mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-01-08 12:34:30 +01:00
Add deadline of 3 seconds to embedding requests made in the context of hybrid search
This commit is contained in:
parent
3753f87fd8
commit
37a4fd7f99
@ -5201,9 +5201,10 @@ mod tests {
|
|||||||
|
|
||||||
let configs = index_scheduler.embedders(configs).unwrap();
|
let configs = index_scheduler.embedders(configs).unwrap();
|
||||||
let (hf_embedder, _, _) = configs.get(&simple_hf_name).unwrap();
|
let (hf_embedder, _, _) = configs.get(&simple_hf_name).unwrap();
|
||||||
let beagle_embed = hf_embedder.embed_one(S("Intel the beagle best doggo")).unwrap();
|
let beagle_embed =
|
||||||
let lab_embed = hf_embedder.embed_one(S("Max the lab best doggo")).unwrap();
|
hf_embedder.embed_one(S("Intel the beagle best doggo"), None).unwrap();
|
||||||
let patou_embed = hf_embedder.embed_one(S("kefir the patou best doggo")).unwrap();
|
let lab_embed = hf_embedder.embed_one(S("Max the lab best doggo"), None).unwrap();
|
||||||
|
let patou_embed = hf_embedder.embed_one(S("kefir the patou best doggo"), None).unwrap();
|
||||||
(fakerest_name, simple_hf_name, beagle_embed, lab_embed, patou_embed)
|
(fakerest_name, simple_hf_name, beagle_embed, lab_embed, patou_embed)
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -796,8 +796,10 @@ fn prepare_search<'t>(
|
|||||||
let span = tracing::trace_span!(target: "search::vector", "embed_one");
|
let span = tracing::trace_span!(target: "search::vector", "embed_one");
|
||||||
let _entered = span.enter();
|
let _entered = span.enter();
|
||||||
|
|
||||||
|
let deadline = std::time::Instant::now() + std::time::Duration::from_secs(10);
|
||||||
|
|
||||||
embedder
|
embedder
|
||||||
.embed_one(query.q.clone().unwrap())
|
.embed_one(query.q.clone().unwrap(), Some(deadline))
|
||||||
.map_err(milli::vector::Error::from)
|
.map_err(milli::vector::Error::from)
|
||||||
.map_err(milli::Error::from)?
|
.map_err(milli::Error::from)?
|
||||||
}
|
}
|
||||||
|
@ -201,7 +201,9 @@ impl<'a> Search<'a> {
|
|||||||
let span = tracing::trace_span!(target: "search::hybrid", "embed_one");
|
let span = tracing::trace_span!(target: "search::hybrid", "embed_one");
|
||||||
let _entered = span.enter();
|
let _entered = span.enter();
|
||||||
|
|
||||||
match embedder.embed_one(query) {
|
let deadline = std::time::Instant::now() + std::time::Duration::from_secs(3);
|
||||||
|
|
||||||
|
match embedder.embed_one(query, Some(deadline)) {
|
||||||
Ok(embedding) => embedding,
|
Ok(embedding) => embedding,
|
||||||
Err(error) => {
|
Err(error) => {
|
||||||
tracing::error!(error=%error, "Embedding failed");
|
tracing::error!(error=%error, "Embedding failed");
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
use std::sync::Arc;
|
use std::sync::Arc;
|
||||||
|
use std::time::Instant;
|
||||||
|
|
||||||
use arroy::distances::{BinaryQuantizedCosine, Cosine};
|
use arroy::distances::{BinaryQuantizedCosine, Cosine};
|
||||||
use arroy::ItemId;
|
use arroy::ItemId;
|
||||||
@ -594,18 +595,23 @@ impl Embedder {
|
|||||||
pub fn embed(
|
pub fn embed(
|
||||||
&self,
|
&self,
|
||||||
texts: Vec<String>,
|
texts: Vec<String>,
|
||||||
|
deadline: Option<Instant>,
|
||||||
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
|
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||||
match self {
|
match self {
|
||||||
Embedder::HuggingFace(embedder) => embedder.embed(texts),
|
Embedder::HuggingFace(embedder) => embedder.embed(texts),
|
||||||
Embedder::OpenAi(embedder) => embedder.embed(texts),
|
Embedder::OpenAi(embedder) => embedder.embed(texts, deadline),
|
||||||
Embedder::Ollama(embedder) => embedder.embed(texts),
|
Embedder::Ollama(embedder) => embedder.embed(texts, deadline),
|
||||||
