3768: Fix bugs in graph-based ranking rules + make `words` a graph-based ranking rule r=dureuill a=loiclec

This PR contains three changes:

## 1. Don't call the `words` ranking rule if the term matching strategy is `All`

This is because the purpose of `words` is only to remove nodes from the query graph. It would never do any useful work when the matching strategy was `All`. Remember that the universe was already computed before by computing all the docids corresponding to the "maximally reduced" query graph, which, in the case of `All`, is equal to the original graph.

## 2. The `words` ranking rule is replaced by a graph-based ranking rule. 

This is for three reasons:

1. **performance**: graph-based ranking rules benefit from a lot of optimisations by default, which ensures that they are never too slow. The previous implementation of `words` could call `compute_query_graph_docids` many times if some words had to be removed from the query, which would be quite expensive. I was especially worried about its performance in cases where it is placed right after the `sort` ranking rule. Furthermore, `compute_query_graph_docids` would clone a lot of bitmaps many times unnecessarily.

2. **consistency**: every other ranking rule (except `sort`) is graph-based. It makes sense to implement `words` like that as well. It will automatically benefit from all the features, optimisations, and bug fixes that all the other ranking rules get.

3. **surfacing bugs**: as the first ranking rule to be called (most of the time), I'd like `words` to behave the same as the other ranking rules so that we can quickly detect bugs in our graph algorithms. This actually already happened, which is why this PR also contains a bug fix.

## 3. Fix the `update_all_costs_before_nodes` function

It is a bit difficult to explain what was wrong, but I'll try. The bug happened when we had graphs like:
<img width="730" alt="Screenshot 2023-05-16 at 10 58 57" src="https://github.com/meilisearch/meilisearch/assets/6040237/40db1a68-d852-4e89-99d5-0d65757242a7">
and we gave the node `is` as argument.

Then, we'd walk backwards from the node breadth-first. We'd update the costs of:
1. `sun`
2. `thesun`
3. `start`
4. `the`

which is an incorrect order. The correct order is:

1. `sun`
2. `thesun`
3. `the`
4. `start`

That is, we can only update the cost of a node when all of its successors have either already been visited or were not affected by the update to the node passed as argument. To solve this bug, I factored out the graph-traversal logic into a `traverse_breadth_first_backward` function.


Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
This commit is contained in:
meili-bors[bot] 2023-05-23 13:28:08 +00:00 committed by GitHub
commit 2e49d6aec1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 190 additions and 154 deletions

View File

@ -46,7 +46,7 @@ use super::logger::SearchLogger;
use super::query_graph::QueryNode;
use super::ranking_rule_graph::{
ConditionDocIdsCache, DeadEndsCache, ExactnessGraph, FidGraph, PositionGraph, ProximityGraph,
RankingRuleGraph, RankingRuleGraphTrait, TypoGraph,
RankingRuleGraph, RankingRuleGraphTrait, TypoGraph, WordsGraph,
};
use super::small_bitmap::SmallBitmap;
use super::{QueryGraph, RankingRule, RankingRuleOutput, SearchContext};
@ -54,6 +54,12 @@ use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::ranking_rule_graph::PathVisitor;
use crate::{Result, TermsMatchingStrategy};
pub type Words = GraphBasedRankingRule<WordsGraph>;
impl GraphBasedRankingRule<WordsGraph> {
pub fn new(terms_matching_strategy: TermsMatchingStrategy) -> Self {
Self::new_with_id("words".to_owned(), Some(terms_matching_strategy))
}
}
pub type Proximity = GraphBasedRankingRule<ProximityGraph>;
impl GraphBasedRankingRule<ProximityGraph> {
pub fn new(terms_matching_strategy: Option<TermsMatchingStrategy>) -> Self {

