Move to the hgg crate

This commit is contained in:
Kerollmops 2023-06-13 15:19:01 +02:00 committed by Clément Renault
parent 642b0f3a1b
commit 268a9ef416
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4
9 changed files with 73 additions and 99 deletions

54
Cargo.lock generated
View File

@ -1736,9 +1736,6 @@ name = "hashbrown"
version = "0.11.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ab5ef0d4909ef3724cc8cce6ccc8572c5c817592e9285f5464f8e86f8bd3726e"
dependencies = [
"ahash 0.7.6",
]
[[package]]
name = "hashbrown"
@ -1749,6 +1746,12 @@ dependencies = [
"ahash 0.7.6",
]
[[package]]
name = "header-vec"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bda7e66d32131841c4264e34a32c934df0dedb08d737f861326d616d4338f06f"
[[package]]
name = "heapless"
version = "0.7.16"
@ -1832,6 +1835,19 @@ version = "0.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7f24254aa9a54b5c858eaee2f5bccdb46aaf0e486a595ed5fd8f86ba55232a70"
[[package]]
name = "hgg"
version = "0.4.2-alpha.0"
source = "git+https://github.com/rust-cv/hgg#6d1eacde635158163fb663d9327a2d6f612dd435"
dependencies = [
"ahash 0.7.6",
"hashbrown 0.11.2",
"header-vec",
"num-traits",
"serde",
"space",
]
[[package]]
name = "hmac"
version = "0.12.1"
@ -1841,22 +1857,6 @@ dependencies = [
"digest",
]
[[package]]
name = "hnsw"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2b9740ebf8769ec4ad6762cc951ba18f39bba6dfbc2fbbe46285f7539af79752"
dependencies = [
"ahash 0.7.6",
"hashbrown 0.11.2",
"libm",
"num-traits",
"rand_core",
"serde",
"smallvec",
"space",
]
[[package]]
name = "http"
version = "0.2.9"
@ -2729,7 +2729,7 @@ dependencies = [
"geoutils",
"grenad",
"heed",
"hnsw",
"hgg",
"insta",
"itertools",
"json-depth-checker",
@ -2744,7 +2744,6 @@ dependencies = [
"once_cell",
"ordered-float",
"rand",
"rand_pcg",
"rayon",
"roaring",
"rstar",
@ -3307,16 +3306,6 @@ dependencies = [
"getrandom",
]
[[package]]
name = "rand_pcg"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "59cad018caf63deb318e5a4586d99a24424a364f40f1e5778c29aca23f4fc73e"
dependencies = [
"rand_core",
"serde",
]
[[package]]
name = "rayon"
version = "1.7.0"
@ -3776,9 +3765,6 @@ name = "smallvec"
version = "1.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a507befe795404456341dfab10cef66ead4c041f62b8b11bbb92bffe5d0953e0"
dependencies = [
"serde",
]
[[package]]
name = "smartstring"

View File

@ -33,14 +33,13 @@ heed = { git = "https://github.com/meilisearch/heed", tag = "v0.12.6", default-f
"lmdb",
"sync-read-txn",
] }
hnsw = { version = "0.11.0", features = ["serde1"] }
hgg = { git = "https://github.com/rust-cv/hgg", features = ["serde"] }
json-depth-checker = { path = "../json-depth-checker" }
levenshtein_automata = { version = "0.2.1", features = ["fst_automaton"] }
memmap2 = "0.5.10"
obkv = "0.2.0"
once_cell = "1.17.1"
ordered-float = "3.6.0"
rand_pcg = { version = "0.3.1", features = ["serde1"] }
rayon = "1.7.0"
roaring = "0.10.1"
rstar = { version = "0.10.0", features = ["serde"] }

View File

@ -18,3 +18,17 @@ impl Metric<Vec<f32>> for DotProduct {
dist.to_bits()
}
}
#[derive(Debug, Default, Clone, Copy, Serialize, Deserialize)]
pub struct Euclidean;
impl Metric<Vec<f32>> for Euclidean {
type Unit = u32;
fn distance(&self, a: &Vec<f32>, b: &Vec<f32>) -> Self::Unit {
let squared: f32 = a.iter().zip(b).map(|(a, b)| (a - b).powi(2)).sum();
let dist = squared.sqrt();
debug_assert!(!dist.is_nan());
dist.to_bits()
}
}

