mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-11-27 07:14:26 +01:00
Move the facets related system into the new search module
This commit is contained in:
parent
531bd6ddc7
commit
278391d961
@ -1,33 +1,21 @@
|
||||
use std::borrow::Cow;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::error::Error as StdError;
|
||||
use std::fmt::{self, Debug};
|
||||
use std::fmt::Debug;
|
||||
use std::ops::Bound::{self, Unbounded, Included, Excluded};
|
||||
use std::str::FromStr;
|
||||
|
||||
use anyhow::{bail, ensure, Context};
|
||||
use fst::{IntoStreamer, Streamer};
|
||||
use heed::types::{ByteSlice, DecodeIgnore};
|
||||
use levenshtein_automata::DFA;
|
||||
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
|
||||
use log::debug;
|
||||
use num_traits::Bounded;
|
||||
use once_cell::sync::Lazy;
|
||||
use roaring::bitmap::RoaringBitmap;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::facet::FacetType;
|
||||
use crate::heed_codec::facet::{FacetLevelValueI64Codec, FacetLevelValueF64Codec};
|
||||
use crate::heed_codec::CboRoaringBitmapCodec;
|
||||
use crate::mdfs::Mdfs;
|
||||
use crate::query_tokens::{QueryTokens, QueryToken};
|
||||
use crate::{Index, DocumentId};
|
||||
use crate::{Index, CboRoaringBitmapCodec};
|
||||
|
||||
// Building these factories is not free.
|
||||
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
|
||||
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
|
||||
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
|
||||
use self::FacetCondition::*;
|
||||
use self::FacetOperator::*;
|
||||
|
||||
// TODO support also floats
|
||||
#[derive(Debug, Copy, Clone, PartialEq)]
|
||||
pub enum FacetOperator<T> {
|
||||
GreaterThan(T),
|
||||
@ -52,8 +40,6 @@ impl FacetCondition {
|
||||
string: &str,
|
||||
) -> anyhow::Result<Option<FacetCondition>>
|
||||
{
|
||||
use FacetCondition::*;
|
||||
|
||||
let fields_ids_map = index.fields_ids_map(rtxn)?;
|
||||
let faceted_fields = index.faceted_fields(rtxn)?;
|
||||
|
||||
@ -80,8 +66,6 @@ impl FacetCondition {
|
||||
) -> anyhow::Result<FacetOperator<T>>
|
||||
where T::Err: Send + Sync + StdError + 'static,
|
||||
{
|
||||
use FacetOperator::*;
|
||||
|
||||
match iter.next() {
|
||||
Some(">") => {
|
||||
let param = iter.next().context("missing parameter")?;
|
||||
@ -228,8 +212,6 @@ impl FacetCondition {
|
||||
KC: heed::BytesDecode<'t, DItem = (u8, u8, T, T)>,
|
||||
KC: for<'x> heed::BytesEncode<'x, EItem = (u8, u8, T, T)>,
|
||||
{
|
||||
use FacetOperator::*;
|
||||
|
||||
// Make sure we always bound the ranges with the field id and the level,
|
||||
// as the facets values are all in the same database and prefixed by the
|
||||
// field id and the level.
|
||||
@ -259,7 +241,7 @@ impl FacetCondition {
|
||||
}
|
||||
}
|
||||
|
||||
fn evaluate(
|
||||
pub fn evaluate(
|
||||
&self,
|
||||
rtxn: &heed::RoTxn,
|
||||
db: heed::Database<ByteSlice, CboRoaringBitmapCodec>,
|
||||
@ -275,208 +257,3 @@ impl FacetCondition {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Search<'a> {
|
||||
query: Option<String>,
|
||||
facet_condition: Option<FacetCondition>,
|
||||
offset: usize,
|
||||
limit: usize,
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
index: &'a Index,
|
||||
}
|
||||
|
||||
impl<'a> Search<'a> {
|
||||
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
|
||||
Search { query: None, facet_condition: None, offset: 0, limit: 20, rtxn, index }
|
||||
}
|
||||
|
||||
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
|
||||
self.query = Some(query.into());
|
||||
self
|
||||
}
|
||||
|
||||
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
|
||||
self.offset = offset;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
|
||||
self.limit = limit;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn facet_condition(&mut self, condition: FacetCondition) -> &mut Search<'a> {
|
||||
self.facet_condition = Some(condition);
|
||||
self
|
||||
}
|
||||
|
||||
/// Extracts the query words from the query string and returns the DFAs accordingly.
