mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-07-04 20:37:15 +02:00
Small commit to add hybrid search and autoembedding
This commit is contained in:
parent
21bcf32109
commit
13c2c6c16b
42 changed files with 4045 additions and 246 deletions
|
@ -2,12 +2,13 @@ use actix_web::web::Data;
|
|||
use actix_web::{web, HttpRequest, HttpResponse};
|
||||
use deserr::actix_web::{AwebJson, AwebQueryParameter};
|
||||
use index_scheduler::IndexScheduler;
|
||||
use log::debug;
|
||||
use log::{debug, warn};
|
||||
use meilisearch_types::deserr::query_params::Param;
|
||||
use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError};
|
||||
use meilisearch_types::error::deserr_codes::*;
|
||||
use meilisearch_types::error::ResponseError;
|
||||
use meilisearch_types::index_uid::IndexUid;
|
||||
use meilisearch_types::milli::VectorQuery;
|
||||
use meilisearch_types::serde_cs::vec::CS;
|
||||
use serde_json::Value;
|
||||
|
||||
|
@ -88,7 +89,7 @@ impl From<SearchQueryGet> for SearchQuery {
|
|||
|
||||
Self {
|
||||
q: other.q,
|
||||
vector: other.vector.map(CS::into_inner),
|
||||
vector: other.vector.map(CS::into_inner).map(VectorQuery::Vector),
|
||||
offset: other.offset.0,
|
||||
limit: other.limit.0,
|
||||
page: other.page.as_deref().copied(),
|
||||
|
@ -193,6 +194,9 @@ pub async fn search_with_post(
|
|||
let index = index_scheduler.index(&index_uid)?;
|
||||
|
||||
let features = index_scheduler.features();
|
||||
|
||||
embed(&mut query, index_scheduler.get_ref(), &index).await?;
|
||||
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features)).await?;
|
||||
if let Ok(ref search_result) = search_result {
|
||||
|
@ -206,6 +210,38 @@ pub async fn search_with_post(
|
|||
Ok(HttpResponse::Ok().json(search_result))
|
||||
}
|
||||
|
||||
pub async fn embed(
|
||||
query: &mut SearchQuery,
|
||||
index_scheduler: &IndexScheduler,
|
||||
index: &meilisearch_types::milli::Index,
|
||||
) -> Result<(), ResponseError> {
|
||||
if let Some(VectorQuery::String(prompt)) = query.vector.take() {
|
||||
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
|
||||
let embedder = index_scheduler.embedders(embedder_configs)?;
|
||||
|
||||
/// FIXME: add error if no embedder, remove unwrap, support multiple embedders
|
||||
let embeddings = embedder
|
||||
.get("default")
|
||||
.unwrap()
|
||||
.0
|
||||
.embed(vec![prompt])
|
||||
.await
|
||||
.map_err(meilisearch_types::milli::vector::Error::from)
|
||||
.map_err(meilisearch_types::milli::UserError::from)
|
||||
.map_err(meilisearch_types::milli::Error::from)?
|
||||
.pop()
|
||||
.expect("No vector returned from embedding");
|
||||
|
||||
if embeddings.iter().nth(1).is_some() {
|
||||
warn!("Ignoring embeddings past the first one in long search query");
|
||||
query.vector = Some(VectorQuery::Vector(embeddings.iter().next().unwrap().to_vec()));
|
||||
} else {
|
||||
query.vector = Some(VectorQuery::Vector(embeddings.into_inner()));
|
||||
}
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue