Small commit to add hybrid search and autoembedding

This commit is contained in:
Louis Dureuil 2023-11-15 15:46:37 +01:00
parent 21bcf32109
commit 13c2c6c16b
No known key found for this signature in database
42 changed files with 4045 additions and 246 deletions

229
milli/src/vector/error.rs Normal file
View file

@ -0,0 +1,229 @@
use std::path::PathBuf;
use hf_hub::api::sync::ApiError;
use crate::error::FaultSource;
use crate::vector::openai::OpenAiError;
#[derive(Debug, thiserror::Error)]
#[error("Error while generating embeddings: {inner}")]
pub struct Error {
pub inner: Box<ErrorKind>,
}
impl<I: Into<ErrorKind>> From<I> for Error {
fn from(value: I) -> Self {
Self { inner: Box::new(value.into()) }
}
}
impl Error {
pub fn fault(&self) -> FaultSource {
match &*self.inner {
ErrorKind::NewEmbedderError(inner) => inner.fault,
ErrorKind::EmbedError(inner) => inner.fault,
}
}
}
#[derive(Debug, thiserror::Error)]
pub enum ErrorKind {
#[error(transparent)]
NewEmbedderError(#[from] NewEmbedderError),
#[error(transparent)]
EmbedError(#[from] EmbedError),
}
#[derive(Debug, thiserror::Error)]
#[error("{fault}: {kind}")]
pub struct EmbedError {
pub kind: EmbedErrorKind,
pub fault: FaultSource,
}
#[derive(Debug, thiserror::Error)]
pub enum EmbedErrorKind {
#[error("could not tokenize: {0}")]
Tokenize(Box<dyn std::error::Error + Send + Sync>),
#[error("unexpected tensor shape: {0}")]
TensorShape(candle_core::Error),
#[error("unexpected tensor value: {0}")]
TensorValue(candle_core::Error),
#[error("could not run model: {0}")]
ModelForward(candle_core::Error),
#[error("could not reach OpenAI: {0}")]
OpenAiNetwork(reqwest::Error),
#[error("unexpected response from OpenAI: {0}")]
OpenAiUnexpected(reqwest::Error),
#[error("could not authenticate against OpenAI: {0}")]
OpenAiAuth(OpenAiError),
#[error("sent too many requests to OpenAI: {0}")]
OpenAiTooManyRequests(OpenAiError),
#[error("received internal error from OpenAI: {0}")]
OpenAiInternalServerError(OpenAiError),
#[error("sent too many tokens in a request to OpenAI: {0}")]
OpenAiTooManyTokens(OpenAiError),
#[error("received unhandled HTTP status code {0} from OpenAI")]
OpenAiUnhandledStatusCode(u16),
}
impl EmbedError {
pub fn tokenize(inner: Box<dyn std::error::Error + Send + Sync>) -> Self {
Self { kind: EmbedErrorKind::Tokenize(inner), fault: FaultSource::Runtime }
}
pub fn tensor_shape(inner: candle_core::Error) -> Self {
Self { kind: EmbedErrorKind::TensorShape(inner), fault: FaultSource::Bug }
}
pub fn tensor_value(inner: candle_core::Error) -> Self {
Self { kind: EmbedErrorKind::TensorValue(inner), fault: FaultSource::Bug }
}
pub fn model_forward(inner: candle_core::Error) -> Self {
Self { kind: EmbedErrorKind::ModelForward(inner), fault: FaultSource::Runtime }
}
pub fn openai_network(inner: reqwest::Error) -> Self {
Self { kind: EmbedErrorKind::OpenAiNetwork(inner), fault: FaultSource::Runtime }
}
pub fn openai_unexpected(inner: reqwest::Error) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiUnexpected(inner), fault: FaultSource::Bug }
}
pub(crate) fn openai_auth_error(inner: OpenAiError) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiAuth(inner), fault: FaultSource::User }
}
pub(crate) fn openai_too_many_requests(inner: OpenAiError) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiTooManyRequests(inner), fault: FaultSource::Runtime }
}
pub(crate) fn openai_internal_server_error(inner: OpenAiError) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiInternalServerError(inner), fault: FaultSource::Runtime }
}
pub(crate) fn openai_too_many_tokens(inner: OpenAiError) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiTooManyTokens(inner), fault: FaultSource::Bug }
}
pub(crate) fn openai_unhandled_status_code(code: u16) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiUnhandledStatusCode(code), fault: FaultSource::Bug }
}
}
#[derive(Debug, thiserror::Error)]
#[error("{fault}: {kind}")]
pub struct NewEmbedderError {
pub kind: NewEmbedderErrorKind,
pub fault: FaultSource,
}
impl NewEmbedderError {
pub fn open_config(config_filename: PathBuf, inner: std::io::Error) -> NewEmbedderError {