View File

@ -8,12 +8,11 @@ use charabia::{Language, Script};
use heed::flags::Flags;
use heed::types::*;
use heed::{CompactionOption, Database, PolyDatabase, RoTxn, RwTxn};
use rand_pcg::Pcg32;
use roaring::RoaringBitmap;
use rstar::RTree;
use time::OffsetDateTime;
use crate::dot_product::DotProduct;
use crate::distance::Euclidean;
use crate::error::{InternalError, UserError};
use crate::facet::FacetType;
use crate::fields_ids_map::FieldsIdsMap;
@ -28,8 +27,8 @@ use crate::{
Result, RoaringBitmapCodec, RoaringBitmapLenCodec, Search, U8StrStrCodec, BEU16, BEU32,
};
/// The HNSW data-structure that we serialize, fill and search in.
pub type Hnsw = hnsw::Hnsw<DotProduct, Vec<f32>, Pcg32, 12, 24>;
/// The HGG data-structure that we serialize, fill and search in.
pub type Hgg = hgg::Hgg<Euclidean, Vec<f32>, DocumentId>;
pub const DEFAULT_MIN_WORD_LEN_ONE_TYPO: u8 = 5;
pub const DEFAULT_MIN_WORD_LEN_TWO_TYPOS: u8 = 9;
@ -47,7 +46,7 @@ pub mod main_key {
pub const FIELDS_IDS_MAP_KEY: &str = "fields-ids-map";
pub const GEO_FACETED_DOCUMENTS_IDS_KEY: &str = "geo-faceted-documents-ids";
pub const GEO_RTREE_KEY: &str = "geo-rtree";
pub const VECTOR_HNSW_KEY: &str = "vector-hnsw";
pub const VECTOR_HGG_KEY: &str = "vector-hgg";
pub const HARD_EXTERNAL_DOCUMENTS_IDS_KEY: &str = "hard-external-documents-ids";
pub const NUMBER_FACETED_DOCUMENTS_IDS_PREFIX: &str = "number-faceted-documents-ids";
pub const PRIMARY_KEY_KEY: &str = "primary-key";
@ -92,7 +91,6 @@ pub mod db_name {
pub const FACET_ID_STRING_DOCIDS: &str = "facet-id-string-docids";
pub const FIELD_ID_DOCID_FACET_F64S: &str = "field-id-docid-facet-f64s";
pub const FIELD_ID_DOCID_FACET_STRINGS: &str = "field-id-docid-facet-strings";
pub const VECTOR_ID_DOCID: &str = "vector-id-docids";
pub const DOCUMENTS: &str = "documents";
pub const SCRIPT_LANGUAGE_DOCIDS: &str = "script_language_docids";
}
@ -156,9 +154,6 @@ pub struct Index {
/// Maps the document id, the facet field id and the strings.
pub field_id_docid_facet_strings: Database<FieldDocIdFacetStringCodec, Str>,
/// Maps a vector id to the document id that have it.
pub vector_id_docid: Database<OwnedType<BEU32>, OwnedType<BEU32>>,
/// Maps the document id to the document as an obkv store.
pub(crate) documents: Database<OwnedType<BEU32>, ObkvCodec>,
}
@ -172,7 +167,7 @@ impl Index {
) -> Result<Index> {
use db_name::*;
options.max_dbs(24);
options.max_dbs(23);
unsafe { options.flag(Flags::MdbAlwaysFreePages) };
let env = options.open(path)?;
@ -212,7 +207,6 @@ impl Index {
env.create_database(&mut wtxn, Some(FIELD_ID_DOCID_FACET_F64S))?;
let field_id_docid_facet_strings =
env.create_database(&mut wtxn, Some(FIELD_ID_DOCID_FACET_STRINGS))?;
let vector_id_docid = env.create_database(&mut wtxn, Some(VECTOR_ID_DOCID))?;
let documents = env.create_database(&mut wtxn, Some(DOCUMENTS))?;
wtxn.commit()?;
@ -241,7 +235,6 @@ impl Index {
facet_id_is_empty_docids,
field_id_docid_facet_f64s,
field_id_docid_facet_strings,
vector_id_docid,
documents,
})
}
@ -513,22 +506,22 @@ impl Index {
}
}
/* vector HNSW */
/* vector HGG */
/// Writes the provided `hnsw`.
pub(crate) fn put_vector_hnsw(&self, wtxn: &mut RwTxn, hnsw: &Hnsw) -> heed::Result<()> {
self.main.put::<_, Str, SerdeBincode<Hnsw>>(wtxn, main_key::VECTOR_HNSW_KEY, hnsw)
/// Writes the provided `hgg`.
pub(crate) fn put_vector_hgg(&self, wtxn: &mut RwTxn, hgg: &Hgg) -> heed::Result<()> {
self.main.put::<_, Str, SerdeBincode<Hgg>>(wtxn, main_key::VECTOR_HGG_KEY, hgg)
}
/// Delete the `hnsw`.
pub(crate) fn delete_vector_hnsw(&self, wtxn: &mut RwTxn) -> heed::Result<bool> {
self.main.delete::<_, Str>(wtxn, main_key::VECTOR_HNSW_KEY)
/// Delete the `hgg`.
pub(crate) fn delete_vector_hgg(&self, wtxn: &mut RwTxn) -> heed::Result<bool> {
self.main.delete::<_, Str>(wtxn, main_key::VECTOR_HGG_KEY)
}
/// Returns the `hnsw`.
pub fn vector_hnsw(&self, rtxn: &RoTxn) -> Result<Option<Hnsw>> {
match self.main.get::<_, Str, SerdeBincode<Hnsw>>(rtxn, main_key::VECTOR_HNSW_KEY)? {
Some(hnsw) => Ok(Some(hnsw)),
/// Returns the `hgg`.
pub fn vector_hgg(&self, rtxn: &RoTxn) -> Result<Option<Hgg>> {
match self.main.get::<_, Str, SerdeBincode<Hgg>>(rtxn, main_key::VECTOR_HGG_KEY)? {
Some(hgg) => Ok(Some(hgg)),
None => Ok(None),
}
}