View File

@ -4,7 +4,6 @@ use std::io::{BufWriter, Write};
use std::path::{Path, PathBuf};
use std::time::Instant;
// use rand::random;
use roaring::RoaringBitmap;
use crate::search::new::interner::Interned;
@ -13,6 +12,7 @@ use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::ranking_rule_graph::{
Edge, FidCondition, FidGraph, PositionCondition, PositionGraph, ProximityCondition,
ProximityGraph, RankingRuleGraph, RankingRuleGraphTrait, TypoCondition, TypoGraph,
WordsCondition, WordsGraph,
};
use crate::search::new::ranking_rules::BoxRankingRule;
use crate::search::new::{QueryGraph, QueryNode, RankingRule, SearchContext, SearchLogger};
@ -24,11 +24,12 @@ pub enum SearchEvents {
RankingRuleSkipBucket { ranking_rule_idx: usize, bucket_len: u64 },
RankingRuleEndIteration { ranking_rule_idx: usize, universe_len: u64 },
ExtendResults { new: Vec<u32> },
WordsGraph { query_graph: QueryGraph },
ProximityGraph { graph: RankingRuleGraph<ProximityGraph> },
ProximityPaths { paths: Vec<Vec<Interned<ProximityCondition>>> },
TypoGraph { graph: RankingRuleGraph<TypoGraph> },
TypoPaths { paths: Vec<Vec<Interned<TypoCondition>>> },
WordsGraph { graph: RankingRuleGraph<WordsGraph> },
WordsPaths { paths: Vec<Vec<Interned<WordsCondition>>> },
FidGraph { graph: RankingRuleGraph<FidGraph> },
FidPaths { paths: Vec<Vec<Interned<FidCondition>>> },
PositionGraph { graph: RankingRuleGraph<PositionGraph> },
@ -139,8 +140,11 @@ impl SearchLogger<QueryGraph> for VisualSearchLogger {
let Some(location) = self.location.last() else { return };
match location {
Location::Words => {
if let Some(query_graph) = state.downcast_ref::<QueryGraph>() {
self.events.push(SearchEvents::WordsGraph { query_graph: query_graph.clone() });
if let Some(graph) = state.downcast_ref::<RankingRuleGraph<WordsGraph>>() {
self.events.push(SearchEvents::WordsGraph { graph: graph.clone() });
}
if let Some(paths) = state.downcast_ref::<Vec<Vec<Interned<WordsCondition>>>>() {
self.events.push(SearchEvents::WordsPaths { paths: paths.clone() });
}
}
Location::Typo => {
@ -329,7 +333,6 @@ impl<'ctx> DetailedLoggerFinish<'ctx> {
SearchEvents::ExtendResults { new } => {
self.write_extend_results(new)?;
}
SearchEvents::WordsGraph { query_graph } => self.write_words_graph(query_graph)?,
SearchEvents::ProximityGraph { graph } => self.write_rr_graph(&graph)?,
SearchEvents::ProximityPaths { paths } => {
self.write_rr_graph_paths::<ProximityGraph>(paths)?;
@ -338,6 +341,10 @@ impl<'ctx> DetailedLoggerFinish<'ctx> {
SearchEvents::TypoPaths { paths } => {
self.write_rr_graph_paths::<TypoGraph>(paths)?;
}
SearchEvents::WordsGraph { graph } => self.write_rr_graph(&graph)?,
SearchEvents::WordsPaths { paths } => {
self.write_rr_graph_paths::<WordsGraph>(paths)?;
}
SearchEvents::FidGraph { graph } => self.write_rr_graph(&graph)?,
SearchEvents::FidPaths { paths } => {
self.write_rr_graph_paths::<FidGraph>(paths)?;
@ -455,7 +462,7 @@ fill: \"#B6E2D3\"
shape: class
max_nbr_typo: {}",
term_subset.description(ctx),
term_subset.max_nbr_typos(ctx)
term_subset.max_typo_cost(ctx)
)?;
for w in term_subset.all_single_words_except_prefix_db(ctx)? {
@ -482,13 +489,6 @@ fill: \"#B6E2D3\"
}
Ok(())
}
fn write_words_graph(&mut self, qg: QueryGraph) -> Result<()> {
self.make_new_file_for_internal_state_if_needed()?;
self.write_query_graph(&qg)?;
Ok(())
}
fn write_rr_graph<R: RankingRuleGraphTrait>(
&mut self,
graph: &RankingRuleGraph<R>,