let open_config = OpenConfig { filename: config_filename, inner };
Self { kind: NewEmbedderErrorKind::OpenConfig(open_config), fault: FaultSource::Runtime }
}
pub fn deserialize_config(
config: String,
config_filename: PathBuf,
inner: serde_json::Error,
) -> NewEmbedderError {
let deserialize_config = DeserializeConfig { config, filename: config_filename, inner };
Self {
kind: NewEmbedderErrorKind::DeserializeConfig(deserialize_config),
fault: FaultSource::Runtime,
}
}
pub fn open_tokenizer(
tokenizer_filename: PathBuf,
inner: Box<dyn std::error::Error + Send + Sync>,
) -> NewEmbedderError {
let open_tokenizer = OpenTokenizer { filename: tokenizer_filename, inner };
Self {
kind: NewEmbedderErrorKind::OpenTokenizer(open_tokenizer),
fault: FaultSource::Runtime,
}
}
pub fn new_api_fail(inner: ApiError) -> Self {
Self { kind: NewEmbedderErrorKind::NewApiFail(inner), fault: FaultSource::Bug }
}
pub fn api_get(inner: ApiError) -> Self {
Self { kind: NewEmbedderErrorKind::ApiGet(inner), fault: FaultSource::Undecided }
}
pub fn pytorch_weight(inner: candle_core::Error) -> Self {
Self { kind: NewEmbedderErrorKind::PytorchWeight(inner), fault: FaultSource::Runtime }
}
pub fn safetensor_weight(inner: candle_core::Error) -> Self {
Self { kind: NewEmbedderErrorKind::PytorchWeight(inner), fault: FaultSource::Runtime }
}
pub fn load_model(inner: candle_core::Error) -> Self {
Self { kind: NewEmbedderErrorKind::LoadModel(inner), fault: FaultSource::Runtime }
}
pub fn openai_initialize_web_client(inner: reqwest::Error) -> Self {
Self { kind: NewEmbedderErrorKind::InitWebClient(inner), fault: FaultSource::Runtime }
}
pub fn openai_invalid_api_key_format(inner: reqwest::header::InvalidHeaderValue) -> Self {
Self { kind: NewEmbedderErrorKind::InvalidApiKeyFormat(inner), fault: FaultSource::User }
}
}
#[derive(Debug, thiserror::Error)]
#[error("could not open config at {filename:?}: {inner}")]
pub struct OpenConfig {
pub filename: PathBuf,
pub inner: std::io::Error,
}
#[derive(Debug, thiserror::Error)]
#[error("could not deserialize config at {filename}: {inner}. Config follows:\n{config}")]
pub struct DeserializeConfig {
pub config: String,
pub filename: PathBuf,
pub inner: serde_json::Error,
}
#[derive(Debug, thiserror::Error)]
#[error("could not open tokenizer at {filename}: {inner}")]
pub struct OpenTokenizer {
pub filename: PathBuf,
#[source]
pub inner: Box<dyn std::error::Error + Send + Sync>,
}
#[derive(Debug, thiserror::Error)]
pub enum NewEmbedderErrorKind {
// hf
#[error(transparent)]
OpenConfig(OpenConfig),
#[error(transparent)]
DeserializeConfig(DeserializeConfig),
#[error(transparent)]
OpenTokenizer(OpenTokenizer),
#[error("could not build weights from Pytorch weights: {0}")]
PytorchWeight(candle_core::Error),
#[error("could not build weights from Safetensor weights: {0}")]
SafetensorWeight(candle_core::Error),
#[error("could not spawn HG_HUB API client: {0}")]
NewApiFail(ApiError),
#[error("fetching file from HG_HUB failed: {0}")]
ApiGet(ApiError),
#[error("loading model failed: {0}")]
LoadModel(candle_core::Error),
// openai
#[error("initializing web client for sending embedding requests failed: {0}")]
InitWebClient(reqwest::Error),
#[error("The API key passed to Authorization error was in an invalid format: {0}")]
InvalidApiKeyFormat(reqwest::header::InvalidHeaderValue),
}

192
milli/src/vector/hf.rs Normal file
View file

@ -0,0 +1,192 @@
use candle_core::Tensor;
use candle_nn::VarBuilder;
use candle_transformers::models::bert::{BertModel, Config, DTYPE};
// FIXME: currently we'll be using the hub to retrieve model, in the future we might want to embed it into Meilisearch itself
use hf_hub::api::sync::Api;
use hf_hub::{Repo, RepoType};
use tokenizers::{PaddingParams, Tokenizer};
pub use super::error::{EmbedError, Error, NewEmbedderError};
use super::{Embedding, Embeddings};
#[derive(
Debug,
Clone,
Copy,
Default,
Hash,
PartialEq,
Eq,
serde::Deserialize,
serde::Serialize,
deserr::Deserr,
)]
#[serde(deny_unknown_fields, rename_all = "camelCase")]
#[deserr(rename_all = camelCase, deny_unknown_fields)]
pub enum WeightSource {
#[default]
Safetensors,
Pytorch,
}
