn)?.get(&self.facet) {
|
||||
OrderBy::Lexicographic => ValuesCollection::by_lexicographic(self.max_values),
|
||||
|
@ -4,6 +4,7 @@ use itertools::Itertools;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::score_details::{ScoreDetails, ScoreValue, ScoringStrategy};
|
||||
use crate::search::SemanticSearch;
|
||||
use crate::{MatchingWords, Result, Search, SearchResult};
|
||||
|
||||
struct ScoreWithRatioResult {
|
||||
@ -126,7 +127,6 @@ impl<'a> Search<'a> {
|
||||
// create separate keyword and semantic searches
|
||||
let mut search = Search {
|
||||
query: self.query.clone(),
|
||||
vector: self.vector.clone(),
|
||||
filter: self.filter.clone(),
|
||||
offset: 0,
|
||||
limit: self.limit + self.offset,
|
||||
@ -139,26 +139,41 @@ impl<'a> Search<'a> {
|
||||
exhaustive_number_hits: self.exhaustive_number_hits,
|
||||
rtxn: self.rtxn,
|
||||
index: self.index,
|
||||
distribution_shift: self.distribution_shift,
|
||||
embedder_name: self.embedder_name.clone(),
|
||||
semantic: self.semantic.clone(),
|
||||
time_budget: self.time_budget.clone(),
|
||||
};
|
||||
|
||||
let vector_query = search.vector.take();
|
||||
let semantic = search.semantic.take();
|
||||
let keyword_results = search.execute()?;
|
||||
|
||||
// skip semantic search if we don't have a vector query (placeholder search)
|
||||
let Some(vector_query) = vector_query else {
|
||||
return Ok(keyword_results);
|
||||
};
|
||||
|
||||
// completely skip semantic search if the results of the keyword search are good enough
|
||||
if self.results_good_enough(&keyword_results, semantic_ratio) {
|
||||
return Ok(keyword_results);
|
||||
}
|
||||
|
||||
search.vector = Some(vector_query);
|
||||
search.query = None;
|
||||
// no vector search against placeholder search
|
||||
let Some(query) = search.query.take() else { return Ok(keyword_results) };
|
||||
// no embedder, no semantic search
|
||||
let Some(SemanticSearch { vector, embedder_name, embedder }) = semantic else {
|
||||
return Ok(keyword_results);
|
||||
};
|
||||
|
||||
let vector_query = match vector {
|
||||
Some(vector_query) => vector_query,
|
||||
None => {
|
||||
// attempt to embed the vector
|
||||
match embedder.embed_one(query) {
|
||||
Ok(embedding) => embedding,
|
||||
Err(error) => {
|
||||
tracing::error!(error=%error, "Embedding failed");
|
||||
return Ok(keyword_results);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
search.semantic =
|
||||
Some(SemanticSearch { vector: Some(vector_query), embedder_name, embedder });
|
||||
|
||||
// TODO: would be better to have two distinct functions at this point
|
||||
let vector_results = search.execute()?;
|
||||
|
@ -1,4 +1,5 @@
|
||||
use std::fmt;
|
||||
use std::sync::Arc;
|
||||
|
||||
use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA};
|
||||
use once_cell::sync::Lazy;
|
||||
@ -8,7 +9,7 @@ pub use self::facet::{FacetDistribution, Filter, OrderBy, DEFAULT_VALUES_PER_FAC
|
||||
pub use self::new::matches::{FormatOptions, MatchBounds, MatcherBuilder, MatchingWords};
|
||||
use self::new::{execute_vector_search, PartialSearchResult};
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::vector::DistributionShift;
|
||||
use crate::vector::Embedder;
|
||||
use crate::{
|
||||
execute_search, filtered_universe, AscDesc, DefaultSearchLogger, DocumentId, Index, Result,
|
||||
SearchContext, TimeBudget,
|
||||
@ -24,9 +25,15 @@ mod fst_utils;
|
||||
pub mod hybrid;
|
||||
pub mod new;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SemanticSearch {
|
||||
vector: Option<Vec<f32>>,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
}
|
||||
|
||||