Embedder::UserProvided(embedder) => embedder.embed(texts),
|
Embedder::UserProvided(embedder) => embedder.embed(texts),
|
||||||
Embedder::Rest(embedder) => embedder.embed(texts),
|
Embedder::Rest(embedder) => embedder.embed(texts, deadline),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn embed_one(&self, text: String) -> std::result::Result<Embedding, EmbedError> {
|
pub fn embed_one(
|
||||||
let mut embeddings = self.embed(vec![text])?;
|
&self,
|
||||||
|
text: String,
|
||||||
|
deadline: Option<Instant>,
|
||||||
|
) -> std::result::Result<Embedding, EmbedError> {
|
||||||
|
let mut embeddings = self.embed(vec![text], deadline)?;
|
||||||
let embeddings = embeddings.pop().ok_or_else(EmbedError::missing_embedding)?;
|
let embeddings = embeddings.pop().ok_or_else(EmbedError::missing_embedding)?;
|
||||||
Ok(if embeddings.iter().nth(1).is_some() {
|
Ok(if embeddings.iter().nth(1).is_some() {
|
||||||
tracing::warn!("Ignoring embeddings past the first one in long search query");
|
tracing::warn!("Ignoring embeddings past the first one in long search query");
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
use std::time::Instant;
|
||||||
|
|
||||||
use rayon::iter::{IntoParallelIterator as _, ParallelIterator as _};
|
use rayon::iter::{IntoParallelIterator as _, ParallelIterator as _};
|
||||||
|
|
||||||
use super::error::{EmbedError, EmbedErrorKind, NewEmbedderError, NewEmbedderErrorKind};
|
use super::error::{EmbedError, EmbedErrorKind, NewEmbedderError, NewEmbedderErrorKind};
|
||||||
@ -75,8 +77,12 @@ impl Embedder {
|
|||||||
Ok(Self { rest_embedder })
|
Ok(Self { rest_embedder })
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
pub fn embed(
|
||||||
match self.rest_embedder.embed(texts) {
|
&self,
|
||||||
|
texts: Vec<String>,
|
||||||
|
deadline: Option<Instant>,
|
||||||
|
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||||
|
match self.rest_embedder.embed(texts, deadline) {
|
||||||
Ok(embeddings) => Ok(embeddings),
|
Ok(embeddings) => Ok(embeddings),
|
||||||
Err(EmbedError { kind: EmbedErrorKind::RestOtherStatusCode(404, error), fault: _ }) => {
|
Err(EmbedError { kind: EmbedErrorKind::RestOtherStatusCode(404, error), fault: _ }) => {
|
||||||
Err(EmbedError::ollama_model_not_found(error))
|
Err(EmbedError::ollama_model_not_found(error))
|
||||||
@ -92,7 +98,7 @@ impl Embedder {
|
|||||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||||
threads
|
threads
|
||||||
.install(move || {
|
.install(move || {
|
||||||
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
|
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk, None)).collect()
|
||||||
})
|
})
|
||||||
.map_err(|error| EmbedError {
|
.map_err(|error| EmbedError {
|
||||||
kind: EmbedErrorKind::PanicInThreadPool(error),
|
kind: EmbedErrorKind::PanicInThreadPool(error),
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
use std::time::Instant;
|
||||||
|
|
||||||
use ordered_float::OrderedFloat;
|
use ordered_float::OrderedFloat;
|
||||||
use rayon::iter::{IntoParallelIterator, ParallelIterator as _};
|
use rayon::iter::{IntoParallelIterator, ParallelIterator as _};
|
||||||
|
|
||||||
@ -206,32 +208,40 @@ impl Embedder {
|
|||||||
Ok(Self { options, rest_embedder, tokenizer })
|
Ok(Self { options, rest_embedder, tokenizer })
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
pub fn embed(
|
||||||
match self.rest_embedder.embed_ref(&texts) {
|
&self,
|
||||||
|
texts: Vec<String>,
|
||||||
|
deadline: Option<Instant>,
|
||||||
|
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||||
|
match self.rest_embedder.embed_ref(&texts, deadline) {
|
||||||
Ok(embeddings) => Ok(embeddings),
|
Ok(embeddings) => Ok(embeddings),
|
||||||