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
pub struct EmbedderOptions {
pub model: String,
pub revision: Option<String>,
pub weight_source: WeightSource,
pub normalize_embeddings: bool,
}
impl EmbedderOptions {
pub fn new() -> Self {
Self {
//model: "sentence-transformers/all-MiniLM-L6-v2".to_string(),
model: "BAAI/bge-base-en-v1.5".to_string(),
//revision: Some("refs/pr/21".to_string()),
revision: None,
//weight_source: Default::default(),
weight_source: WeightSource::Pytorch,
normalize_embeddings: true,
}
}
}
impl Default for EmbedderOptions {
fn default() -> Self {
Self::new()
}
}
/// Perform embedding of documents and queries
pub struct Embedder {
model: BertModel,
tokenizer: Tokenizer,
options: EmbedderOptions,
}
impl std::fmt::Debug for Embedder {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Embedder")
.field("model", &self.options.model)
.field("tokenizer", &self.tokenizer)
.field("options", &self.options)
.finish()
}
}
impl Embedder {
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
let device = candle_core::Device::Cpu;
let repo = match options.revision.clone() {
Some(revision) => Repo::with_revision(options.model.clone(), RepoType::Model, revision),
None => Repo::model(options.model.clone()),
};
let (config_filename, tokenizer_filename, weights_filename) = {
let api = Api::new().map_err(NewEmbedderError::new_api_fail)?;
let api = api.repo(repo);
let config = api.get("config.json").map_err(NewEmbedderError::api_get)?;
let tokenizer = api.get("tokenizer.json").map_err(NewEmbedderError::api_get)?;
let weights = match options.weight_source {
WeightSource::Pytorch => {
api.get("pytorch_model.bin").map_err(NewEmbedderError::api_get)?
}
WeightSource::Safetensors => {
api.get("model.safetensors").map_err(NewEmbedderError::api_get)?
}
};
(config, tokenizer, weights)
};
let config = std::fs::read_to_string(&config_filename)
.map_err(|inner| NewEmbedderError::open_config(config_filename.clone(), inner))?;
let config: Config = serde_json::from_str(&config).map_err(|inner| {
NewEmbedderError::deserialize_config(config, config_filename, inner)
})?;
let mut tokenizer = Tokenizer::from_file(&tokenizer_filename)
.map_err(|inner| NewEmbedderError::open_tokenizer(tokenizer_filename, inner))?;
let vb = match options.weight_source {
WeightSource::Pytorch => VarBuilder::from_pth(&weights_filename, DTYPE, &device)
.map_err(NewEmbedderError::pytorch_weight)?,
WeightSource::Safetensors => unsafe {
VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)
.map_err(NewEmbedderError::safetensor_weight)?
},
};
let model = BertModel::load(vb, &config).map_err(NewEmbedderError::load_model)?;
if let Some(pp) = tokenizer.get_padding_mut() {
pp.strategy = tokenizers::PaddingStrategy::BatchLongest
} else {
let pp = PaddingParams {
strategy: tokenizers::PaddingStrategy::BatchLongest,
..Default::default()
};
tokenizer.with_padding(Some(pp));
}
Ok(Self { model, tokenizer, options })
}
pub async fn embed(
&self,
mut texts: Vec<String>,
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
let tokens = match texts.len() {
1 => vec![self
.tokenizer
.encode(texts.pop().unwrap(), true)
.map_err(EmbedError::tokenize)?],
_ => self.tokenizer.encode_batch(texts, true).map_err(EmbedError::tokenize)?,
};
let token_ids = tokens
.iter()
.map(|tokens| {
let tokens = tokens.get_ids().to_vec();
Tensor::new(tokens.as_slice(), &self.model.device).map_err(EmbedError::tensor_shape)
})
.collect::<Result<Vec<_>, EmbedError>>()?;
let token_ids = Tensor::stack(&token_ids, 0).map_err(EmbedError::tensor_shape)?;
let token_type_ids = token_ids.zeros_like().map_err(EmbedError::tensor_shape)?;
let embeddings =
self.model.forward(&token_ids, &token_type_ids).map_err(EmbedError::model_forward)?;
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
let (_n_sentence, n_tokens, _hidden_size) =
embeddings.dims3().map_err(EmbedError::tensor_shape)?;
let embeddings = (embeddings.sum(1).map_err(EmbedError::tensor_value)? / (n_tokens as f64))
.map_err(EmbedError::tensor_shape)?;
let embeddings: Tensor = if self.options.normalize_embeddings {
normalize_l2(&embeddings).map_err(EmbedError::tensor_value)?