pub struct Search<'a> {
|
||||
query: Option<String>,
|
||||
vector: Option<Vec<f32>>,
|
||||
// this should be linked to the String in the query
|
||||
filter: Option<Filter<'a>>,
|
||||
offset: usize,
|
||||
@ -38,12 +45,9 @@ pub struct Search<'a> {
|
||||
scoring_strategy: ScoringStrategy,
|
||||
words_limit: usize,
|
||||
exhaustive_number_hits: bool,
|
||||
/// TODO: Add semantic ratio or pass it directly to execute_hybrid()
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
index: &'a Index,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: Option<String>,
|
||||
|
||||
semantic: Option<SemanticSearch>,
|
||||
time_budget: TimeBudget,
|
||||
}
|
||||
|
||||
@ -51,7 +55,6 @@ impl<'a> Search<'a> {
|
||||
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
|
||||
Search {
|
||||
query: None,
|
||||
vector: None,
|
||||
filter: None,
|
||||
offset: 0,
|
||||
limit: 20,
|
||||
@ -64,8 +67,7 @@ impl<'a> Search<'a> {
|
||||
words_limit: 10,
|
||||
rtxn,
|
||||
index,
|
||||
distribution_shift: None,
|
||||
embedder_name: None,
|
||||
semantic: None,
|
||||
time_budget: TimeBudget::max(),
|
||||
}
|
||||
}
|
||||
@ -75,8 +77,13 @@ impl<'a> Search<'a> {
|
||||
self
|
||||
}
|
||||
|
||||
pub fn vector(&mut self, vector: Vec<f32>) -> &mut Search<'a> {
|
||||
self.vector = Some(vector);
|
||||
pub fn semantic(
|
||||
&mut self,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
vector: Option<Vec<f32>>,
|
||||
) -> &mut Search<'a> {
|
||||
self.semantic = Some(SemanticSearch { embedder_name, embedder, vector });
|
||||
self
|
||||
}
|
||||
|
||||
@ -133,19 +140,6 @@ impl<'a> Search<'a> {
|
||||
self
|
||||
}
|
||||
|
||||
pub fn distribution_shift(
|
||||
&mut self,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
) -> &mut Search<'a> {
|
||||
self.distribution_shift = distribution_shift;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn embedder_name(&mut self, embedder_name: impl Into<String>) -> &mut Search<'a> {
|
||||
self.embedder_name = Some(embedder_name.into());
|
||||
self
|
||||
}
|
||||
|
||||
pub fn time_budget(&mut self, time_budget: TimeBudget) -> &mut Search<'a> {
|
||||
self.time_budget = time_budget;
|
||||
self
|
||||
@ -161,15 +155,6 @@ impl<'a> Search<'a> {
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> Result<SearchResult> {
|
||||
let embedder_name;
|
||||
let embedder_name = match &self.embedder_name {
|
||||
Some(embedder_name) => embedder_name,
|
||||
None => {
|
||||
embedder_name = self.index.default_embedding_name(self.rtxn)?;
|
||||
&embedder_name
|
||||
}
|
||||
};
|
||||
|
||||
let mut ctx = SearchContext::new(self.index, self.rtxn);
|
||||
|
||||
if let Some(searchable_attributes) = self.searchable_attributes {
|
||||
@ -184,21 +169,23 @@ impl<'a> Search<'a> {
|
||||
document_scores,
|
||||
degraded,
|
||||
used_negative_operator,
|
||||
} = match self.vector.as_ref() {
|
||||
Some(vector) => execute_vector_search(
|
||||
&mut ctx,
|
||||
vector,
|
||||
self.scoring_strategy,
|
||||
universe,
|
||||
&self.sort_criteria,
|
||||
self.geo_strategy,
|
||||
self.offset,
|
||||
self.limit,
|
||||
self.distribution_shift,
|
||||
embedder_name,
|
||||
self.time_budget.clone(),
|
||||
)?,
|
||||
None => execute_search(
|
||||
} = match self.semantic.as_ref() {
|
||||
Some(SemanticSearch { vector: Some(vector), embedder_name, embedder }) => {
|
||||
execute_vector_search(
|
||||
&mut ctx,
|
||||
vector,
|
||||
self.scoring_strategy,
|
||||
universe,
|
||||
&self.sort_criteria,
|
||||
self.geo_strategy,
|
||||
self.offset,
|
||||
self.limit,
|
||||
embedder_name,
|
||||
embedder,
|
||||
self.time_budget.clone(),
|
||||
)?