Err(EmbedError { kind: EmbedErrorKind::RestBadRequest(error, _), fault: _ }) => {
|
Err(EmbedError { kind: EmbedErrorKind::RestBadRequest(error, _), fault: _ }) => {
|
||||||
tracing::warn!(error=?error, "OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your document template.");
|
tracing::warn!(error=?error, "OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your document template.");
|
||||||
self.try_embed_tokenized(&texts)
|
self.try_embed_tokenized(&texts, deadline)
|
||||||
}
|
}
|
||||||
Err(error) => Err(error),
|
Err(error) => Err(error),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn try_embed_tokenized(&self, text: &[String]) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
fn try_embed_tokenized(
|
||||||
|
&self,
|
||||||
|
text: &[String],
|
||||||
|
deadline: Option<Instant>,
|
||||||
|
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||||
let mut all_embeddings = Vec::with_capacity(text.len());
|
let mut all_embeddings = Vec::with_capacity(text.len());
|
||||||
for text in text {
|
for text in text {
|
||||||
let max_token_count = self.options.embedding_model.max_token();
|
let max_token_count = self.options.embedding_model.max_token();
|
||||||
let encoded = self.tokenizer.encode_ordinary(text.as_str());
|
let encoded = self.tokenizer.encode_ordinary(text.as_str());
|
||||||
let len = encoded.len();
|
let len = encoded.len();
|
||||||
if len < max_token_count {
|
if len < max_token_count {
|
||||||
all_embeddings.append(&mut self.rest_embedder.embed_ref(&[text])?);
|
all_embeddings.append(&mut self.rest_embedder.embed_ref(&[text], deadline)?);
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
let tokens = &encoded.as_slice()[0..max_token_count];
|
let tokens = &encoded.as_slice()[0..max_token_count];
|
||||||
let mut embeddings_for_prompt = Embeddings::new(self.dimensions());
|
let mut embeddings_for_prompt = Embeddings::new(self.dimensions());
|
||||||
|
|
||||||
let embedding = self.rest_embedder.embed_tokens(tokens)?;
|
let embedding = self.rest_embedder.embed_tokens(tokens, deadline)?;
|
||||||
embeddings_for_prompt.append(embedding.into_inner()).map_err(|got| {
|
embeddings_for_prompt.append(embedding.into_inner()).map_err(|got| {
|
||||||
EmbedError::rest_unexpected_dimension(self.dimensions(), got.len())
|
EmbedError::rest_unexpected_dimension(self.dimensions(), got.len())
|
||||||
})?;
|
})?;
|
||||||
@ -248,7 +258,7 @@ impl Embedder {
|
|||||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||||
threads
|
threads
|
||||||
.install(move || {
|
.install(move || {
|
||||||
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
|
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk, None)).collect()
|
||||||
})
|
})
|
||||||
.map_err(|error| EmbedError {
|
.map_err(|error| EmbedError {
|
||||||
kind: EmbedErrorKind::PanicInThreadPool(error),
|
kind: EmbedErrorKind::PanicInThreadPool(error),
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
use std::collections::BTreeMap;
|
use std::collections::BTreeMap;
|
||||||
|
use std::time::Instant;
|
||||||
|
|
||||||
use deserr::Deserr;
|
use deserr::Deserr;
|
||||||
use rand::Rng;
|
use rand::Rng;
|
||||||
@ -154,19 +155,31 @@ impl Embedder {
|
|||||||
Ok(Self { data, dimensions, distribution: options.distribution })
|
Ok(Self { data, dimensions, distribution: options.distribution })
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
pub fn embed(
|
||||||
embed(&self.data, texts.as_slice(), texts.len(), Some(self.dimensions))
|
&self,
|
||||||
|
texts: Vec<String>,
|
||||||
|
deadline: Option<Instant>,
|
||||||
|
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||||
|
embed(&self.data, texts.as_slice(), texts.len(), Some(self.dimensions), deadline)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn embed_ref<S>(&self, texts: &[S]) -> Result<Vec<Embeddings<f32>>, EmbedError>