} else {
embeddings
};
let embeddings: Vec<Embedding> = embeddings.to_vec2().map_err(EmbedError::tensor_shape)?;
Ok(embeddings.into_iter().map(Embeddings::from_single_embedding).collect())
}
pub async fn embed_chunks(
&self,
text_chunks: Vec<Vec<String>>,
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
futures::future::try_join_all(text_chunks.into_iter().map(|prompts| self.embed(prompts)))
.await
}
pub fn chunk_count_hint(&self) -> usize {
1
}
pub fn prompt_count_in_chunk_hint(&self) -> usize {
std::thread::available_parallelism().map(|x| x.get()).unwrap_or(8)
}
}
fn normalize_l2(v: &Tensor) -> Result<Tensor, candle_core::Error> {
v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?)
}

142
milli/src/vector/mod.rs Normal file
View file

@ -0,0 +1,142 @@
use self::error::{EmbedError, NewEmbedderError};
use crate::prompt::PromptData;
pub mod error;
pub mod hf;
pub mod openai;
pub mod settings;
pub use self::error::Error;
pub type Embedding = Vec<f32>;
pub struct Embeddings<F> {
data: Vec<F>,
dimension: usize,
}
impl<F> Embeddings<F> {
pub fn new(dimension: usize) -> Self {
Self { data: Default::default(), dimension }
}
pub fn from_single_embedding(embedding: Vec<F>) -> Self {
Self { dimension: embedding.len(), data: embedding }
}
pub fn from_inner(data: Vec<F>, dimension: usize) -> Result<Self, Vec<F>> {
let mut this = Self::new(dimension);
this.append(data)?;
Ok(this)
}
pub fn dimension(&self) -> usize {
self.dimension
}
pub fn into_inner(self) -> Vec<F> {
self.data
}
pub fn as_inner(&self) -> &[F] {
&self.data
}
pub fn iter(&self) -> impl Iterator<Item = &'_ [F]> + '_ {
self.data.as_slice().chunks_exact(self.dimension)
}
pub fn push(&mut self, mut embedding: Vec<F>) -> Result<(), Vec<F>> {
if embedding.len() != self.dimension {
return Err(embedding);
}
self.data.append(&mut embedding);
Ok(())
}
pub fn append(&mut self, mut embeddings: Vec<F>) -> Result<(), Vec<F>> {
if embeddings.len() % self.dimension != 0 {
return Err(embeddings);
}
self.data.append(&mut embeddings);
Ok(())
}
}
#[derive(Debug)]
pub enum Embedder {
HuggingFace(hf::Embedder),
OpenAi(openai::Embedder),
}
#[derive(Debug, Clone, Default, serde::Deserialize, serde::Serialize)]
pub struct EmbeddingConfig {
pub embedder_options: EmbedderOptions,
pub prompt: PromptData,
// TODO: add metrics and anything needed
}
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
pub enum EmbedderOptions {
HuggingFace(hf::EmbedderOptions),
OpenAi(openai::EmbedderOptions),
}
impl Default for EmbedderOptions {
fn default() -> Self {
Self::HuggingFace(Default::default())
}
}
impl EmbedderOptions {
pub fn huggingface() -> Self {
Self::HuggingFace(hf::EmbedderOptions::new())
}
pub fn openai(api_key: String) -> Self {
Self::OpenAi(openai::EmbedderOptions::with_default_model(api_key))
}
}
impl Embedder {
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
Ok(match options {
EmbedderOptions::HuggingFace(options) => Self::HuggingFace(hf::Embedder::new(options)?),
EmbedderOptions::OpenAi(options) => Self::OpenAi(openai::Embedder::new(options)?),
})
}
pub async fn embed(
&self,
texts: Vec<String>,
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed(texts).await,
Embedder::OpenAi(embedder) => embedder.embed(texts).await,
}
}
pub async fn embed_chunks(
&self,
text_chunks: Vec<Vec<String>>,
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed_chunks(text_chunks).await,
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks).await,
}
}
pub fn chunk_count_hint(&self) -> usize {
match self {
Embedder::HuggingFace(embedder) => embedder.chunk_count_hint(),
Embedder::OpenAi(embedder) => embedder.chunk_count_hint(),
}
}
pub fn prompt_count_in_chunk_hint(&self) -> usize {
match self {
Embedder::HuggingFace(embedder) => embedder.prompt_count_in_chunk_hint(),
Embedder::OpenAi(embedder) => embedder.prompt_count_in_chunk_hint(),
}
}
}

416
milli/src/vector/openai.rs Normal file
View file

@ -0,0 +1,416 @@
use std::fmt::Display;
use reqwest::StatusCode;
use serde::{Deserialize, Serialize};
use super::error::{EmbedError, NewEmbedderError};
use super::{Embedding, Embeddings};
#[derive(Debug)]
pub struct Embedder {
client: reqwest::Client,
tokenizer: tiktoken_rs::CoreBPE,
options: EmbedderOptions,
}
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
pub struct EmbedderOptions {
pub api_key: String,
pub embedding_model: EmbeddingModel,
}
#[derive(
Debug,
Clone,