|
||||
}
|
||||
_ => execute_search(
|
||||
&mut ctx,
|
||||
self.query.as_deref(),
|
||||
self.terms_matching_strategy,
|
||||
@ -237,7 +224,6 @@ impl fmt::Debug for Search<'_> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let Search {
|
||||
query,
|
||||
vector: _,
|
||||
filter,
|
||||
offset,
|
||||
limit,
|
||||
@ -250,8 +236,7 @@ impl fmt::Debug for Search<'_> {
|
||||
exhaustive_number_hits,
|
||||
rtxn: _,
|
||||
index: _,
|
||||
distribution_shift,
|
||||
embedder_name,
|
||||
semantic,
|
||||
time_budget,
|
||||
} = self;
|
||||
f.debug_struct("Search")
|
||||
@ -266,8 +251,10 @@ impl fmt::Debug for Search<'_> {
|
||||
.field("scoring_strategy", scoring_strategy)
|
||||
.field("exhaustive_number_hits", exhaustive_number_hits)
|
||||
.field("words_limit", words_limit)
|
||||
.field("distribution_shift", distribution_shift)
|
||||
.field("embedder_name", embedder_name)
|
||||
.field(
|
||||
"semantic.embedder_name",
|
||||
&semantic.as_ref().map(|semantic| &semantic.embedder_name),
|
||||
)
|
||||
.field("time_budget", time_budget)
|
||||
.finish()
|
||||
}
|
||||
|
@ -52,7 +52,7 @@ use self::vector_sort::VectorSort;
|
||||
use crate::error::FieldIdMapMissingEntry;
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::search::new::distinct::apply_distinct_rule;
|
||||
use crate::vector::DistributionShift;
|
||||
use crate::vector::Embedder;
|
||||
use crate::{
|
||||
AscDesc, DocumentId, FieldId, Filter, Index, Member, Result, TermsMatchingStrategy, TimeBudget,
|
||||
UserError,
|
||||
@ -298,8 +298,8 @@ fn get_ranking_rules_for_vector<'ctx>(
|
||||
geo_strategy: geo_sort::Strategy,
|
||||
limit_plus_offset: usize,
|
||||
target: &[f32],
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: &str,
|
||||
embedder: &Embedder,
|
||||
) -> Result<Vec<BoxRankingRule<'ctx, PlaceholderQuery>>> {
|
||||
// query graph search
|
||||
|
||||
@ -325,8 +325,8 @@ fn get_ranking_rules_for_vector<'ctx>(
|
||||
target.to_vec(),
|
||||
vector_candidates,
|
||||
limit_plus_offset,
|
||||
distribution_shift,
|
||||
embedder_name,
|
||||
embedder,
|
||||
)?;
|
||||
ranking_rules.push(Box::new(vector_sort));
|
||||
vector = true;
|
||||
@ -548,8 +548,8 @@ pub fn execute_vector_search(
|
||||
geo_strategy: geo_sort::Strategy,
|
||||
from: usize,
|
||||
length: usize,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: &str,
|
||||
embedder: &Embedder,
|
||||
time_budget: TimeBudget,
|
||||
) -> Result<PartialSearchResult> {
|
||||
check_sort_criteria(ctx, sort_criteria.as_ref())?;
|
||||
@ -562,8 +562,8 @@ pub fn execute_vector_search(
|
||||
geo_strategy,
|
||||
from + length,
|
||||
vector,
|
||||
distribution_shift,
|
||||
embedder_name,
|
||||
embedder,
|
||||
)?;
|
||||
|
||||
let mut placeholder_search_logger = logger::DefaultSearchLogger;
|
||||
|
@ -5,7 +5,7 @@ use roaring::RoaringBitmap;
|
||||
|
||||
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
|
||||
use crate::score_details::{self, ScoreDetails};
|
||||
use crate::vector::DistributionShift;
|
||||
use crate::vector::{DistributionShift, Embedder};
|
||||
use crate::{DocumentId, Result, SearchContext, SearchLogger};
|
||||
|
||||
pub struct VectorSort<Q: RankingRuleQueryTrait> {
|
||||
@ -24,8 +24,8 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
target: Vec<f32>,
|
||||
vector_candidates: RoaringBitmap,
|
||||
limit: usize,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: &str,
|
||||
embedder: &Embedder,
|
||||
) -> Result<Self> {
|
||||
let embedder_index = ctx
|
||||
.index
|
||||
@ -39,7 +39,7 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
vector_candidates,
|
||||
cached_sorted_docids: Default::default(),
|
||||
limit,
|
||||
distribution_shift,
|
||||
distribution_shift: embedder.distribution(),
|
||||
embedder_index,
|
||||
})
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user