View File

@ -15,11 +15,7 @@ mod resolve_query_graph;
mod small_bitmap;
mod exact_attribute;
// TODO: documentation + comments
// implementation is currently an adaptation of the previous implementation to fit with the new model
mod sort;
// TODO: documentation + comments
mod words;
#[cfg(test)]
mod tests;
@ -43,10 +39,10 @@ use ranking_rules::{
use resolve_query_graph::{compute_query_graph_docids, PhraseDocIdsCache};
use roaring::RoaringBitmap;
use sort::Sort;
use words::Words;
use self::geo_sort::GeoSort;
pub use self::geo_sort::Strategy as GeoSortStrategy;
use self::graph_based_ranking_rule::Words;
use self::interner::Interned;
use crate::search::new::distinct::apply_distinct_rule;
use crate::{AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError};
@ -202,6 +198,11 @@ fn get_ranking_rules_for_query_graph_search<'ctx>(
let mut sorted_fields = HashSet::new();
let mut geo_sorted = false;
// Don't add the `words` ranking rule if the term matching strategy is `All`
if matches!(terms_matching_strategy, TermsMatchingStrategy::All) {
words = true;
}
let mut ranking_rules: Vec<BoxRankingRule<QueryGraph>> = vec![];
let settings_ranking_rules = ctx.index.criteria(ctx.txn)?;
for rr in settings_ranking_rules {

View File

@ -28,14 +28,14 @@ pub enum ZeroOrOneTypo {
impl Interned<QueryTerm> {
pub fn compute_fully_if_needed(self, ctx: &mut SearchContext) -> Result<()> {
let s = ctx.term_interner.get_mut(self);
if s.max_nbr_typos <= 1 && s.one_typo.is_uninit() {
if s.max_levenshtein_distance <= 1 && s.one_typo.is_uninit() {
assert!(s.two_typo.is_uninit());
// Initialize one_typo subterm even if max_nbr_typo is 0 because of split words
self.initialize_one_typo_subterm(ctx)?;
let s = ctx.term_interner.get_mut(self);
assert!(s.one_typo.is_init());
s.two_typo = Lazy::Init(TwoTypoTerm::default());
} else if s.max_nbr_typos > 1 && s.two_typo.is_uninit() {
} else if s.max_levenshtein_distance > 1 && s.two_typo.is_uninit() {
assert!(s.two_typo.is_uninit());
self.initialize_one_and_two_typo_subterm(ctx)?;
let s = ctx.term_interner.get_mut(self);
@ -185,7 +185,7 @@ pub fn partially_initialized_term_from_word(
original: ctx.word_interner.insert(word.to_owned()),
ngram_words: None,
is_prefix: false,
max_nbr_typos: 0,
max_levenshtein_distance: 0,
zero_typo: <_>::default(),
one_typo: Lazy::Init(<_>::default()),
two_typo: Lazy::Init(<_>::default()),
@ -256,7 +256,7 @@ pub fn partially_initialized_term_from_word(
Ok(QueryTerm {
original: word_interned,
ngram_words: None,
max_nbr_typos: max_typo,
max_levenshtein_distance: max_typo,
is_prefix,
zero_typo,
one_typo: Lazy::Uninit,
@ -275,7 +275,16 @@ fn find_split_words(ctx: &mut SearchContext, word: &str) -> Result<Option<Intern
impl Interned<QueryTerm> {
fn initialize_one_typo_subterm(self, ctx: &mut SearchContext) -> Result<()> {
let self_mut = ctx.term_interner.get_mut(self);
let QueryTerm { original, is_prefix, one_typo, max_nbr_typos, .. } = self_mut;
let allows_split_words = self_mut.allows_split_words();
let QueryTerm {
original,
is_prefix,
one_typo,
max_levenshtein_distance: max_nbr_typos,
..
} = self_mut;
let original = *original;
let is_prefix = *is_prefix;
// let original_str = ctx.word_interner.get(*original).to_owned();
@ -300,13 +309,17 @@ impl Interned<QueryTerm> {
})?;
}
let original_str = ctx.word_interner.get(original).to_owned();
let split_words = find_split_words(ctx, original_str.as_str())?;
let split_words = if allows_split_words {
let original_str = ctx.word_interner.get(original).to_owned();
find_split_words(ctx, original_str.as_str())?
} else {
None
};
let self_mut = ctx.term_interner.get_mut(self);
// Only add the split words to the derivations if:
// 1. the term is not an ngram; OR
// 1. the term is neither an ngram nor a phrase; OR
// 2. the term is an ngram, but the split words are different from the ngram's component words
let split_words = if let Some((ngram_words, split_words)) =
self_mut.ngram_words.as_ref().zip(split_words.as_ref())
@ -328,7 +341,13 @@ impl Interned<QueryTerm> {
}
fn initialize_one_and_two_typo_subterm(self, ctx: &mut SearchContext) -> Result<()> {
let self_mut = ctx.term_interner.get_mut(self);
let QueryTerm { original, is_prefix, two_typo, max_nbr_typos, .. } = self_mut;
let QueryTerm {
original,
is_prefix,
two_typo,
max_levenshtein_distance: max_nbr_typos,
..
} = self_mut;
let original_str = ctx.word_interner.get(*original).to_owned();
if two_typo.is_init() {
return Ok(());

