MeiliSearch/src/bin/infos.rs

467 lines
16 KiB
Rust
Raw Normal View History

use std::path::PathBuf;
use std::{str, io};
use anyhow::Context;
use heed::EnvOpenOptions;
use milli::Index;
use structopt::StructOpt;
use Command::*;
#[cfg(target_os = "linux")]
#[global_allocator]
static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc;
const MAIN_DB_NAME: &str = "main";
const WORD_DOCIDS_DB_NAME: &str = "word-docids";
const DOCID_WORD_POSITIONS_DB_NAME: &str = "docid-word-positions";
const WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME: &str = "word-pair-proximity-docids";
const DOCUMENTS_DB_NAME: &str = "documents";
const DATABASE_NAMES: &[&str] = &[
MAIN_DB_NAME,
WORD_DOCIDS_DB_NAME,
DOCID_WORD_POSITIONS_DB_NAME,
WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME,
DOCUMENTS_DB_NAME,
];
#[derive(Debug, StructOpt)]
#[structopt(name = "milli-info", about = "A stats crawler for milli.")]
struct Opt {
/// The database path where the database is located.
/// It is created if it doesn't already exist.
#[structopt(long = "db", parse(from_os_str))]
database: PathBuf,
/// The maximum size the database can take on disk. It is recommended to specify
/// the whole disk space (value must be a multiple of a page size).
#[structopt(long = "db-size", default_value = "107374182400")] // 100 GB
database_size: usize,
/// Verbose mode (-v, -vv, -vvv, etc.)
#[structopt(short, long, parse(from_occurrences))]
verbose: usize,
#[structopt(subcommand)]
command: Command,
}
#[derive(Debug, StructOpt)]
enum Command {
/// Outputs a CSV of the most frequent words of this index.
///
/// `word` are displayed and ordered by frequency.
/// `document_frequency` defines the number of documents which contains the word.
MostCommonWords {
/// The maximum number of frequencies to return.
#[structopt(default_value = "10")]
limit: usize,
},
/// Outputs a CSV with the biggest entries of the database.
2020-09-06 17:14:20 +02:00
BiggestValues {
/// The maximum number of sizes to return.
#[structopt(default_value = "10")]
limit: usize,
},
/// Outputs a CSV with the documents ids where the given words appears.
WordsDocids {
/// Display the whole documents ids in details.
#[structopt(long)]
full_display: bool,
/// The words to display the documents ids of.
words: Vec<String>,
},
2020-09-07 14:56:48 +02:00
/// Outputs the total size of all the docid-word-positions keys and values.
TotalDocidWordPositionsSize,
/// Outputs the average number of *different* words by document.
AverageNumberOfWordsByDoc,
/// Outputs the average number of positions for each document words.
AverageNumberOfPositionsByWord,
/// Outputs some statistics about the words pairs proximities
/// (median, quartiles, percentiles, minimum, maximum, averge).
WordPairProximityStats,
/// Outputs the size in bytes of the specified database.
SizeOfDatabase {
#[structopt(possible_values = DATABASE_NAMES)]
database: String,
},
/// Outputs a CSV with the proximities for the two specidied words and
/// the documents ids where these relations appears.
///
/// `word1`, `word2` defines the word pair specified *in this specific order*.
/// `proximity` defines the proximity between the two specified words.
/// `documents_ids` defines the documents ids where the relation appears.
WordPairProximitiesDocids {
/// Display the whole documents ids in details.
#[structopt(long)]
full_display: bool,
/// First word of the word pair.
word1: String,
/// Second word of the word pair.
word2: String,
},
2020-09-06 17:14:20 +02:00
/// Outputs the words FST to disk.
///
/// One can use the FST binary helper to dissect and analyze it,
/// you can install it using `cargo install fst-bin`.
ExportWordsFst {
/// The path where the FST will be written.