|
pub fn embed_ref<S>(
|
||||||
|
&self,
|
||||||
|
texts: &[S],
|
||||||
|
deadline: Option<Instant>,
|
||||||
|
) -> Result<Vec<Embeddings<f32>>, EmbedError>
|
||||||
where
|
where
|
||||||
S: AsRef<str> + Serialize,
|
S: AsRef<str> + Serialize,
|
||||||
{
|
{
|
||||||
embed(&self.data, texts, texts.len(), Some(self.dimensions))
|
embed(&self.data, texts, texts.len(), Some(self.dimensions), deadline)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn embed_tokens(&self, tokens: &[usize]) -> Result<Embeddings<f32>, EmbedError> {
|
pub fn embed_tokens(
|
||||||
let mut embeddings = embed(&self.data, tokens, 1, Some(self.dimensions))?;
|
&self,
|
||||||
|
tokens: &[usize],
|
||||||
|
deadline: Option<Instant>,
|
||||||
|
) -> Result<Embeddings<f32>, EmbedError> {
|
||||||
|
let mut embeddings = embed(&self.data, tokens, 1, Some(self.dimensions), deadline)?;
|
||||||
// unwrap: guaranteed that embeddings.len() == 1, otherwise the previous line terminated in error
|
// unwrap: guaranteed that embeddings.len() == 1, otherwise the previous line terminated in error
|
||||||
Ok(embeddings.pop().unwrap())
|
Ok(embeddings.pop().unwrap())
|
||||||
}
|
}
|
||||||
@ -178,7 +191,7 @@ impl Embedder {
|
|||||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||||
threads
|
threads
|
||||||
.install(move || {
|
.install(move || {
|
||||||
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
|
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk, None)).collect()
|
||||||
})
|
})
|
||||||
.map_err(|error| EmbedError {
|
.map_err(|error| EmbedError {
|
||||||
kind: EmbedErrorKind::PanicInThreadPool(error),
|
kind: EmbedErrorKind::PanicInThreadPool(error),
|
||||||
@ -207,7 +220,7 @@ impl Embedder {
|
|||||||
}
|
}
|
||||||
|
|
||||||
fn infer_dimensions(data: &EmbedderData) -> Result<usize, NewEmbedderError> {
|
fn infer_dimensions(data: &EmbedderData) -> Result<usize, NewEmbedderError> {
|
||||||
let v = embed(data, ["test"].as_slice(), 1, None)
|
let v = embed(data, ["test"].as_slice(), 1, None, None)
|
||||||
.map_err(NewEmbedderError::could_not_determine_dimension)?;
|
.map_err(NewEmbedderError::could_not_determine_dimension)?;
|
||||||
// unwrap: guaranteed that v.len() == 1, otherwise the previous line terminated in error
|
// unwrap: guaranteed that v.len() == 1, otherwise the previous line terminated in error
|
||||||
Ok(v.first().unwrap().dimension())
|
Ok(v.first().unwrap().dimension())
|
||||||
@ -218,6 +231,7 @@ fn embed<S>(
|
|||||||
inputs: &[S],
|
inputs: &[S],
|
||||||
expected_count: usize,
|
expected_count: usize,
|
||||||
expected_dimension: Option<usize>,
|
expected_dimension: Option<usize>,
|
||||||
|
deadline: Option<Instant>,
|
||||||
) -> Result<Vec<Embeddings<f32>>, EmbedError>
|
) -> Result<Vec<Embeddings<f32>>, EmbedError>
|
||||||
where
|
where
|
||||||
S: Serialize,
|
S: Serialize,
|
||||||
@ -245,7 +259,18 @@ where
|
|||||||
}
|
}
|
||||||
Err(retry) => {
|
Err(retry) => {
|
||||||
tracing::warn!("Failed: {}", retry.error);
|
tracing::warn!("Failed: {}", retry.error);
|
||||||
retry.into_duration(attempt)
|
if let Some(deadline) = deadline {
|
||||||
|
let now = std::time::Instant::now();
|
||||||
|
if now > deadline {
|
||||||
|
tracing::warn!("Could not embed due to deadline");
|
||||||
|
return Err(retry.into_error());
|
||||||
|
}
|
||||||
|
|
||||||
|
let duration_to_deadline = deadline - now;
|
||||||
|
retry.into_duration(attempt).map(|duration| duration.min(duration_to_deadline))
|
||||||
|
} else {
|
||||||
|
retry.into_duration(attempt)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}?;
|
}?;
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user