View File

@ -43,7 +43,7 @@ pub struct QueryTermSubset {
pub struct QueryTerm {
original: Interned<String>,
ngram_words: Option<Vec<Interned<String>>>,
max_nbr_typos: u8,
max_levenshtein_distance: u8,
is_prefix: bool,
zero_typo: ZeroTypoTerm,
// May not be computed yet
@ -342,10 +342,16 @@ impl QueryTermSubset {
}
None
}
pub fn max_nbr_typos(&self, ctx: &SearchContext) -> u8 {
pub fn max_typo_cost(&self, ctx: &SearchContext) -> u8 {
let t = ctx.term_interner.get(self.original);
match t.max_nbr_typos {
0 => 0,
match t.max_levenshtein_distance {
0 => {
if t.allows_split_words() {
1
} else {
0
}
}
1 => {
if self.one_typo_subset.is_empty() {
0
@ -438,6 +444,9 @@ impl QueryTerm {
self.zero_typo.is_empty() && one_typo.is_empty() && two_typo.is_empty()
}
fn allows_split_words(&self) -> bool {
self.zero_typo.phrase.is_none()
}
}
impl Interned<QueryTerm> {

View File

@ -217,7 +217,7 @@ pub fn make_ngram(
original: ngram_str_interned,
ngram_words: Some(words_interned),
is_prefix,
max_nbr_typos,
max_levenshtein_distance: max_nbr_typos,
zero_typo: term.zero_typo,
one_typo: Lazy::Uninit,
two_typo: Lazy::Uninit,
@ -271,7 +271,7 @@ impl PhraseBuilder {
QueryTerm {
original: ctx.word_interner.insert(phrase_desc),
ngram_words: None,
max_nbr_typos: 0,
max_levenshtein_distance: 0,
is_prefix: false,
zero_typo: ZeroTypoTerm {
phrase: Some(phrase),