#[structopt(short, long, default_value = "words.fst")]
output: PathBuf,
},
}
fn main() -> anyhow::Result<()> {
let opt = Opt::from_args();
stderrlog::new()
.verbosity(opt.verbose)
.show_level(false)
.timestamp(stderrlog::Timestamp::Off)
.init()?;
let env = EnvOpenOptions::new()
.map_size(opt.database_size)
.max_dbs(10)
.open(&opt.database)?;
// Open the LMDB database.
let index = Index::new(&env)?;
let rtxn = env.read_txn()?;
match opt.command {
MostCommonWords { limit } => most_common_words(&index, &rtxn, limit),
2020-09-06 17:14:20 +02:00
BiggestValues { limit } => biggest_value_sizes(&index, &rtxn, limit),
WordsDocids { full_display, words } => words_docids(&index, &rtxn, !full_display, words),
2020-09-07 14:56:48 +02:00
TotalDocidWordPositionsSize => total_docid_word_positions_size(&index, &rtxn),
AverageNumberOfWordsByDoc => average_number_of_words_by_doc(&index, &rtxn),
AverageNumberOfPositionsByWord => {
average_number_of_positions_by_word(&index, &rtxn)
},
SizeOfDatabase { database } => size_of_database(&index, &rtxn, &database),
WordPairProximityStats => word_pair_proximity_stats(&index, &rtxn),
WordPairProximitiesDocids { full_display, word1, word2 } => {
word_pair_proximities_docids(&index, &rtxn, !full_display, word1, word2)
},
2020-09-06 17:14:20 +02:00
ExportWordsFst { output } => export_words_fst(&index, &rtxn, output),
}
}
fn most_common_words(index: &Index, rtxn: &heed::RoTxn, limit: usize) -> anyhow::Result<()> {
use std::collections::BinaryHeap;
use std::cmp::Reverse;
let mut heap = BinaryHeap::with_capacity(limit + 1);
2020-09-06 17:14:20 +02:00
for result in index.word_docids.iter(rtxn)? {
if limit == 0 { break }
2020-09-06 17:14:20 +02:00
let (word, docids) = result?;
heap.push((Reverse(docids.len()), word));
if heap.len() > limit { heap.pop(); }
}
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
2020-09-06 17:14:20 +02:00
wtr.write_record(&["word", "document_frequency"])?;
2020-09-06 17:14:20 +02:00
for (Reverse(document_frequency), word) in heap.into_sorted_vec() {
wtr.write_record(&[word, &document_frequency.to_string()])?;
}
Ok(wtr.flush()?)
}
fn biggest_value_sizes(index: &Index, rtxn: &heed::RoTxn, limit: usize) -> anyhow::Result<()> {
use std::cmp::Reverse;
use std::collections::BinaryHeap;
use heed::types::{Str, ByteSlice};
2020-09-06 17:14:20 +02:00
use milli::heed_codec::BEU32StrCodec;
let main_name = "main";
2020-09-06 17:14:20 +02:00
let word_docids_name = "word_docids";
let docid_word_positions_name = "docid_word_positions";
let mut heap = BinaryHeap::with_capacity(limit + 1);
if limit > 0 {
if let Some(fst) = index.fst(rtxn)? {
heap.push(Reverse((fst.as_fst().as_bytes().len(), format!("words-fst"), main_name)));
if heap.len() > limit { heap.pop(); }
}
if let Some(documents) = index.main.get::<_, Str, ByteSlice>(rtxn, "documents")? {
heap.push(Reverse((documents.len(), format!("documents"), main_name)));
if heap.len() > limit { heap.pop(); }
}
if let Some(documents_ids) = index.main.get::<_, Str, ByteSlice>(rtxn, "documents-ids")? {
heap.push(Reverse((documents_ids.len(), format!("documents-ids"), main_name)));
if heap.len() > limit { heap.pop(); }
}
2020-09-06 17:14:20 +02:00
for result in index.word_docids.as_polymorph().iter::<_, Str, ByteSlice>(rtxn)? {
let (word, value) = result?;
2020-09-06 17:14:20 +02:00
heap.push(Reverse((value.len(), word.to_string(), word_docids_name)));
if heap.len() > limit { heap.pop(); }
}
2020-09-06 17:14:20 +02:00
for result in index.docid_word_positions.as_polymorph().iter::<_, BEU32StrCodec, ByteSlice>(rtxn)? {
let ((docid, word), value) = result?;
let key = format!("{} {}", docid, word);
heap.push(Reverse((value.len(), key, docid_word_positions_name)));
if heap.len() > limit { heap.pop(); }
}
}
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
wtr.write_record(&["database_name", "key_name", "size"])?;
for Reverse((size, key_name, database_name)) in heap.into_sorted_vec() {
wtr.write_record(&[database_name.to_string(), key_name, size.to_string()])?;
}
Ok(wtr.flush()?)