Copy,
Default,
Hash,
PartialEq,
Eq,
serde::Serialize,
serde::Deserialize,
deserr::Deserr,
)]
#[serde(deny_unknown_fields, rename_all = "camelCase")]
#[deserr(rename_all = camelCase, deny_unknown_fields)]
pub enum EmbeddingModel {
#[default]
TextEmbeddingAda002,
}
impl EmbeddingModel {
pub fn max_token(&self) -> usize {
match self {
EmbeddingModel::TextEmbeddingAda002 => 8191,
}
}
pub fn dimensions(&self) -> usize {
match self {
EmbeddingModel::TextEmbeddingAda002 => 1536,
}
}
pub fn name(&self) -> &'static str {
match self {
EmbeddingModel::TextEmbeddingAda002 => "text-embedding-ada-002",
}
}
pub fn from_name(name: &'static str) -> Option<Self> {
match name {
"text-embedding-ada-002" => Some(EmbeddingModel::TextEmbeddingAda002),
_ => None,
}
}
}
pub const OPENAI_EMBEDDINGS_URL: &str = "https://api.openai.com/v1/embeddings";
impl EmbedderOptions {
pub fn with_default_model(api_key: String) -> Self {
Self { api_key, embedding_model: Default::default() }
}
pub fn with_embedding_model(api_key: String, embedding_model: EmbeddingModel) -> Self {
Self { api_key, embedding_model }
}
}
impl Embedder {
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
let mut headers = reqwest::header::HeaderMap::new();
headers.insert(
reqwest::header::AUTHORIZATION,
reqwest::header::HeaderValue::from_str(&format!("Bearer {}", &options.api_key))
.map_err(NewEmbedderError::openai_invalid_api_key_format)?,
);
headers.insert(
reqwest::header::CONTENT_TYPE,
reqwest::header::HeaderValue::from_static("application/json"),
);
let client = reqwest::ClientBuilder::new()
.default_headers(headers)
.build()
.map_err(NewEmbedderError::openai_initialize_web_client)?;
// looking at the code it is very unclear that this can actually fail.
let tokenizer = tiktoken_rs::cl100k_base().unwrap();
Ok(Self { options, client, tokenizer })
}
pub async fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
let mut tokenized = false;
for attempt in 0..7 {
let result = if tokenized {
self.try_embed_tokenized(&texts).await
} else {
self.try_embed(&texts).await
};
let retry_duration = match result {
Ok(embeddings) => return Ok(embeddings),
Err(retry) => {
log::warn!("Failed: {}", retry.error);
tokenized |= retry.must_tokenize();
retry.into_duration(attempt)
}
}?;
log::warn!("Attempt #{}, retrying after {}ms.", attempt, retry_duration.as_millis());
tokio::time::sleep(retry_duration).await;
}
let result = if tokenized {
self.try_embed_tokenized(&texts).await
} else {
self.try_embed(&texts).await
};
result.map_err(Retry::into_error)
}
async fn check_response(response: reqwest::Response) -> Result<reqwest::Response, Retry> {
if !response.status().is_success() {
match response.status() {
StatusCode::UNAUTHORIZED => {
let error_response: OpenAiErrorResponse = response
.json()
.await
.map_err(EmbedError::openai_unexpected)
.map_err(Retry::retry_later)?;
return Err(Retry::give_up(EmbedError::openai_auth_error(
error_response.error,
)));
}
StatusCode::TOO_MANY_REQUESTS => {
let error_response: OpenAiErrorResponse = response
.json()
.await
.map_err(EmbedError::openai_unexpected)
.map_err(Retry::retry_later)?;
return Err(Retry::rate_limited(EmbedError::openai_too_many_requests(
error_response.error,
)));
}
StatusCode::INTERNAL_SERVER_ERROR => {
let error_response: OpenAiErrorResponse = response
.json()
.await
.map_err(EmbedError::openai_unexpected)
.map_err(Retry::retry_later)?;
return Err(Retry::retry_later(EmbedError::openai_internal_server_error(
error_response.error,
)));
}
StatusCode::SERVICE_UNAVAILABLE => {
let error_response: OpenAiErrorResponse = response
.json()
.await
.map_err(EmbedError::openai_unexpected)
.map_err(Retry::retry_later)?;
return Err(Retry::retry_later(EmbedError::openai_internal_server_error(
error_response.error,
)));
}
StatusCode::BAD_REQUEST => {
// Most probably, one text contained too many tokens
let error_response: OpenAiErrorResponse = response
.json()
.await
.map_err(EmbedError::openai_unexpected)
.map_err(Retry::retry_later)?;
log::warn!("OpenAI: input was too long, retrying on tokenized version. For best performance, limit the size of your prompt.");
return Err(Retry::retry_tokenized(EmbedError::openai_too_many_tokens(
error_response.error,
)));
}
code => {
return Err(Retry::give_up(EmbedError::openai_unhandled_status_code(
code.as_u16(),
)));
}
}
}
Ok(response)
}
async fn try_embed<S: AsRef<str> + serde::Serialize>(
&self,
