MeiliSearch/milli/src/search/mod.rs

463 lines
19 KiB
Rust
Raw Normal View History

use std::borrow::Cow;
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::time::Instant;
2020-11-27 13:40:21 +01:00
use anyhow::{bail, Context};
2020-12-23 19:09:01 +01:00
use fst::{IntoStreamer, Streamer, Set};
use levenshtein_automata::DFA;
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
use log::debug;
2020-12-23 19:09:01 +01:00
use meilisearch_tokenizer::{AnalyzerConfig, Analyzer};
use once_cell::sync::Lazy;
use ordered_float::OrderedFloat;
use roaring::bitmap::RoaringBitmap;
2020-11-27 13:40:21 +01:00
use crate::facet::FacetType;
use crate::heed_codec::facet::{FacetLevelValueF64Codec, FacetLevelValueI64Codec};
use crate::heed_codec::facet::{FieldDocIdFacetF64Codec, FieldDocIdFacetI64Codec};
use crate::mdfs::Mdfs;
2020-12-23 19:09:01 +01:00
use crate::query_tokens::{query_tokens, QueryToken};
use crate::search::criteria::{Criterion, CriterionResult};
use crate::search::criteria::typo::Typo;
use crate::{Index, FieldId, DocumentId};
pub use self::facet::{FacetCondition, FacetDistribution, FacetNumberOperator, FacetStringOperator};
pub use self::facet::{FacetIter};
use self::query_tree::QueryTreeBuilder;
// Building these factories is not free.
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
mod facet;
mod query_tree;
mod criteria;
pub struct Search<'a> {
query: Option<String>,
facet_condition: Option<FacetCondition>,
offset: usize,
limit: usize,
rtxn: &'a heed::RoTxn<'a>,
index: &'a Index,
}
impl<'a> Search<'a> {
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
Search { query: None, facet_condition: None, offset: 0, limit: 20, rtxn, index }
}
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
self.query = Some(query.into());
self
}
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
self.offset = offset;
self
}
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
self.limit = limit;
self
}
pub fn facet_condition(&mut self, condition: FacetCondition) -> &mut Search<'a> {
self.facet_condition = Some(condition);
self
}
/// Extracts the query words from the query string and returns the DFAs accordingly.
/// TODO introduce settings for the number of typos regarding the words lengths.
fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> {
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
2020-12-23 19:09:01 +01:00
let stop_words = Set::default();
let analyzer = Analyzer::new(AnalyzerConfig::default_with_stopwords(&stop_words));
let analyzed = analyzer.analyze(query);
let tokens = analyzed.tokens();
let words: Vec<_> = query_tokens(tokens).collect();
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
let number_of_words = words.len();
words.into_iter().enumerate().map(|(i, word)| {
let (word, quoted) = match word {
2020-12-23 19:09:01 +01:00
QueryToken::Free(token) => (token.text().to_string(), token.text().len() <= 3),
QueryToken::Quoted(token) => (token.text().to_string(), true),
};
let is_last = i + 1 == number_of_words;
let is_prefix = is_last && !ends_with_whitespace && !quoted;
let lev = match word.len() {
0..=4 => if quoted { lev0 } else { lev0 },
5..=8 => if quoted { lev0 } else { lev1 },
_ => if quoted { lev0 } else { lev2 },
};
let dfa = if is_prefix {
lev.build_prefix_dfa(&word)
} else {
lev.build_dfa(&word)
};
(word, is_prefix, dfa)
})
.collect()
}
/// Fetch the words from the given FST related to the given DFAs along with
/// the associated documents ids.
fn fetch_words_docids(
&self,
fst: &fst::Set<Cow<[u8]>>,
dfas: Vec<(String, bool, DFA)>,
) -> anyhow::Result<Vec<(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)>>
{
// A Vec storing all the derived words from the original query words, associated
// with the distance from the original word and the docids where the words appears.