View File

@ -10,7 +10,7 @@ pub mod documents;
mod asc_desc;
mod criterion;
pub mod dot_product;
mod distance;
mod error;
mod external_documents_ids;
pub mod facet;

View File

@ -28,7 +28,6 @@ use db_cache::DatabaseCache;
use exact_attribute::ExactAttribute;
use graph_based_ranking_rule::{Exactness, Fid, Position, Proximity, Typo};
use heed::RoTxn;
use hnsw::Searcher;
use interner::{DedupInterner, Interner};
pub use logger::visual::VisualSearchLogger;
pub use logger::{DefaultSearchLogger, SearchLogger};
@ -40,7 +39,7 @@ use ranking_rules::{
use resolve_query_graph::{compute_query_graph_docids, PhraseDocIdsCache};
use roaring::RoaringBitmap;
use sort::Sort;
use space::Neighbor;
use space::{KnnMap, Neighbor};
use self::geo_sort::GeoSort;
pub use self::geo_sort::Strategy as GeoSortStrategy;
@ -48,9 +47,7 @@ use self::graph_based_ranking_rule::Words;
use self::interner::Interned;
use crate::score_details::{ScoreDetails, ScoringStrategy};
use crate::search::new::distinct::apply_distinct_rule;
use crate::{
AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError, BEU32,
};
use crate::{AscDesc, DocumentId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError};
/// A structure used throughout the execution of a search query.
pub struct SearchContext<'ctx> {
@ -450,26 +447,15 @@ pub fn execute_search(
let docids = match vector {
Some(vector) => {
// return the nearest documents that are also part of the candidates.
let mut searcher = Searcher::new();
let hnsw = ctx.index.vector_hnsw(ctx.txn)?.unwrap_or_default();
let ef = hnsw.len().min(100);
let mut dest = vec![Neighbor { index: 0, distance: 0 }; ef];
let neighbors = hnsw.nearest(&vector, ef, &mut searcher, &mut dest[..]);
let mut docids = Vec::new();
for Neighbor { index, distance } in neighbors.iter() {
let index = BEU32::new(*index as u32);
let docid = ctx.index.vector_id_docid.get(ctx.txn, &index)?.unwrap().get();
dbg!(distance, f32::from_bits(*distance));
if universe.contains(docid) {
docids.push(docid);
if docids.len() == length {
break;
}
}
}
docids
let hgg = ctx.index.vector_hgg(ctx.txn)?.unwrap_or_default();
hgg.knn_values(&vector, 100)
.into_iter()
.filter(|(Neighbor { distance, .. }, docid)| {
dbg!(distance, f32::from_bits(*distance));
universe.contains(**docid)
})
.map(|(_, docid)| *docid)
.collect()
}
// return the search docids if the vector field is not specified
None => docids,