View File

@ -205,18 +205,12 @@ impl<G: RankingRuleGraphTrait> VisitorState<G> {
impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
pub fn find_all_costs_to_end(&self) -> MappedInterner<QueryNode, Vec<u64>> {
let mut costs_to_end = self.query_graph.nodes.map(|_| vec![]);
let mut enqueued = SmallBitmap::new(self.query_graph.nodes.len());
let mut node_stack = VecDeque::new();
*costs_to_end.get_mut(self.query_graph.end_node) = vec![0];
for prev_node in self.query_graph.nodes.get(self.query_graph.end_node).predecessors.iter() {
node_stack.push_back(prev_node);
enqueued.insert(prev_node);
}
while let Some(cur_node) = node_stack.pop_front() {
self.traverse_breadth_first_backward(self.query_graph.end_node, |cur_node| {
if cur_node == self.query_graph.end_node {
*costs_to_end.get_mut(self.query_graph.end_node) = vec![0];
return;
}
let mut self_costs = Vec::<u64>::new();
let cur_node_edges = &self.edges_of_node.get(cur_node);
@ -232,13 +226,7 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
self_costs.dedup();
*costs_to_end.get_mut(cur_node) = self_costs;
for prev_node in self.query_graph.nodes.get(cur_node).predecessors.iter() {
if !enqueued.contains(prev_node) {
node_stack.push_back(prev_node);
enqueued.insert(prev_node);
}
}
}
});
costs_to_end
}
@ -247,17 +235,12 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
node_with_removed_outgoing_conditions: Interned<QueryNode>,
costs: &mut MappedInterner<QueryNode, Vec<u64>>,
) {
let mut enqueued = SmallBitmap::new(self.query_graph.nodes.len());
let mut node_stack = VecDeque::new();
enqueued.insert(node_with_removed_outgoing_conditions);
node_stack.push_back(node_with_removed_outgoing_conditions);
'main_loop: while let Some(cur_node) = node_stack.pop_front() {
// Traverse the graph backward from the target node, recomputing the cost for each of its predecessors.
// We first check that no other node is contributing the same total cost to a predecessor before removing
// the cost from the predecessor.
self.traverse_breadth_first_backward(node_with_removed_outgoing_conditions, |cur_node| {
let mut costs_to_remove = FxHashSet::default();
for c in costs.get(cur_node) {
costs_to_remove.insert(*c);
}
costs_to_remove.extend(costs.get(cur_node).iter().copied());
let cur_node_edges = &self.edges_of_node.get(cur_node);
for edge_idx in cur_node_edges.iter() {
@ -265,22 +248,75 @@ impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
for cost in costs.get(edge.dest_node).iter() {
costs_to_remove.remove(&(*cost + edge.cost as u64));
if costs_to_remove.is_empty() {
continue 'main_loop;
return;
}
}
}
if costs_to_remove.is_empty() {
continue 'main_loop;
return;
}
let mut new_costs = BTreeSet::from_iter(costs.get(cur_node).iter().copied());
for c in costs_to_remove {
new_costs.remove(&c);
}
*costs.get_mut(cur_node) = new_costs.into_iter().collect();
});
}
/// Traverse the graph backwards from the given node such that every time
/// a node is visited, we are guaranteed that all its successors either:
/// 1. have already been visited; OR
/// 2. were not reachable from the given node
pub fn traverse_breadth_first_backward(
&self,
from: Interned<QueryNode>,
mut visit: impl FnMut(Interned<QueryNode>),
) {
let mut reachable = SmallBitmap::for_interned_values_in(&self.query_graph.nodes);
{
// go backward to get the set of all reachable nodes from the given node
// the nodes that are not reachable will be set as `visited`
let mut stack = VecDeque::new();
let mut enqueued = SmallBitmap::for_interned_values_in(&self.query_graph.nodes);
enqueued.insert(from);
stack.push_back(from);
while let Some(n) = stack.pop_front() {
if reachable.contains(n) {
continue;
}
reachable.insert(n);
for prev_node in self.query_graph.nodes.get(n).predecessors.iter() {
if !enqueued.contains(prev_node) && !reachable.contains(prev_node) {
stack.push_back(prev_node);
enqueued.insert(prev_node);
}
}
}
};
let mut unreachable_or_visited =
SmallBitmap::for_interned_values_in(&self.query_graph.nodes);
for (n, _) in self.query_graph.nodes.iter() {
if !reachable.contains(n) {
unreachable_or_visited.insert(n);
}
}
let mut enqueued = SmallBitmap::for_interned_values_in(&self.query_graph.nodes);
let mut stack = VecDeque::new();
enqueued.insert(from);
stack.push_back(from);
while let Some(cur_node) = stack.pop_front() {
if !self.query_graph.nodes.get(cur_node).successors.is_subset(&unreachable_or_visited) {
stack.push_back(cur_node);
continue;
}
unreachable_or_visited.insert(cur_node);
visit(cur_node);
for prev_node in self.query_graph.nodes.get(cur_node).predecessors.iter() {
if !enqueued.contains(prev_node) {
node_stack.push_back(prev_node);
if !enqueued.contains(prev_node) && !unreachable_or_visited.contains(prev_node) {
stack.push_back(prev_node);
enqueued.insert(prev_node);
}
}

View File

@ -20,6 +20,8 @@ mod position;
mod proximity;
/// Implementation of the `typo` ranking rule
mod typo;
/// Implementation of the `words` ranking rule
mod words;
use std::collections::BTreeSet;
use std::hash::Hash;
@ -33,6 +35,7 @@ pub use position::{PositionCondition, PositionGraph};
pub use proximity::{ProximityCondition, ProximityGraph};
use roaring::RoaringBitmap;
pub use typo::{TypoCondition, TypoGraph};
pub use words::{WordsCondition, WordsGraph};
use super::interner::{DedupInterner, FixedSizeInterner, Interned, MappedInterner};
use super::query_term::LocatedQueryTermSubset;