|
||||
/// TODO introduce settings for the number of typos regarding the words lengths.
|
||||
fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> {
|
||||
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
|
||||
|
||||
let words: Vec<_> = QueryTokens::new(query).collect();
|
||||
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
|
||||
let number_of_words = words.len();
|
||||
|
||||
words.into_iter().enumerate().map(|(i, word)| {
|
||||
let (word, quoted) = match word {
|
||||
QueryToken::Free(word) => (word.to_lowercase(), word.len() <= 3),
|
||||
QueryToken::Quoted(word) => (word.to_lowercase(), true),
|
||||
};
|
||||
let is_last = i + 1 == number_of_words;
|
||||
let is_prefix = is_last && !ends_with_whitespace && !quoted;
|
||||
let lev = match word.len() {
|
||||
0..=4 => if quoted { lev0 } else { lev0 },
|
||||
5..=8 => if quoted { lev0 } else { lev1 },
|
||||
_ => if quoted { lev0 } else { lev2 },
|
||||
};
|
||||
|
||||
let dfa = if is_prefix {
|
||||
lev.build_prefix_dfa(&word)
|
||||
} else {
|
||||
lev.build_dfa(&word)
|
||||
};
|
||||
|
||||
(word, is_prefix, dfa)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Fetch the words from the given FST related to the given DFAs along with
|
||||
/// the associated documents ids.
|
||||
fn fetch_words_docids(
|
||||
&self,
|
||||
fst: &fst::Set<Cow<[u8]>>,
|
||||
dfas: Vec<(String, bool, DFA)>,
|
||||
) -> anyhow::Result<Vec<(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)>>
|
||||
{
|
||||
// A Vec storing all the derived words from the original query words, associated
|
||||
// with the distance from the original word and the docids where the words appears.
|
||||
let mut derived_words = Vec::<(HashMap::<String, (u8, RoaringBitmap)>, RoaringBitmap)>::with_capacity(dfas.len());
|
||||
|
||||
for (_word, _is_prefix, dfa) in dfas {
|
||||
|
||||
let mut acc_derived_words = HashMap::new();
|
||||
let mut unions_docids = RoaringBitmap::new();
|
||||
let mut stream = fst.search_with_state(&dfa).into_stream();
|
||||
while let Some((word, state)) = stream.next() {
|
||||
|
||||
let word = std::str::from_utf8(word)?;
|
||||
let docids = self.index.word_docids.get(self.rtxn, word)?.unwrap();
|
||||
let distance = dfa.distance(state);
|
||||
unions_docids.union_with(&docids);
|
||||
acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids));
|
||||
}
|
||||
derived_words.push((acc_derived_words, unions_docids));
|
||||
}
|
||||
|
||||
Ok(derived_words)
|
||||
}
|
||||
|
||||
/// Returns the set of docids that contains all of the query words.
|
||||
fn compute_candidates(
|
||||
derived_words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
|
||||
) -> RoaringBitmap
|
||||
{
|
||||
// We sort the derived words by inverse popularity, this way intersections are faster.
|
||||
let mut derived_words: Vec<_> = derived_words.iter().collect();
|
||||
derived_words.sort_unstable_by_key(|(_, docids)| docids.len());
|
||||
|
||||
// we do a union between all the docids of each of the derived words,
|
||||
// we got N unions (the number of original query words), we then intersect them.
|
||||
let mut candidates = RoaringBitmap::new();
|
||||
|
||||
for (i, (_, union_docids)) in derived_words.iter().enumerate() {
|
||||
if i == 0 {
|
||||
candidates = union_docids.clone();
|
||||
} else {
|
||||
candidates.intersect_with(&union_docids);
|
||||
}
|
||||
}
|
||||
|
||||
candidates
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> anyhow::Result<SearchResult> {
|
||||
let limit = self.limit;
|
||||
let fst = self.index.words_fst(self.rtxn)?;
|
||||
|
||||
// Construct the DFAs related to the query words.
