2024-09-19 10:55:20 +02:00
use meili_snap ::{ json_string , snapshot } ;
use crate ::common ::{ GetAllDocumentsOptions , Server } ;
use crate ::json ;
use crate ::vector ::generate_default_user_provided_documents ;
2024-09-19 11:16:30 +02:00
#[ actix_rt::test ]
async fn retrieve_binary_quantize_status_in_the_settings ( ) {
let server = Server ::new ( ) . await ;
let index = server . index ( " doggo " ) ;
let ( value , code ) = server . set_features ( json! ( { " vectorStore " : true } ) ) . await ;
snapshot! ( code , @ " 200 OK " ) ;
snapshot! ( value , @ r ###"
{
" vectorStore " : true ,
" metrics " : false ,
" logsRoute " : false ,
" editDocumentsByFunction " : false ,
" containsFilter " : false
}
" ###);
let ( response , code ) = index
. update_settings ( json! ( {
" embedders " : {
" manual " : {
" source " : " userProvided " ,
" dimensions " : 3 ,
}
} ,
} ) )
. await ;
snapshot! ( code , @ " 202 Accepted " ) ;
server . wait_task ( response . uid ( ) ) . await . succeeded ( ) ;
let ( settings , code ) = index . settings ( ) . await ;
snapshot! ( code , @ " 200 OK " ) ;
snapshot! ( settings [ " embedders " ] [ " manual " ] , @ r ### "{"source":"userProvided","dimensions":3}"### ) ;
let ( response , code ) = index
. update_settings ( json! ( {
" embedders " : {
" manual " : {
" source " : " userProvided " ,
" dimensions " : 3 ,
" binaryQuantized " : false ,
}
} ,
} ) )
. await ;
snapshot! ( code , @ " 202 Accepted " ) ;
server . wait_task ( response . uid ( ) ) . await . succeeded ( ) ;
let ( settings , code ) = index . settings ( ) . await ;
snapshot! ( code , @ " 200 OK " ) ;
snapshot! ( settings [ " embedders " ] [ " manual " ] , @ r ### "{"source":"userProvided","dimensions":3,"binaryQuantized":false}"### ) ;
let ( response , code ) = index
. update_settings ( json! ( {
" embedders " : {
" manual " : {
" source " : " userProvided " ,
" dimensions " : 3 ,
" binaryQuantized " : true ,
}
} ,
} ) )
. await ;
snapshot! ( code , @ " 202 Accepted " ) ;
server . wait_task ( response . uid ( ) ) . await . succeeded ( ) ;
let ( settings , code ) = index . settings ( ) . await ;
snapshot! ( code , @ " 200 OK " ) ;
snapshot! ( settings [ " embedders " ] [ " manual " ] , @ r ### "{"source":"userProvided","dimensions":3,"binaryQuantized":true}"### ) ;
}
2024-09-19 10:55:20 +02:00
#[ actix_rt::test ]
async fn binary_quantize_before_sending_documents ( ) {
let server = Server ::new ( ) . await ;
let index = server . index ( " doggo " ) ;
let ( value , code ) = server . set_features ( json! ( { " vectorStore " : true } ) ) . await ;
snapshot! ( code , @ " 200 OK " ) ;
snapshot! ( value , @ r ###"
{
" vectorStore " : true ,
" metrics " : false ,
" logsRoute " : false ,
" editDocumentsByFunction " : false ,
" containsFilter " : false
}
" ###);
let ( response , code ) = index
. update_settings ( json! ( {
" embedders " : {
" manual " : {
" source " : " userProvided " ,
" dimensions " : 3 ,
" binaryQuantized " : true ,
}
} ,
} ) )
. await ;
snapshot! ( code , @ " 202 Accepted " ) ;
2024-09-19 11:16:30 +02:00
server . wait_task ( response . uid ( ) ) . await . succeeded ( ) ;
2024-09-19 10:55:20 +02:00
let documents = json! ( [
{ " id " : 0 , " name " : " kefir " , " _vectors " : { " manual " : [ - 1.2 , - 2.3 , 3.2 ] } } ,
{ " id " : 1 , " name " : " echo " , " _vectors " : { " manual " : [ 2.5 , 1.5 , - 130 ] } } ,
