MeiliSearch/src/lib.rs

144 lines
3.9 KiB
Rust
Raw Normal View History

mod automaton;
2019-10-03 11:49:13 +02:00
mod number;
mod query_builder;
mod raw_document;
mod reordered_attrs;
2019-10-03 11:49:13 +02:00
mod ranked_map;
pub mod criterion;
pub mod raw_indexer;
2019-10-03 11:49:13 +02:00
pub mod serde;
pub mod store;
pub use self::query_builder::QueryBuilder;
pub use self::raw_document::RawDocument;
2019-10-03 11:49:13 +02:00
use self::number::{Number, ParseNumberError};
use self::ranked_map::RankedMap;
use zerocopy::{AsBytes, FromBytes};
2019-10-03 11:49:13 +02:00
use ::serde::{Serialize, Deserialize};
pub type BEI64 = zerocopy::I64<byteorder::BigEndian>;
/// Represent an internally generated document unique identifier.
///
/// It is used to inform the database the document you want to deserialize.
/// Helpful for custom ranking.
#[derive(Debug, Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Hash)]
2019-10-03 11:49:13 +02:00
#[derive(Serialize, Deserialize)]
#[derive(AsBytes, FromBytes)]
#[repr(C)]
2019-10-03 11:49:13 +02:00
pub struct DocumentId(pub u64);
/// This structure represent the position of a word
/// in a document and its attributes.
///
/// This is stored in the map, generated at index time,
/// extracted and interpreted at search time.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[derive(AsBytes, FromBytes)]
#[repr(C)]
pub struct DocIndex {
/// The document identifier where the word was found.
pub document_id: DocumentId,
/// The attribute in the document where the word was found
/// along with the index in it.
pub attribute: u16,
pub word_index: u16,
/// The position in bytes where the word was found
/// along with the length of it.
///
/// It informs on the original word area in the text indexed
/// without needing to run the tokenizer again.
pub char_index: u16,
pub char_length: u16,
}
/// This structure represent a matching word with informations
/// on the location of the word in the document.
///
/// The order of the field is important because it defines
/// the way these structures are ordered between themselves.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Highlight {
/// The attribute in the document where the word was found
/// along with the index in it.
pub attribute: u16,
/// The position in bytes where the word was found.
///
/// It informs on the original word area in the text indexed
/// without needing to run the tokenizer again.
pub char_index: u16,
/// The length in bytes of the found word.
///
/// It informs on the original word area in the text indexed
/// without needing to run the tokenizer again.
pub char_length: u16,
}
#[doc(hidden)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct TmpMatch {
pub query_index: u32,
pub distance: u8,
pub attribute: u16,
pub word_index: u16,
pub is_exact: bool,
}
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Document {
pub id: DocumentId,
pub highlights: Vec<Highlight>,
#[cfg(test)]
pub matches: Vec<TmpMatch>,
}
impl Document {
#[cfg(not(test))]
fn from_raw(raw: RawDocument) -> Document {
Document { id: raw.id, highlights: raw.highlights }
}
#[cfg(test)]
fn from_raw(raw: RawDocument) -> Document {
let len = raw.query_index().len();
let mut matches = Vec::with_capacity(len);
let query_index = raw.query_index();
let distance = raw.distance();
let attribute = raw.attribute();
let word_index = raw.word_index();
let is_exact = raw.is_exact();
for i in 0..len {
let match_ = TmpMatch {
query_index: query_index[i],
distance: distance[i],
attribute: attribute[i],
word_index: word_index[i],
is_exact: is_exact[i],
};
matches.push(match_);
}
Document { id: raw.id, matches, highlights: raw.highlights }
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::mem;
#[test]
fn docindex_mem_size() {
assert_eq!(mem::size_of::<DocIndex>(), 16);
}
}