|
||||
let derived_words = match self.query.as_deref().map(Self::generate_query_dfas) {
|
||||
Some(dfas) if !dfas.is_empty() => Some(self.fetch_words_docids(&fst, dfas)?),
|
||||
_otherwise => None,
|
||||
};
|
||||
|
||||
// We create the original candidates with the facet conditions results.
|
||||
let facet_db = self.index.facet_field_id_value_docids;
|
||||
let facet_candidates = match self.facet_condition {
|
||||
Some(condition) => Some(condition.evaluate(self.rtxn, facet_db)?),
|
||||
None => None,
|
||||
};
|
||||
|
||||
debug!("facet candidates: {:?}", facet_candidates);
|
||||
|
||||
let (candidates, derived_words) = match (facet_candidates, derived_words) {
|
||||
(Some(mut facet_candidates), Some(derived_words)) => {
|
||||
let words_candidates = Self::compute_candidates(&derived_words);
|
||||
facet_candidates.intersect_with(&words_candidates);
|
||||
(facet_candidates, derived_words)
|
||||
},
|
||||
(None, Some(derived_words)) => {
|
||||
(Self::compute_candidates(&derived_words), derived_words)
|
||||
},
|
||||
(Some(facet_candidates), None) => {
|
||||
// If the query is not set or results in no DFAs but
|
||||
// there is some facet conditions we return a placeholder.
|
||||
let documents_ids = facet_candidates.iter().take(limit).collect();
|
||||
return Ok(SearchResult { documents_ids, ..Default::default() })
|
||||
},
|
||||
(None, None) => {
|
||||
// If the query is not set or results in no DFAs we return a placeholder.
|
||||
let documents_ids = self.index.documents_ids(self.rtxn)?.iter().take(limit).collect();
|
||||
return Ok(SearchResult { documents_ids, ..Default::default() })
|
||||
},
|
||||
};
|
||||
|
||||
debug!("candidates: {:?}", candidates);
|
||||
|
||||
// The mana depth first search is a revised DFS that explore
|
||||
// solutions in the order of their proximities.
|
||||
let mut mdfs = Mdfs::new(self.index, self.rtxn, &derived_words, candidates);
|
||||
let mut documents = Vec::new();
|
||||
|
||||
// We execute the Mdfs iterator until we find enough documents.
|
||||
while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
|
||||
match mdfs.next().transpose()? {
|
||||
Some((proximity, answer)) => {
|
||||
debug!("answer with a proximity of {}: {:?}", proximity, answer);
|
||||
documents.push(answer);
|
||||
},
|
||||
None => break,
|
||||
}
|
||||
}
|
||||
|
||||
let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
|
||||
let documents_ids = documents.into_iter().flatten().take(limit).collect();
|
||||
Ok(SearchResult { found_words, documents_ids })
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Search<'_> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
f.debug_struct("Search")
|
||||
.field("query", &self.query)
|
||||
.field("facet_condition", &self.facet_condition)
|
||||
.field("offset", &self.offset)
|
||||
.field("limit", &self.limit)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct SearchResult {
|
||||
pub found_words: HashSet<String>,
|
||||
// TODO those documents ids should be associated with their criteria scores.
|
||||
pub documents_ids: Vec<DocumentId>,
|
||||
}
|
228
src/search/mod.rs
Normal file
228
src/search/mod.rs
Normal file
@ -0,0 +1,228 @@
|
||||
use std::borrow::Cow;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::fmt;
|
||||
|
||||
use fst::{IntoStreamer, Streamer};
|
||||
use levenshtein_automata::DFA;
|
||||
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
|
||||
use log::debug;
|
||||
use once_cell::sync::Lazy;
|
||||
use roaring::bitmap::RoaringBitmap;
|
||||
|
||||
use crate::mdfs::Mdfs;
|
||||
use crate::query_tokens::{QueryTokens, QueryToken};
|
||||
use crate::{Index, DocumentId};
|
||||
|
||||
pub use self::facet::FacetCondition;
|
||||
|
||||
// Building these factories is not free.
