Make the algo don't work with an astar

This commit is contained in:
Kerollmops 2020-06-11 17:43:06 +02:00
parent 0a83a86e65
commit 302866ad73
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4

View File

@ -1,9 +1,8 @@
use std::cmp; use std::cmp;
use std::time::Instant; use std::time::Instant;
use pathfinding::directed::dijkstra::dijkstra; use pathfinding::directed::astar::astar_bag;
use smallvec::smallvec; // the macro
use crate::SmallVec16; use crate::SmallVec16;
const ONE_ATTRIBUTE: u32 = 1000; const ONE_ATTRIBUTE: u32 = 1000;
@ -29,53 +28,47 @@ fn extract_position(position: u32) -> (u32, u32) {
(position / ONE_ATTRIBUTE, position % ONE_ATTRIBUTE) (position / ONE_ATTRIBUTE, position % ONE_ATTRIBUTE)
} }
#[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)] #[derive(Debug, Default, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
struct Path(SmallVec16<u32>); struct Path(SmallVec16<u32>);
impl Path { impl Path {
fn new(positions: &[Vec<u32>]) -> Option<Path> {
let position = positions.first()?.first()?;
Some(Path(smallvec![*position]))
}
// TODO we must skip the successors that have already been sent // TODO we must skip the successors that have already been sent
fn successors(&self, positions: &[Vec<u32>]) -> SmallVec16<(Path, u32)> { // TODO we must skip the successors that doesn't return any documents
let mut successors = SmallVec16::new(); // this way we are able to skip entire paths
fn successors(&self, positions: &[Vec<u32>], best_proximity: u32) -> Vec<(Path, u32)> {
let next_positions = match positions.get(self.0.len()) {
Some(positions) => positions,
None => return vec![],
};
// If we can grow or shift the path next_positions.iter()
if self.0.len() < positions.len() { .filter_map(|p| {
for next_pos in &positions[self.0.len()] { let mut path = self.clone();
let mut grown_path = self.0.clone(); path.0.push(*p);
grown_path.push(*next_pos);
let path = Path(grown_path);
let proximity = path.proximity(); let proximity = path.proximity();
successors.push((path, proximity)); if path.is_complete(positions) && proximity < best_proximity {
} None
} } else {
Some((path, proximity))
// We retrieve the tail of the current path and try to find }
// the successor of this tail. })
let next_path_tail = self.0.last().unwrap() + 1; .inspect(|p| eprintln!("{:?}", p))
// To do so we add 1 to the tail and check that something exists. .collect()
let path_tail_index = positions[self.0.len() - 1].binary_search(&next_path_tail).unwrap_or_else(|p| p);
// If we found something it means that we can shift the path.
if let Some(pos) = positions[self.0.len() - 1].get(path_tail_index) {
let mut shifted_path = self.0.clone();
*shifted_path.last_mut().unwrap() = *pos;
let path = Path(shifted_path);
let proximity = path.proximity();
successors.push((path, proximity));
}
successors
} }
fn proximity(&self) -> u32 { fn proximity(&self) -> u32 {
self.0.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>() self.0.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>()
} }
fn heuristic(&self, positions: &[Vec<u32>]) -> u32 {
let remaining = (positions.len() - self.0.len()) as u32;
self.proximity() + remaining * MAX_DISTANCE
}
fn is_complete(&self, positions: &[Vec<u32>]) -> bool { fn is_complete(&self, positions: &[Vec<u32>]) -> bool {
positions.len() == self.0.len() let res = positions.len() == self.0.len();
eprintln!("is_complete: {:?} {}", self, res);
res
} }
} }
@ -88,65 +81,45 @@ impl BestProximity {
pub fn new(positions: Vec<Vec<u32>>) -> BestProximity { pub fn new(positions: Vec<Vec<u32>>) -> BestProximity {
BestProximity { positions, best_proximity: 0 } BestProximity { positions, best_proximity: 0 }
} }
fn is_path_successful(&self, path: &Path) -> bool {
path.is_complete(&self.positions) && path.proximity() >= self.best_proximity
}
} }
impl Iterator for BestProximity { impl Iterator for BestProximity {
type Item = (u32, Vec<Vec<u32>>); type Item = (u32, Vec<Vec<u32>>);
fn next(&mut self) -> Option<Self::Item> { fn next(&mut self) -> Option<Self::Item> {
let mut output: Option<(u32, Vec<Vec<u32>>)> = None;
let before = Instant::now(); let before = Instant::now();
loop { if self.best_proximity == self.positions.len() as u32 * MAX_DISTANCE {
let result = dijkstra( return None;
&Path::new(&self.positions)?,
|p| p.successors(&self.positions),
|p| {
self.is_path_successful(p) &&
output.as_ref().map_or(true, |(_, paths)| {
!paths.iter().position(|q| q.as_slice() == p.0.as_slice()).is_some()
})
},
);
match result {
Some((mut paths, _)) => {
let positions = paths.pop().unwrap();
let proximity = positions.proximity();
// If the current output is
match &mut output {
Some((best_proximity, paths)) => {
// If the shortest path we found is bigger than the one requested
// it means that we found all the paths with the same proximity and can
// return those to the user.
if proximity > *best_proximity {
break;
}
// We add the new path to the output list as this path is known
// to be the requested distance.
paths.push(positions.0.to_vec());
},
None => output = Some((positions.proximity(), vec![positions.0.to_vec()])),
}
},
None => break,
}
} }
// We start with nothing
let start = Path::default();
let result = astar_bag(
&start,
|p| p.successors(&self.positions, self.best_proximity),
|p| p.heuristic(&self.positions),
|p| p.is_complete(&self.positions), // success
);
eprintln!("BestProximity::next() took {:.02?}", before.elapsed()); eprintln!("BestProximity::next() took {:.02?}", before.elapsed());
if let Some((proximity, _)) = output.as_ref() { match result {
self.best_proximity = proximity + 1; Some((paths, proximity)) => {
self.best_proximity = proximity + 1;
// We retrieve the last path that we convert into a Vec
let paths: Vec<_> = paths.map(|p| {
p.last().unwrap().0.to_vec()
}).collect();
eprintln!("result: {} {:?}", proximity, paths);
Some((proximity, paths))
},
None => {
eprintln!("result: {:?}", None as Option<()>);
self.best_proximity += 1;
None
},
} }
output
} }
} }