] ) ;
let ( value , code ) = index . add_documents ( documents , None ) . await ;
snapshot! ( code , @ " 202 Accepted " ) ;
2024-09-19 11:16:30 +02:00
index . wait_task ( value . uid ( ) ) . await . succeeded ( ) ;
2024-09-19 10:55:20 +02:00
2024-09-19 11:41:55 +02:00
// Make sure the documents are binary quantized
2024-09-19 10:55:20 +02:00
let ( documents , _code ) = index
. get_all_documents ( GetAllDocumentsOptions { retrieve_vectors : true , .. Default ::default ( ) } )
. await ;
snapshot! ( json_string! ( documents ) , @ r ###"
{
2024-09-19 11:41:55 +02:00
" results " : [
{
" id " : 0 ,
" name " : " kefir " ,
" _vectors " : {
" manual " : {
" embeddings " : [
[
- 1.0 ,
- 1.0 ,
1.0
]
] ,
" regenerate " : false
}
}
} ,
{
" id " : 1 ,
" name " : " echo " ,
" _vectors " : {
" manual " : {
" embeddings " : [
[
1.0 ,
1.0 ,
- 1.0
]
] ,
" regenerate " : false
}
}
}
] ,
" offset " : 0 ,
" limit " : 20 ,
" total " : 2
2024-09-19 10:55:20 +02:00
}
" ###);
}
#[ actix_rt::test ]
async fn binary_quantize_after_sending_documents ( ) {
let server = Server ::new ( ) . await ;
let index = server . index ( " doggo " ) ;
let ( value , code ) = server . set_features ( json! ( { " vectorStore " : true } ) ) . await ;
snapshot! ( code , @ " 200 OK " ) ;
snapshot! ( value , @ r ###"
{
" vectorStore " : true ,
" metrics " : false ,
" logsRoute " : false ,
" editDocumentsByFunction " : false ,
" containsFilter " : false
}
" ###);
let ( response , code ) = index
. update_settings ( json! ( {
" embedders " : {
" manual " : {
" source " : " userProvided " ,
" dimensions " : 3 ,
}
} ,
} ) )
. await ;
snapshot! ( code , @ " 202 Accepted " ) ;
2024-09-19 11:16:30 +02:00
server . wait_task ( response . uid ( ) ) . await . succeeded ( ) ;
2024-09-19 10:55:20 +02:00
let documents = json! ( [
{ " id " : 0 , " name " : " kefir " , " _vectors " : { " manual " : [ - 1.2 , - 2.3 , 3.2 ] } } ,
{ " id " : 1 , " name " : " echo " , " _vectors " : { " manual " : [ 2.5 , 1.5 , - 130 ] } } ,
] ) ;
let ( value , code ) = index . add_documents ( documents , None ) . await ;
snapshot! ( code , @ " 202 Accepted " ) ;
2024-09-19 11:16:30 +02:00
index . wait_task ( value . uid ( ) ) . await . succeeded ( ) ;
2024-09-19 10:55:20 +02:00
let ( response , code ) = index
. update_settings ( json! ( {
" embedders " : {
" manual " : {
" source " : " userProvided " ,
" dimensions " : 3 ,
" binaryQuantized " : true ,
}
} ,
} ) )
. await ;
snapshot! ( code , @ " 202 Accepted " ) ;
2024-09-19 11:16:30 +02:00
server . wait_task ( response . uid ( ) ) . await . succeeded ( ) ;
2024-09-19 10:55:20 +02:00
// Make sure the documents are binary quantized
let ( documents , _code ) = index
. get_all_documents ( GetAllDocumentsOptions { retrieve_vectors : true , .. Default ::default ( ) } )
. await ;
snapshot! ( json_string! ( documents ) , @ r ###"
{
" results " : [
{
" id " : 0 ,
" name " : " kefir " ,
" _vectors " : {
" manual " : {
" embeddings " : [
[
- 1.0 ,
- 1.0 ,
1.0
]
] ,
" regenerate " : false
}
}
} ,
{
" id " : 1 ,
" name " : " echo " ,
" _vectors " : {
" manual " : {
" embeddings " : [
[
1.0 ,
1.0 ,
- 1.0
]
] ,
" regenerate " : false
}
}
}
] ,
" offset " : 0 ,
" limit " : 20 ,
" total " : 2
}
" ###);
}
#[ actix_rt::test ]
async fn try_to_disable_binary_quantization ( ) {
let server = Server ::new ( ) . await ;
let index = server . index ( " doggo " ) ;