|
||||
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
|
||||
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
|
||||
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
|
||||
|
||||
mod facet;
|
||||
|
||||
pub struct Search<'a> {
|
||||
query: Option<String>,
|
||||
facet_condition: Option<FacetCondition>,
|
||||
offset: usize,
|
||||
limit: usize,
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
index: &'a Index,
|
||||
}
|
||||
|
||||
impl<'a> Search<'a> {
|
||||
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
|
||||
Search { query: None, facet_condition: None, offset: 0, limit: 20, rtxn, index }
|
||||
}
|
||||
|
||||
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
|
||||
self.query = Some(query.into());
|
||||
self
|
||||
}
|
||||
|
||||
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
|
||||
self.offset = offset;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
|
||||
self.limit = limit;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn facet_condition(&mut self, condition: FacetCondition) -> &mut Search<'a> {
|
||||
self.facet_condition = Some(condition);
|
||||
self
|
||||
}
|
||||
|
||||
/// Extracts the query words from the query string and returns the DFAs accordingly.
|
||||
/// TODO introduce settings for the number of typos regarding the words lengths.
|
||||
fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> {
|
||||
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
|
||||
|
||||
let words: Vec<_> = QueryTokens::new(query).collect();
|
||||
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
|
||||
let number_of_words = words.len();
|
||||
|
||||
words.into_iter().enumerate().map(|(i, word)| {
|
||||
let (word, quoted) = match word {
|
||||
QueryToken::Free(word) => (word.to_lowercase(), word.len() <= 3),
|
||||
QueryToken::Quoted(word) => (word.to_lowercase(), true),
|
||||
};
|
||||
let is_last = i + 1 == number_of_words;
|
||||
let is_prefix = is_last && !ends_with_whitespace && !quoted;
|
||||
let lev = match word.len() {
|
||||
0..=4 => if quoted { lev0 } else { lev0 },
|
||||
5..=8 => if quoted { lev0 } else { lev1 },
|
||||
_ => if quoted { lev0 } else { lev2 },
|
||||
};
|
||||
|
||||
let dfa = if is_prefix {
|
||||
lev.build_prefix_dfa(&word)
|
||||
} else {
|
||||
lev.build_dfa(&word)
|
||||
};
|
||||
|
||||
(word, is_prefix, dfa)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Fetch the words from the given FST related to the given DFAs along with
|
||||
/// the associated documents ids.
|
||||
fn fetch_words_docids(
|
||||
&self,
|
||||
fst: &fst::Set<Cow<[u8]>>,
|
||||
dfas: Vec<(String, bool, DFA)>,
|
||||
) -> anyhow::Result<Vec<(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)>>
|
||||
{
|
||||
// A Vec storing all the derived words from the original query words, associated
|
||||
// with the distance from the original word and the docids where the words appears.
|
||||
let mut derived_words = Vec::<(HashMap::<String, (u8, RoaringBitmap)>, RoaringBitmap)>::with_capacity(dfas.len());
|
||||
|
||||
for (_word, _is_prefix, dfa) in dfas {
|
||||
|
||||
let mut acc_derived_words = HashMap::new();
|
||||
let mut unions_docids = RoaringBitmap::new();
|
||||
let mut stream = fst.search_with_state(&dfa).into_stream();
|
||||
while let Some((word, state)) = stream.next() {
|
||||
|
||||
let word = std::str::from_utf8(word)?;
|
||||
let docids = self.index.word_docids.get(self.rtxn, word)?.unwrap();
|
||||
let distance = dfa.distance(state);
|
||||
unions_docids.union_with(&docids);
|
||||
acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids));
|
||||
}
|
||||
derived_words.push((acc_derived_words, unions_docids));
|
||||
}
|
||||
|
||||
Ok(derived_words)
|
||||
}
|
||||
|
||||
/// Returns the set of docids that contains all of the query words.
|
||||
fn compute_candidates(
|
||||
derived_words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
|
||||
) -> RoaringBitmap
|
||||
{
|
||||
// We sort the derived words by inverse popularity, this way intersections are faster.