View File

@ -39,7 +39,6 @@ impl<'t, 'u, 'i> ClearDocuments<'t, 'u, 'i> {
facet_id_is_empty_docids,
field_id_docid_facet_f64s,
field_id_docid_facet_strings,
vector_id_docid,
documents,
} = self.index;
@ -58,7 +57,7 @@ impl<'t, 'u, 'i> ClearDocuments<'t, 'u, 'i> {
self.index.put_field_distribution(self.wtxn, &FieldDistribution::default())?;
self.index.delete_geo_rtree(self.wtxn)?;
self.index.delete_geo_faceted_documents_ids(self.wtxn)?;
self.index.delete_vector_hnsw(self.wtxn)?;
self.index.delete_vector_hgg(self.wtxn)?;
// We clean all the faceted documents ids.
for field_id in faceted_fields {
@ -97,7 +96,6 @@ impl<'t, 'u, 'i> ClearDocuments<'t, 'u, 'i> {
facet_id_string_docids.clear(self.wtxn)?;
field_id_docid_facet_f64s.clear(self.wtxn)?;
field_id_docid_facet_strings.clear(self.wtxn)?;
vector_id_docid.clear(self.wtxn)?;
documents.clear(self.wtxn)?;
Ok(number_of_documents)

View File

@ -240,7 +240,6 @@ impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
facet_id_exists_docids,
facet_id_is_null_docids,
facet_id_is_empty_docids,
vector_id_docid,
documents,
} = self.index;
// Remove from the documents database
@ -275,6 +274,8 @@ impl<'t, 'u, 'i> DeleteDocuments<'t, 'u, 'i> {
&mut words_to_delete,
)?;
todo!("delete the documents from the Hgg datastructure");
// We construct an FST set that contains the words to delete from the words FST.
let words_to_delete = fst::Set::from_iter(words_to_delete.difference(&words_to_keep))?;

View File

@ -9,8 +9,8 @@ use charabia::{Language, Script};
use grenad::MergerBuilder;
use heed::types::ByteSlice;
use heed::RwTxn;
use hnsw::Searcher;
use roaring::RoaringBitmap;
use space::KnnInsert;
use super::helpers::{
self, merge_ignore_values, serialize_roaring_bitmap, valid_lmdb_key, CursorClonableMmap,
@ -19,7 +19,7 @@ use super::{ClonableMmap, MergeFn};
use crate::facet::FacetType;
use crate::update::facet::FacetsUpdate;
use crate::update::index_documents::helpers::as_cloneable_grenad;
use crate::{lat_lng_to_xyz, CboRoaringBitmapCodec, DocumentId, GeoPoint, Index, Result, BEU32};
use crate::{lat_lng_to_xyz, CboRoaringBitmapCodec, DocumentId, GeoPoint, Index, Result};
pub(crate) enum TypedChunk {
FieldIdDocidFacetStrings(grenad::Reader<CursorClonableMmap>),
@ -225,19 +225,16 @@ pub(crate) fn write_typed_chunk_into_index(
index.put_geo_faceted_documents_ids(wtxn, &geo_faceted_docids)?;
}
TypedChunk::VectorPoints(vector_points) => {
let mut hnsw = index.vector_hnsw(wtxn)?.unwrap_or_default();
let mut searcher = Searcher::new();
let mut hgg = index.vector_hgg(wtxn)?.unwrap_or_default();
let mut cursor = vector_points.into_cursor()?;
while let Some((key, value)) = cursor.move_on_next()? {
// convert the key back to a u32 (4 bytes)
let docid = key.try_into().map(DocumentId::from_be_bytes).unwrap();
// convert the vector back to a Vec<f32>
let vector: Vec<f32> = pod_collect_to_vec(value);
let vector_id = hnsw.insert(vector, &mut searcher) as u32;
index.vector_id_docid.put(wtxn, &BEU32::new(vector_id), &BEU32::new(docid))?;
// convert the vector back to a Vec<f32> and insert it.
// TODO enable again when the library is fixed
hgg.insert(pod_collect_to_vec(value), docid);
}
index.put_vector_hnsw(wtxn, &hnsw)?;
index.put_vector_hgg(wtxn, &hgg)?;
}
TypedChunk::ScriptLanguageDocids(hash_pair) => {
let mut buffer = Vec::new();