texts: &[S],
) -> Result<Vec<Embeddings<f32>>, Retry> {
for text in texts {
log::trace!("Received prompt: {}", text.as_ref())
}
let request = OpenAiRequest { model: self.options.embedding_model.name(), input: texts };
let response = self
.client
.post(OPENAI_EMBEDDINGS_URL)
.json(&request)
.send()
.await
.map_err(EmbedError::openai_network)
.map_err(Retry::retry_later)?;
let response = Self::check_response(response).await?;
let response: OpenAiResponse = response
.json()
.await
.map_err(EmbedError::openai_unexpected)
.map_err(Retry::retry_later)?;
log::trace!("response: {:?}", response.data);
Ok(response
.data
.into_iter()
.map(|data| Embeddings::from_single_embedding(data.embedding))
.collect())
}
async fn try_embed_tokenized(&self, text: &[String]) -> Result<Vec<Embeddings<f32>>, Retry> {
pub const OVERLAP_SIZE: usize = 200;
let mut all_embeddings = Vec::with_capacity(text.len());
for text in text {
let max_token_count = self.options.embedding_model.max_token();
let encoded = self.tokenizer.encode_ordinary(text.as_str());
let len = encoded.len();
if len < max_token_count {
all_embeddings.append(&mut self.try_embed(&[text]).await?);
continue;
}
let mut tokens = encoded.as_slice();
let mut embeddings_for_prompt =
Embeddings::new(self.options.embedding_model.dimensions());
while tokens.len() > max_token_count {
let window = &tokens[..max_token_count];
embeddings_for_prompt.push(self.embed_tokens(window).await?).unwrap();
tokens = &tokens[max_token_count - OVERLAP_SIZE..];
}
// end of text
embeddings_for_prompt.push(self.embed_tokens(tokens).await?).unwrap();
all_embeddings.push(embeddings_for_prompt);
}
Ok(all_embeddings)
}
async fn embed_tokens(&self, tokens: &[usize]) -> Result<Embedding, Retry> {
for attempt in 0..9 {
let duration = match self.try_embed_tokens(tokens).await {
Ok(embedding) => return Ok(embedding),
Err(retry) => retry.into_duration(attempt),
}
.map_err(Retry::retry_later)?;
tokio::time::sleep(duration).await;
}
self.try_embed_tokens(tokens).await.map_err(|retry| Retry::give_up(retry.into_error()))
}
async fn try_embed_tokens(&self, tokens: &[usize]) -> Result<Embedding, Retry> {
let request =
OpenAiTokensRequest { model: self.options.embedding_model.name(), input: tokens };
let response = self
.client
.post(OPENAI_EMBEDDINGS_URL)
.json(&request)
.send()
.await
.map_err(EmbedError::openai_network)
.map_err(Retry::retry_later)?;
let response = Self::check_response(response).await?;
let mut response: OpenAiResponse = response
.json()
.await
.map_err(EmbedError::openai_unexpected)
.map_err(Retry::retry_later)?;
Ok(response.data.pop().map(|data| data.embedding).unwrap_or_default())
}
pub async fn embed_chunks(
&self,
text_chunks: Vec<Vec<String>>,
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
futures::future::try_join_all(text_chunks.into_iter().map(|prompts| self.embed(prompts)))
.await
}
pub fn chunk_count_hint(&self) -> usize {
10
}
pub fn prompt_count_in_chunk_hint(&self) -> usize {
10
}
}
// retrying in case of failure
struct Retry {
error: EmbedError,
strategy: RetryStrategy,
}
enum RetryStrategy {
GiveUp,
Retry,
RetryTokenized,
RetryAfterRateLimit,
}
impl Retry {
fn give_up(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::GiveUp }
}
fn retry_later(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::Retry }
}
fn retry_tokenized(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::RetryTokenized }
}
fn rate_limited(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::RetryAfterRateLimit }
}
fn into_duration(self, attempt: u32) -> Result<tokio::time::Duration, EmbedError> {
match self.strategy {
RetryStrategy::GiveUp => Err(self.error),
RetryStrategy::Retry => Ok(tokio::time::Duration::from_millis((10u64).pow(attempt))),
RetryStrategy::RetryTokenized => Ok(tokio::time::Duration::from_millis(1)),
RetryStrategy::RetryAfterRateLimit => {
Ok(tokio::time::Duration::from_millis(100 + 10u64.pow(attempt)))
}
}
}
fn must_tokenize(&self) -> bool {
matches!(self.strategy, RetryStrategy::RetryTokenized)
}
fn into_error(self) -> EmbedError {
self.error
}
}
// openai api structs
#[derive(Debug, Serialize)]
struct OpenAiRequest<'a, S: AsRef<str> + serde::Serialize> {
model: &'a str,
input: &'a [S],
}
#[derive(Debug, Serialize)]
struct OpenAiTokensRequest<'a> {
model: &'a str,
input: &'a [usize],
}
#[derive(Debug, Deserialize)]
struct OpenAiResponse {
data: Vec<OpenAiEmbedding>,
}
