Introduce a way to store the HNSW on multiple LMDB entries

This commit is contained in:
Kerollmops 2023-06-21 17:07:02 +02:00 committed by Clément Renault
parent ff3664431f
commit 66b8cfd8c8
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4
3 changed files with 125 additions and 6 deletions

View File

@ -22,6 +22,7 @@ use crate::heed_codec::facet::{
FieldIdCodec, OrderedF64Codec, FieldIdCodec, OrderedF64Codec,
}; };
use crate::heed_codec::{ScriptLanguageCodec, StrBEU16Codec, StrRefCodec}; use crate::heed_codec::{ScriptLanguageCodec, StrBEU16Codec, StrRefCodec};
use crate::readable_slices::ReadableSlices;
use crate::{ use crate::{
default_criteria, CboRoaringBitmapCodec, Criterion, DocumentId, ExternalDocumentsIds, default_criteria, CboRoaringBitmapCodec, Criterion, DocumentId, ExternalDocumentsIds,
FacetDistribution, FieldDistribution, FieldId, FieldIdWordCountCodec, GeoPoint, ObkvCodec, FacetDistribution, FieldDistribution, FieldId, FieldIdWordCountCodec, GeoPoint, ObkvCodec,
@ -47,7 +48,10 @@ pub mod main_key {
pub const FIELDS_IDS_MAP_KEY: &str = "fields-ids-map"; pub const FIELDS_IDS_MAP_KEY: &str = "fields-ids-map";
pub const GEO_FACETED_DOCUMENTS_IDS_KEY: &str = "geo-faceted-documents-ids"; pub const GEO_FACETED_DOCUMENTS_IDS_KEY: &str = "geo-faceted-documents-ids";
pub const GEO_RTREE_KEY: &str = "geo-rtree"; pub const GEO_RTREE_KEY: &str = "geo-rtree";
pub const VECTOR_HNSW_KEY: &str = "vector-hnsw"; /// The prefix of the key that is used to store the, potential big, HNSW structure.
/// It is concatenated with a big-endian encoded number (non-human readable).
/// e.g. vector-hnsw0x0032.
pub const VECTOR_HNSW_KEY_PREFIX: &str = "vector-hnsw";
pub const HARD_EXTERNAL_DOCUMENTS_IDS_KEY: &str = "hard-external-documents-ids"; pub const HARD_EXTERNAL_DOCUMENTS_IDS_KEY: &str = "hard-external-documents-ids";
pub const NUMBER_FACETED_DOCUMENTS_IDS_PREFIX: &str = "number-faceted-documents-ids"; pub const NUMBER_FACETED_DOCUMENTS_IDS_PREFIX: &str = "number-faceted-documents-ids";
pub const PRIMARY_KEY_KEY: &str = "primary-key"; pub const PRIMARY_KEY_KEY: &str = "primary-key";
@ -517,19 +521,49 @@ impl Index {
/// Writes the provided `hnsw`. /// Writes the provided `hnsw`.
pub(crate) fn put_vector_hnsw(&self, wtxn: &mut RwTxn, hnsw: &Hnsw) -> heed::Result<()> { pub(crate) fn put_vector_hnsw(&self, wtxn: &mut RwTxn, hnsw: &Hnsw) -> heed::Result<()> {
self.main.put::<_, Str, SerdeBincode<Hnsw>>(wtxn, main_key::VECTOR_HNSW_KEY, hnsw) // We must delete all the chunks before we write the new HNSW chunks.
self.delete_vector_hnsw(wtxn)?;
let chunk_size = 1024 * 1024 * (1024 + 512); // 1.5 GiB
let bytes = bincode::serialize(hnsw).map_err(|_| heed::Error::Encoding)?;
for (i, chunk) in bytes.chunks(chunk_size).enumerate() {
let i = i as u32;
let mut key = main_key::VECTOR_HNSW_KEY_PREFIX.as_bytes().to_vec();
key.extend_from_slice(&i.to_be_bytes());
self.main.put::<_, ByteSlice, ByteSlice>(wtxn, &key, chunk)?;
}
Ok(())
} }
/// Delete the `hnsw`. /// Delete the `hnsw`.
pub(crate) fn delete_vector_hnsw(&self, wtxn: &mut RwTxn) -> heed::Result<bool> { pub(crate) fn delete_vector_hnsw(&self, wtxn: &mut RwTxn) -> heed::Result<bool> {
self.main.delete::<_, Str>(wtxn, main_key::VECTOR_HNSW_KEY) let mut iter = self.main.prefix_iter_mut::<_, ByteSlice, DecodeIgnore>(
wtxn,
main_key::VECTOR_HNSW_KEY_PREFIX.as_bytes(),
)?;
let mut deleted = false;
while let Some(_) = iter.next().transpose()? {
// We do not keep a reference to the key or the value.
unsafe { deleted |= iter.del_current()? };
}
Ok(deleted)
} }
/// Returns the `hnsw`. /// Returns the `hnsw`.
pub fn vector_hnsw(&self, rtxn: &RoTxn) -> Result<Option<Hnsw>> { pub fn vector_hnsw(&self, rtxn: &RoTxn) -> Result<Option<Hnsw>> {
match self.main.get::<_, Str, SerdeBincode<Hnsw>>(rtxn, main_key::VECTOR_HNSW_KEY)? { let mut slices = Vec::new();
Some(hnsw) => Ok(Some(hnsw)), for result in
None => Ok(None), self.main.prefix_iter::<_, Str, ByteSlice>(rtxn, main_key::VECTOR_HNSW_KEY_PREFIX)?
{
let (_, slice) = result?;
slices.push(slice);
}
if slices.is_empty() {
Ok(None)
} else {
let readable_slices: ReadableSlices<_> = slices.into_iter().collect();
Ok(Some(bincode::deserialize_from(readable_slices).map_err(|_| heed::Error::Decoding)?))
} }
} }