}
fn words_docids(index: &Index, rtxn: &heed::RoTxn, debug: bool, words: Vec<String>) -> anyhow::Result<()> {
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
wtr.write_record(&["word", "documents_ids"])?;
for word in words {
if let Some(docids) = index.word_docids.get(rtxn, &word)? {
let docids = if debug {
format!("{:?}", docids)
} else {
format!("{:?}", docids.iter().collect::<Vec<_>>())
};
wtr.write_record(&[word, docids])?;
}
}
Ok(wtr.flush()?)
}
2020-09-06 17:14:20 +02:00
fn export_words_fst(index: &Index, rtxn: &heed::RoTxn, output: PathBuf) -> anyhow::Result<()> {
use std::fs::File;
use std::io::Write as _;
2020-09-06 17:14:20 +02:00
let mut output = File::create(&output)
.with_context(|| format!("failed to create {} file", output.display()))?;
2020-09-06 17:14:20 +02:00
match index.fst(rtxn)? {
Some(fst) => output.write_all(fst.as_fst().as_bytes())?,
None => {
let fst = fst::Set::default();
output.write_all(fst.as_fst().as_bytes())?;
},
}
2020-09-06 17:14:20 +02:00
Ok(())
}
2020-09-07 14:56:48 +02:00
fn total_docid_word_positions_size(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> {
use heed::types::ByteSlice;
let mut total_key_size = 0;
let mut total_val_size = 0;
let mut count = 0;
let iter = index.docid_word_positions.as_polymorph().iter::<_, ByteSlice, ByteSlice>(rtxn)?;
for result in iter {
let (key, val) = result?;
total_key_size += key.len();
total_val_size += val.len();
count += 1;
}
println!("number of keys: {}", count);
println!("total key size: {}", total_key_size);
println!("total value size: {}", total_val_size);
Ok(())
}
fn average_number_of_words_by_doc(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> {
use heed::types::DecodeIgnore;
use milli::{DocumentId, BEU32StrCodec};
let mut words_counts = Vec::new();
let mut count = 0;
let mut prev = None as Option<(DocumentId, u32)>;
let iter = index.docid_word_positions.as_polymorph().iter::<_, BEU32StrCodec, DecodeIgnore>(rtxn)?;
for result in iter {
let ((docid, _word), ()) = result?;
match prev.as_mut() {
Some((prev_docid, prev_count)) if docid == *prev_docid => {
*prev_count += 1;
},
Some((prev_docid, prev_count)) => {
words_counts.push(*prev_count);
*prev_docid = docid;
*prev_count = 0;
count += 1;
},
None => prev = Some((docid, 1)),
}
}
if let Some((_, prev_count)) = prev.take() {
words_counts.push(prev_count);
count += 1;
}
let words_count = words_counts.into_iter().map(|c| c as usize).sum::<usize>() as f64;
let count = count as f64;
println!("average number of different words by document: {}", words_count / count);
Ok(())
}
fn average_number_of_positions_by_word(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> {
use heed::types::DecodeIgnore;
use milli::ByteorderXRoaringBitmapCodec;
let mut values_length = Vec::new();
let mut count = 0;
let db = index.docid_word_positions.as_polymorph();
for result in db.iter::<_, DecodeIgnore, ByteorderXRoaringBitmapCodec>(rtxn)? {
let ((), val) = result?;
values_length.push(val.len() as u32);
count += 1;
}
let values_length_sum = values_length.into_iter().map(|c| c as usize).sum::<usize>() as f64;
let count = count as f64;
println!("average number of positions by word: {}", values_length_sum / count);
Ok(())
}
fn size_of_database(index: &Index, rtxn: &heed::RoTxn, name: &str) -> anyhow::Result<()> {
use heed::types::ByteSlice;
let database = match name {
MAIN_DB_NAME => &index.main,
WORD_DOCIDS_DB_NAME => index.word_docids.as_polymorph(),