let mut derived_words = Vec::<(HashMap::<String, (u8, RoaringBitmap)>, RoaringBitmap)>::with_capacity(dfas.len());
for (_word, _is_prefix, dfa) in dfas {
let mut acc_derived_words = HashMap::new();
let mut unions_docids = RoaringBitmap::new();
let mut stream = fst.search_with_state(&dfa).into_stream();
while let Some((word, state)) = stream.next() {
let word = std::str::from_utf8(word)?;
let docids = self.index.word_docids.get(self.rtxn, word)?.unwrap();
let distance = dfa.distance(state);
unions_docids.union_with(&docids);
acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids));
}
derived_words.push((acc_derived_words, unions_docids));
}
Ok(derived_words)
}
/// Returns the set of docids that contains all of the query words.
fn compute_candidates(
derived_words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
) -> RoaringBitmap
{
// We sort the derived words by inverse popularity, this way intersections are faster.
let mut derived_words: Vec<_> = derived_words.iter().collect();
derived_words.sort_unstable_by_key(|(_, docids)| docids.len());
// we do a union between all the docids of each of the derived words,
// we got N unions (the number of original query words), we then intersect them.
let mut candidates = RoaringBitmap::new();
for (i, (_, union_docids)) in derived_words.iter().enumerate() {
if i == 0 {
candidates = union_docids.clone();
} else {
candidates.intersect_with(&union_docids);
}
}
candidates
}
2020-11-27 13:40:21 +01:00
fn facet_ordered(
&self,
field_id: FieldId,
facet_type: FacetType,
ascending: bool,
mut documents_ids: RoaringBitmap,
2020-11-27 13:40:21 +01:00
limit: usize,
) -> anyhow::Result<Vec<DocumentId>>
{
let mut output: Vec<_> = match facet_type {
2020-11-27 13:40:21 +01:00
FacetType::Float => {
if documents_ids.len() <= 1000 {
let db = self.index.field_id_docid_facet_values.remap_key_type::<FieldDocIdFacetF64Codec>();
let mut docids_values = Vec::with_capacity(documents_ids.len() as usize);
for docid in documents_ids.iter() {
let left = (field_id, docid, f64::MIN);
let right = (field_id, docid, f64::MAX);
let mut iter = db.range(self.rtxn, &(left..=right))?;
let entry = if ascending { iter.next() } else { iter.last() };
if let Some(((_, _, value), ())) = entry.transpose()? {
docids_values.push((docid, OrderedFloat(value)));
}
}
docids_values.sort_unstable_by_key(|(_, value)| *value);
let iter = docids_values.into_iter().map(|(id, _)| id);
if ascending {
iter.take(limit).collect()
} else {
iter.rev().take(limit).collect()
}
} else {
let facet_fn = if ascending {
FacetIter::<f64, FacetLevelValueF64Codec>::new_reducing
} else {
FacetIter::<f64, FacetLevelValueF64Codec>::new_reverse_reducing
};
let mut limit_tmp = limit;
let mut output = Vec::new();
for result in facet_fn(self.rtxn, self.index, field_id, documents_ids.clone())? {
let (_val, docids) = result?;
limit_tmp = limit_tmp.saturating_sub(docids.len() as usize);
output.push(docids);
if limit_tmp == 0 { break }
}
output.into_iter().flatten().take(limit).collect()
}
2020-11-27 13:40:21 +01:00
},
FacetType::Integer => {
if documents_ids.len() <= 1000 {
let db = self.index.field_id_docid_facet_values.remap_key_type::<FieldDocIdFacetI64Codec>();
let mut docids_values = Vec::with_capacity(documents_ids.len() as usize);
for docid in documents_ids.iter() {
let left = (field_id, docid, i64::MIN);
let right = (field_id, docid, i64::MAX);
let mut iter = db.range(self.rtxn, &(left..=right))?;
let entry = if ascending { iter.next() } else { iter.last() };
if let Some(((_, _, value), ())) = entry.transpose()? {
docids_values.push((docid, value));
}
}
docids_values.sort_unstable_by_key(|(_, value)| *value);
let iter = docids_values.into_iter().map(|(id, _)| id);
if ascending {
iter.take(limit).collect()
} else {
iter.rev().take(limit).collect()
}
} else {
let facet_fn = if ascending {
FacetIter::<i64, FacetLevelValueI64Codec>::new_reducing
} else {
FacetIter::<i64, FacetLevelValueI64Codec>::new_reverse_reducing
};
let mut limit_tmp = limit;
let mut output = Vec::new();
for result in facet_fn(self.rtxn, self.index, field_id, documents_ids.clone())? {
let (_val, docids) = result?;
limit_tmp = limit_tmp.saturating_sub(docids.len() as usize);
output.push(docids);
if limit_tmp == 0 { break }
}
output.into_iter().flatten().take(limit).collect()
}
2020-11-27 13:40:21 +01:00
},
FacetType::String => bail!("criteria facet type must be a number"),
};
// if there isn't enough documents to return we try to complete that list
// with documents that are maybe not faceted under this field and therefore
// not returned by the previous facet iteration.