View File

@ -18,6 +18,7 @@ mod fields_ids_map;
pub mod heed_codec; pub mod heed_codec;
pub mod index; pub mod index;
pub mod proximity; pub mod proximity;
mod readable_slices;
pub mod score_details; pub mod score_details;
mod search; mod search;
pub mod update; pub mod update;

View File

@ -0,0 +1,84 @@
use std::io::{self, Read};
use std::iter::FromIterator;
pub struct ReadableSlices<A> {
inner: Vec<A>,
pos: u64,
}
impl<A> FromIterator<A> for ReadableSlices<A> {
fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
ReadableSlices { inner: iter.into_iter().collect(), pos: 0 }
}
}
impl<A: AsRef<[u8]>> Read for ReadableSlices<A> {
fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
let original_buf_len = buf.len();
// We explore the list of slices to find the one where we must start reading.
let mut pos = self.pos;
let index = match self
.inner
.iter()
.map(|s| s.as_ref().len() as u64)
.position(|size| pos.checked_sub(size).map(|p| pos = p).is_none())
{
Some(index) => index,
None => return Ok(0),
};
let mut inner_pos = pos as usize;
for slice in &self.inner[index..] {
let slice = &slice.as_ref()[inner_pos..];
if buf.len() > slice.len() {
// We must exhaust the current slice and go to the next one there is not enough here.
buf[..slice.len()].copy_from_slice(slice);
buf = &mut buf[slice.len()..];
inner_pos = 0;
} else {
// There is enough in this slice to fill the remaining bytes of the buffer.
// Let's break just after filling it.
buf.copy_from_slice(&slice[..buf.len()]);
buf = &mut [];
break;
}
}
let written = original_buf_len - buf.len();
self.pos += written as u64;
Ok(written)
}
}
#[cfg(test)]
mod test {
use super::ReadableSlices;
use std::io::Read;
#[test]
fn basic() {
let data: Vec<_> = (0..100).collect();
let splits: Vec<_> = data.chunks(3).collect();
let mut rdslices: ReadableSlices<_> = splits.into_iter().collect();
let mut output = Vec::new();
let length = rdslices.read_to_end(&mut output).unwrap();
assert_eq!(length, data.len());
assert_eq!(output, data);
}
#[test]
fn small_reads() {
let data: Vec<_> = (0..u8::MAX).collect();
let splits: Vec<_> = data.chunks(27).collect();
let mut rdslices: ReadableSlices<_> = splits.into_iter().collect();
let buffer = &mut [0; 45];
let length = rdslices.read(buffer).unwrap();
let expected: Vec<_> = (0..buffer.len() as u8).collect();
assert_eq!(length, buffer.len());
assert_eq!(buffer, &expected[..]);
}
}