#[derive(Debug, Deserialize)]
struct OpenAiErrorResponse {
error: OpenAiError,
}
#[derive(Debug, Deserialize)]
pub struct OpenAiError {
message: String,
// type: String,
code: Option<String>,
}
impl Display for OpenAiError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match &self.code {
Some(code) => write!(f, "{} ({})", self.message, code),
None => write!(f, "{}", self.message),
}
}
}
#[derive(Debug, Deserialize)]
struct OpenAiEmbedding {
embedding: Embedding,
// object: String,
// index: usize,
}

View file

@ -0,0 +1,308 @@
use deserr::Deserr;
use serde::{Deserialize, Serialize};
use crate::prompt::{PromptData, PromptFallbackStrategy};
use crate::update::Setting;
use crate::vector::hf::WeightSource;
use crate::vector::EmbeddingConfig;
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
#[serde(deny_unknown_fields, rename_all = "camelCase")]
#[deserr(rename_all = camelCase, deny_unknown_fields)]
pub struct EmbeddingSettings {
#[serde(default, skip_serializing_if = "Setting::is_not_set", rename = "source")]
#[deserr(default, rename = "source")]
pub embedder_options: Setting<EmbedderSettings>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub prompt: Setting<PromptSettings>,
}
impl EmbeddingSettings {
pub fn apply(&mut self, new: Self) {
let EmbeddingSettings { embedder_options, prompt } = new;
self.embedder_options.apply(embedder_options);
self.prompt.apply(prompt);
}
}
impl From<EmbeddingConfig> for EmbeddingSettings {
fn from(value: EmbeddingConfig) -> Self {
Self {
embedder_options: Setting::Set(value.embedder_options.into()),
prompt: Setting::Set(value.prompt.into()),
}
}
}
impl From<EmbeddingSettings> for EmbeddingConfig {
fn from(value: EmbeddingSettings) -> Self {
let mut this = Self::default();
let EmbeddingSettings { embedder_options, prompt } = value;
if let Some(embedder_options) = embedder_options.set() {
this.embedder_options = embedder_options.into();
}
if let Some(prompt) = prompt.set() {
this.prompt = prompt.into();
}
this
}
}
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
#[serde(deny_unknown_fields, rename_all = "camelCase")]
#[deserr(rename_all = camelCase, deny_unknown_fields)]
pub struct PromptSettings {
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub template: Setting<String>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub strategy: Setting<PromptFallbackStrategy>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub fallback: Setting<String>,
}
impl PromptSettings {
pub fn apply(&mut self, new: Self) {
let PromptSettings { template, strategy, fallback } = new;
self.template.apply(template);
self.strategy.apply(strategy);
self.fallback.apply(fallback);
}
}
impl From<PromptData> for PromptSettings {
fn from(value: PromptData) -> Self {
Self {
template: Setting::Set(value.template),
strategy: Setting::Set(value.strategy),
fallback: Setting::Set(value.fallback),
}
}
}
impl From<PromptSettings> for PromptData {
fn from(value: PromptSettings) -> Self {
let mut this = PromptData::default();
let PromptSettings { template, strategy, fallback } = value;
if let Some(template) = template.set() {
this.template = template;
}
if let Some(strategy) = strategy.set() {
this.strategy = strategy;
}
if let Some(fallback) = fallback.set() {
this.fallback = fallback;
}
this
}
}
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
#[serde(deny_unknown_fields, rename_all = "camelCase")]
pub enum EmbedderSettings {
HuggingFace(Setting<HfEmbedderSettings>),
OpenAi(Setting<OpenAiEmbedderSettings>),
}
impl<E> Deserr<E> for EmbedderSettings
where
E: deserr::DeserializeError,
{
fn deserialize_from_value<V: deserr::IntoValue>(
value: deserr::Value<V>,
location: deserr::ValuePointerRef,
) -> Result<Self, E> {
match value {
deserr::Value::Map(map) => {
if deserr::Map::len(&map) != 1 {
return Err(deserr::take_cf_content(E::error::<V>(
None,
deserr::ErrorKind::Unexpected {
msg: format!(
"Expected a single field, got {} fields",
deserr::Map::len(&map)
),
},
location,
)));
}
let mut it = deserr::Map::into_iter(map);
let (k, v) = it.next().unwrap();
match k.as_str() {
"huggingFace" => Ok(EmbedderSettings::HuggingFace(Setting::Set(
HfEmbedderSettings::deserialize_from_value(
v.into_value(),
location.push_key(&k),
)?,
))),
"openAi" => Ok(EmbedderSettings::OpenAi(Setting::Set(
OpenAiEmbedderSettings::deserialize_from_value(
v.into_value(),
location.push_key(&k),
)?,
))),