View File

@ -50,7 +50,7 @@ impl RankingRuleGraphTrait for TypoGraph {
// 3-gram -> equivalent to 2 typos
let base_cost = if term.term_ids.len() == 1 { 0 } else { term.term_ids.len() as u32 };
for nbr_typos in 0..=term.term_subset.max_nbr_typos(ctx) {
for nbr_typos in 0..=term.term_subset.max_typo_cost(ctx) {
let mut term = term.clone();
match nbr_typos {
0 => {

View File

@ -0,0 +1,49 @@
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids;
use crate::search::new::SearchContext;
use crate::Result;
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct WordsCondition {
term: LocatedQueryTermSubset,
}
pub enum WordsGraph {}
impl RankingRuleGraphTrait for WordsGraph {
type Condition = WordsCondition;
fn resolve_condition(
ctx: &mut SearchContext,
condition: &Self::Condition,
universe: &RoaringBitmap,
) -> Result<ComputedCondition> {
let WordsCondition { term, .. } = condition;
// maybe compute_query_term_subset_docids should accept a universe as argument
let mut docids = compute_query_term_subset_docids(ctx, &term.term_subset)?;
docids &= universe;
Ok(ComputedCondition {
docids,
universe_len: universe.len(),
start_term_subset: None,
end_term_subset: term.clone(),
})
}
fn build_edges(
_ctx: &mut SearchContext,
conditions_interner: &mut DedupInterner<Self::Condition>,
_from: Option<&LocatedQueryTermSubset>,
to_term: &LocatedQueryTermSubset,
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
Ok(vec![(
to_term.term_ids.len() as u32,
conditions_interner.insert(WordsCondition { term: to_term.clone() }),
)])
}
}

View File

@ -1,87 +0,0 @@
use roaring::RoaringBitmap;
use super::logger::SearchLogger;
use super::query_graph::QueryNode;
use super::resolve_query_graph::compute_query_graph_docids;
use super::small_bitmap::SmallBitmap;
use super::{QueryGraph, RankingRule, RankingRuleOutput, SearchContext};
use crate::{Result, TermsMatchingStrategy};
pub struct Words {
exhausted: bool, // TODO: remove
query_graph: Option<QueryGraph>,
nodes_to_remove: Vec<SmallBitmap<QueryNode>>,
terms_matching_strategy: TermsMatchingStrategy,
}
impl Words {
pub fn new(terms_matching_strategy: TermsMatchingStrategy) -> Self {
Self {
exhausted: true,
query_graph: None,
nodes_to_remove: vec![],
terms_matching_strategy,
}
}
}
impl<'ctx> RankingRule<'ctx, QueryGraph> for Words {
fn id(&self) -> String {
"words".to_owned()
}
fn start_iteration(
&mut self,
ctx: &mut SearchContext<'ctx>,
_logger: &mut dyn SearchLogger<QueryGraph>,
_universe: &RoaringBitmap,
parent_query_graph: &QueryGraph,
) -> Result<()> {
self.exhausted = false;
self.query_graph = Some(parent_query_graph.clone());
self.nodes_to_remove = match self.terms_matching_strategy {
TermsMatchingStrategy::Last => {
let mut ns = parent_query_graph.removal_order_for_terms_matching_strategy_last(ctx);
ns.reverse();
ns
}
TermsMatchingStrategy::All => {
vec![]
}
};
Ok(())
}
fn next_bucket(
&mut self,
ctx: &mut SearchContext<'ctx>,
logger: &mut dyn SearchLogger<QueryGraph>,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<QueryGraph>>> {
if self.exhausted {
return Ok(None);
}
let Some(query_graph) = &mut self.query_graph else { panic!() };
logger.log_internal_state(query_graph);
let this_bucket = compute_query_graph_docids(ctx, query_graph, universe)?;
let child_query_graph = query_graph.clone();
if self.nodes_to_remove.is_empty() {
self.exhausted = true;
} else {
let nodes_to_remove = self.nodes_to_remove.pop().unwrap();
query_graph.remove_nodes_keep_edges(&nodes_to_remove.iter().collect::<Vec<_>>());
}
Ok(Some(RankingRuleOutput { query: child_query_graph, candidates: this_bucket }))
}
fn end_iteration(
&mut self,
_ctx: &mut SearchContext<'ctx>,
_logger: &mut dyn SearchLogger<QueryGraph>,
) {
self.exhausted = true;
self.nodes_to_remove = vec![];
self.query_graph = None;
}
}