DOCID_WORD_POSITIONS_DB_NAME => index.docid_word_positions.as_polymorph(),
WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME => index.word_pair_proximity_docids.as_polymorph(),
DOCUMENTS_DB_NAME => index.documents.as_polymorph(),
otherwise => anyhow::bail!("unknown database {:?}", otherwise),
};
let mut key_size: u64 = 0;
let mut val_size: u64 = 0;
for result in database.iter::<_, ByteSlice, ByteSlice>(rtxn)? {
let (k, v) = result?;
key_size += k.len() as u64;
val_size += v.len() as u64;
}
eprintln!("The {} database weigh {} bytes in terms of keys and {} bytes in terms of values.",
name, key_size, val_size,
);
Ok(())
}
fn word_pair_proximity_stats(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> {
use heed::types::DecodeIgnore;
use milli::RoaringBitmapCodec;
let mut values_length = Vec::new();
let db = index.word_pair_proximity_docids.as_polymorph();
for result in db.iter::<_, DecodeIgnore, RoaringBitmapCodec>(rtxn)? {
let ((), val) = result?;
values_length.push(val.len() as u32);
}
values_length.sort_unstable();
let median = values_length.get(values_length.len() / 2).unwrap_or(&0);
let first_quartile = values_length.get(values_length.len() / 4).unwrap_or(&0);
let third_quartile = values_length.get(values_length.len() / 4 * 3).unwrap_or(&0);
let ninety_percentile = values_length.get(values_length.len() / 100 * 90).unwrap_or(&0);
let ninety_five_percentile = values_length.get(values_length.len() / 100 * 95).unwrap_or(&0);
let ninety_nine_percentile = values_length.get(values_length.len() / 100 * 99).unwrap_or(&0);
let minimum = values_length.first().unwrap_or(&0);
let maximum = values_length.last().unwrap_or(&0);
let count = values_length.len();
let sum = values_length.iter().map(|l| *l as u64).sum::<u64>();
println!("words pairs proximities stats on the lengths");
println!("\tnumber of proximity pairs: {}", count);
println!("\tfirst quartile: {}", first_quartile);
println!("\tmedian: {}", median);
println!("\tthird quartile: {}", third_quartile);
println!("\t90th percentile: {}", ninety_percentile);
println!("\t95th percentile: {}", ninety_five_percentile);
println!("\t99th percentile: {}", ninety_nine_percentile);
println!("\tminimum: {}", minimum);
println!("\tmaximum: {}", maximum);
println!("\taverage: {}", sum as f64 / count as f64);
Ok(())
}
fn word_pair_proximities_docids(
index: &Index,
rtxn: &heed::RoTxn,
debug: bool,
word1: String,
word2: String,
) -> anyhow::Result<()>
{
use heed::types::ByteSlice;
use milli::RoaringBitmapCodec;
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
wtr.write_record(&["word1", "word2", "proximity", "documents_ids"])?;
// Create the prefix key with only the pair of words.
let mut prefix = Vec::with_capacity(word1.len() + word2.len() + 1);
prefix.extend_from_slice(word1.as_bytes());
prefix.push(0);
prefix.extend_from_slice(word2.as_bytes());
let db = index.word_pair_proximity_docids.as_polymorph();
let iter = db.prefix_iter::<_, ByteSlice, RoaringBitmapCodec>(rtxn, &prefix)?;
for result in iter {
let (key, docids) = result?;
// Skip keys that are longer than the requested one,
// a longer key means that the second word is a prefix of the request word.
if key.len() != prefix.len() + 1 { continue; }
let proximity = key.last().unwrap();
let docids = if debug {
format!("{:?}", docids)
} else {
format!("{:?}", docids.iter().collect::<Vec<_>>())
};
wtr.write_record(&[&word1, &word2, &proximity.to_string(), &docids])?;
}
Ok(wtr.flush()?)
}