|
||||
let mut derived_words: Vec<_> = derived_words.iter().collect();
|
||||
derived_words.sort_unstable_by_key(|(_, docids)| docids.len());
|
||||
|
||||
// we do a union between all the docids of each of the derived words,
|
||||
// we got N unions (the number of original query words), we then intersect them.
|
||||
let mut candidates = RoaringBitmap::new();
|
||||
|
||||
for (i, (_, union_docids)) in derived_words.iter().enumerate() {
|
||||
if i == 0 {
|
||||
candidates = union_docids.clone();
|
||||
} else {
|
||||
candidates.intersect_with(&union_docids);
|
||||
}
|
||||
}
|
||||
|
||||
candidates
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> anyhow::Result<SearchResult> {
|
||||
let limit = self.limit;
|
||||
let fst = self.index.words_fst(self.rtxn)?;
|
||||
|
||||
// Construct the DFAs related to the query words.
|
||||
let derived_words = match self.query.as_deref().map(Self::generate_query_dfas) {
|
||||
Some(dfas) if !dfas.is_empty() => Some(self.fetch_words_docids(&fst, dfas)?),
|
||||
_otherwise => None,
|
||||
};
|
||||
|
||||
// We create the original candidates with the facet conditions results.
|
||||
let facet_db = self.index.facet_field_id_value_docids;
|
||||
let facet_candidates = match self.facet_condition {
|
||||
Some(condition) => Some(condition.evaluate(self.rtxn, facet_db)?),
|
||||
None => None,
|
||||
};
|
||||
|
||||
debug!("facet candidates: {:?}", facet_candidates);
|
||||
|
||||
let (candidates, derived_words) = match (facet_candidates, derived_words) {
|
||||
(Some(mut facet_candidates), Some(derived_words)) => {
|
||||
let words_candidates = Self::compute_candidates(&derived_words);
|
||||
facet_candidates.intersect_with(&words_candidates);
|
||||
(facet_candidates, derived_words)
|
||||
},
|
||||
(None, Some(derived_words)) => {
|
||||
(Self::compute_candidates(&derived_words), derived_words)
|
||||
},
|
||||
(Some(facet_candidates), None) => {
|
||||
// If the query is not set or results in no DFAs but
|
||||
// there is some facet conditions we return a placeholder.
|
||||
let documents_ids = facet_candidates.iter().take(limit).collect();
|
||||
return Ok(SearchResult { documents_ids, ..Default::default() })
|
||||
},
|
||||
(None, None) => {
|
||||
// If the query is not set or results in no DFAs we return a placeholder.
|
||||
let documents_ids = self.index.documents_ids(self.rtxn)?.iter().take(limit).collect();
|
||||
return Ok(SearchResult { documents_ids, ..Default::default() })
|
||||
},
|
||||
};
|
||||
|
||||
debug!("candidates: {:?}", candidates);
|
||||
|
||||
// The mana depth first search is a revised DFS that explore
|
||||
// solutions in the order of their proximities.
|
||||
let mut mdfs = Mdfs::new(self.index, self.rtxn, &derived_words, candidates);
|
||||
let mut documents = Vec::new();
|
||||
|
||||
// We execute the Mdfs iterator until we find enough documents.
|
||||
while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
|
||||
match mdfs.next().transpose()? {
|
||||
Some((proximity, answer)) => {
|
||||
debug!("answer with a proximity of {}: {:?}", proximity, answer);
|
||||
documents.push(answer);
|
||||
},
|
||||
None => break,
|
||||
}
|
||||
}
|
||||
|
||||
let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
|
||||
let documents_ids = documents.into_iter().flatten().take(limit).collect();
|
||||
Ok(SearchResult { found_words, documents_ids })
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Search<'_> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
f.debug_struct("Search")
|
||||
.field("query", &self.query)
|
||||
.field("facet_condition", &self.facet_condition)
|
||||
.field("offset", &self.offset)
|
||||
.field("limit", &self.limit)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct SearchResult {
|
||||
pub found_words: HashSet<String>,
|
||||
// TODO those documents ids should be associated with their criteria scores.
|
||||
pub documents_ids: Vec<DocumentId>,
|
||||
}
|
Loading…
Reference in New Issue
Block a user