other => Err(deserr::take_cf_content(E::error::<V>(
None,
deserr::ErrorKind::UnknownKey {
key: other,
accepted: &["huggingFace", "openAi"],
},
location,
))),
}
}
_ => Err(deserr::take_cf_content(E::error::<V>(
None,
deserr::ErrorKind::IncorrectValueKind {
actual: value,
accepted: &[deserr::ValueKind::Map],
},
location,
))),
}
}
}
impl Default for EmbedderSettings {
fn default() -> Self {
Self::HuggingFace(Default::default())
}
}
impl From<crate::vector::EmbedderOptions> for EmbedderSettings {
fn from(value: crate::vector::EmbedderOptions) -> Self {
match value {
crate::vector::EmbedderOptions::HuggingFace(hf) => {
Self::HuggingFace(Setting::Set(hf.into()))
}
crate::vector::EmbedderOptions::OpenAi(openai) => {
Self::OpenAi(Setting::Set(openai.into()))
}
}
}
}
impl From<EmbedderSettings> for crate::vector::EmbedderOptions {
fn from(value: EmbedderSettings) -> Self {
match value {
EmbedderSettings::HuggingFace(Setting::Set(hf)) => Self::HuggingFace(hf.into()),
EmbedderSettings::HuggingFace(_setting) => Self::HuggingFace(Default::default()),
EmbedderSettings::OpenAi(Setting::Set(ai)) => Self::OpenAi(ai.into()),
EmbedderSettings::OpenAi(_setting) => Self::OpenAi(
crate::vector::openai::EmbedderOptions::with_default_model(infer_api_key()),
),
}
}
}
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
#[serde(deny_unknown_fields, rename_all = "camelCase")]
#[deserr(rename_all = camelCase, deny_unknown_fields)]
pub struct HfEmbedderSettings {
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub model: Setting<String>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub revision: Setting<String>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub weight_source: Setting<WeightSource>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub normalize_embeddings: Setting<bool>,
}
impl HfEmbedderSettings {
pub fn apply(&mut self, new: Self) {
let HfEmbedderSettings {
model,
revision,
weight_source,
normalize_embeddings: normalize_embedding,
} = new;
self.model.apply(model);
self.revision.apply(revision);
self.weight_source.apply(weight_source);
self.normalize_embeddings.apply(normalize_embedding);
}
}
impl From<crate::vector::hf::EmbedderOptions> for HfEmbedderSettings {
fn from(value: crate::vector::hf::EmbedderOptions) -> Self {
Self {
model: Setting::Set(value.model),
revision: value.revision.map(Setting::Set).unwrap_or(Setting::NotSet),
weight_source: Setting::Set(value.weight_source),
normalize_embeddings: Setting::Set(value.normalize_embeddings),
}
}
}
impl From<HfEmbedderSettings> for crate::vector::hf::EmbedderOptions {
fn from(value: HfEmbedderSettings) -> Self {
let HfEmbedderSettings { model, revision, weight_source, normalize_embeddings } = value;
let mut this = Self::default();
if let Some(model) = model.set() {
this.model = model;
}
if let Some(revision) = revision.set() {
this.revision = Some(revision);
}
if let Some(weight_source) = weight_source.set() {
this.weight_source = weight_source;
}
if let Some(normalize_embeddings) = normalize_embeddings.set() {
this.normalize_embeddings = normalize_embeddings;
}
this
}
}
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
#[serde(deny_unknown_fields, rename_all = "camelCase")]
#[deserr(rename_all = camelCase, deny_unknown_fields)]
pub struct OpenAiEmbedderSettings {
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub api_key: Setting<String>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub embedding_model: Setting<crate::vector::openai::EmbeddingModel>,
}
impl OpenAiEmbedderSettings {
pub fn apply(&mut self, new: Self) {
let Self { api_key, embedding_model: embedding_mode } = new;
self.api_key.apply(api_key);
self.embedding_model.apply(embedding_mode);
}
}
impl From<crate::vector::openai::EmbedderOptions> for OpenAiEmbedderSettings {
fn from(value: crate::vector::openai::EmbedderOptions) -> Self {
Self {
api_key: Setting::Set(value.api_key),
embedding_model: Setting::Set(value.embedding_model),
}
}
}
impl From<OpenAiEmbedderSettings> for crate::vector::openai::EmbedderOptions {
fn from(value: OpenAiEmbedderSettings) -> Self {
let OpenAiEmbedderSettings { api_key, embedding_model } = value;
Self {
api_key: api_key.set().unwrap_or_else(infer_api_key),
embedding_model: embedding_model.set().unwrap_or_default(),
}
}
}
fn infer_api_key() -> String {
/// FIXME: get key from instance options?
std::env::var("MEILI_OPENAI_API_KEY").unwrap_or_default()
}