let ( value , code ) = server . set_features ( json! ( { " vectorStore " : true } ) ) . await ;
snapshot! ( code , @ " 200 OK " ) ;
snapshot! ( value , @ r ###"
{
" vectorStore " : true ,
" metrics " : false ,
" logsRoute " : false ,
" editDocumentsByFunction " : false ,
" containsFilter " : false
}
" ###);
let ( response , code ) = index
. update_settings ( json! ( {
" embedders " : {
" manual " : {
" source " : " userProvided " ,
" dimensions " : 3 ,
" binaryQuantized " : true ,
}
} ,
} ) )
. await ;
snapshot! ( code , @ " 202 Accepted " ) ;
2024-09-19 11:16:30 +02:00
server . wait_task ( response . uid ( ) ) . await . succeeded ( ) ;
2024-09-19 10:55:20 +02:00
let ( response , code ) = index
. update_settings ( json! ( {
" embedders " : {
" manual " : {
" source " : " userProvided " ,
" dimensions " : 3 ,
" binaryQuantized " : false ,
}
} ,
} ) )
. await ;
snapshot! ( code , @ " 202 Accepted " ) ;
let ret = server . wait_task ( response . uid ( ) ) . await ;
snapshot! ( ret , @ r ###"
{
" uid " : " [uid] " ,
2024-11-13 11:27:12 +01:00
" batchUid " : " [batch_uid] " ,
2024-09-19 10:55:20 +02:00
" indexUid " : " doggo " ,
" status " : " failed " ,
" type " : " settingsUpdate " ,
" canceledBy " : null ,
" details " : {
" embedders " : {
" manual " : {
" source " : " userProvided " ,
" dimensions " : 3 ,
" binaryQuantized " : false
}
}
} ,
" error " : {
2024-09-19 15:51:29 +02:00
" message " : " `.embedders.manual.binaryQuantized`: Cannot disable the binary quantization. \n - Note: Binary quantization is a lossy operation that cannot be reverted. \n - Hint: Add a new embedder that is non-quantized and regenerate the vectors. " ,
2024-09-19 10:55:20 +02:00
" code " : " invalid_settings_embedders " ,
" type " : " invalid_request " ,
" link " : " https://docs.meilisearch.com/errors#invalid_settings_embedders "
} ,
" duration " : " [duration] " ,
" enqueuedAt " : " [date] " ,
" startedAt " : " [date] " ,
" finishedAt " : " [date] "
}
" ###);
}
#[ actix_rt::test ]
async fn binary_quantize_clear_documents ( ) {
let server = Server ::new ( ) . await ;
let index = generate_default_user_provided_documents ( & server ) . await ;
let ( response , code ) = index
. update_settings ( json! ( {
" embedders " : {
" manual " : {
" binaryQuantized " : true ,
}
} ,
} ) )
. await ;
snapshot! ( code , @ " 202 Accepted " ) ;
server . wait_task ( response . uid ( ) ) . await . succeeded ( ) ;
let ( value , _code ) = index . clear_all_documents ( ) . await ;
2024-09-19 11:16:30 +02:00
index . wait_task ( value . uid ( ) ) . await . succeeded ( ) ;
2024-09-19 10:55:20 +02:00
// Make sure the documents DB has been cleared
let ( documents , _code ) = index
. get_all_documents ( GetAllDocumentsOptions { retrieve_vectors : true , .. Default ::default ( ) } )
. await ;
snapshot! ( json_string! ( documents ) , @ r ###"
{
" results " : [ ] ,
" offset " : 0 ,
" limit " : 20 ,
" total " : 0
}
" ###);
// Make sure the arroy DB has been cleared
2024-09-19 12:08:59 +02:00
let ( documents , _code ) =
index . search_post ( json! ( { " hybrid " : { " embedder " : " manual " } , " vector " : [ 1 , 1 , 1 ] } ) ) . await ;
2024-09-19 10:55:20 +02:00
snapshot! ( documents , @ r ###"
{
" hits " : [ ] ,
" query " : " " ,
" processingTimeMs " : " [duration] " ,
" limit " : 20 ,
" offset " : 0 ,
" estimatedTotalHits " : 0 ,
" semanticHitCount " : 0
}
" ###);
}