if output.len() < limit {
output.iter().for_each(|n| { documents_ids.remove(*n); });
let remaining = documents_ids.iter().take(limit - output.len());
output.extend(remaining);
2020-11-27 13:40:21 +01:00
}
Ok(output)
2020-11-27 13:40:21 +01:00
}
pub fn execute(&self) -> anyhow::Result<SearchResult> {
// We create the query tree by spliting the query into tokens.
let before = Instant::now();
let query_tree = match self.query.as_ref() {
Some(query) => {
let builder = QueryTreeBuilder::new(self.rtxn, self.index);
let stop_words = &Set::default();
let analyzer = Analyzer::new(AnalyzerConfig::default_with_stopwords(stop_words));
let result = analyzer.analyze(query);
let tokens = result.tokens();
builder.build(false, true, tokens)
},
None => None,
};
debug!("query tree: {:?} took {:.02?}", query_tree, before.elapsed());
// We create the original candidates with the facet conditions results.
let before = Instant::now();
let facet_candidates = match &self.facet_condition {
Some(condition) => Some(condition.evaluate(self.rtxn, self.index)?),
None => None,
};
debug!("facet candidates: {:?} took {:.02?}", facet_candidates, before.elapsed());
// We aretesting the typo criteria but there will be more of them soon.
2021-02-17 15:27:35 +01:00
let criteria_ctx = criteria::HeedContext::new(self.rtxn, self.index)?;
let mut criteria = Typo::initial(&criteria_ctx, query_tree, facet_candidates)?;
2020-11-27 13:40:21 +01:00
let mut offset = self.offset;
let mut limit = self.limit;
let mut documents_ids = Vec::new();
while let Some(CriterionResult { candidates: docids, .. }) = criteria.next()? {
let mut len = docids.len() as usize;
let mut docids = docids.into_iter();
if offset != 0 {
docids.by_ref().skip(offset).for_each(drop);
offset = offset.saturating_sub(len.min(offset));
len = len.saturating_sub(len.min(offset));
}
if len != 0 {
documents_ids.extend(docids.take(limit));
limit = limit.saturating_sub(len.min(limit));
}
if limit == 0 { break }
}
let found_words = HashSet::new();
let candidates = RoaringBitmap::new();
Ok(SearchResult { found_words, candidates, documents_ids })
// let order_by_facet = {
// let criteria = self.index.criteria(self.rtxn)?;
// let result = criteria.into_iter().flat_map(|criterion| {
// match criterion {
// Criterion::Asc(fid) => Some((fid, true)),
// Criterion::Desc(fid) => Some((fid, false)),
// _ => None
// }
// }).next();
// match result {
// Some((attr_name, is_ascending)) => {
// let field_id_map = self.index.fields_ids_map(self.rtxn)?;
// let fid = field_id_map.id(&attr_name).with_context(|| format!("unknown field: {:?}", attr_name))?;
// let faceted_fields = self.index.faceted_fields_ids(self.rtxn)?;
// let ftype = *faceted_fields.get(&fid)
// .with_context(|| format!("{:?} not found in the faceted fields.", attr_name))
// .expect("corrupted data: ");
// Some((fid, ftype, is_ascending))
// },
// None => None,
// }
// };
// let before = Instant::now();
// let (candidates, derived_words) = match (facet_candidates, derived_words) {
// (Some(mut facet_candidates), Some(derived_words)) => {
// let words_candidates = Self::compute_candidates(&derived_words);
// facet_candidates.intersect_with(&words_candidates);
// (facet_candidates, derived_words)
// },
// (None, Some(derived_words)) => {
// (Self::compute_candidates(&derived_words), derived_words)
// },
// (Some(facet_candidates), None) => {
// // If the query is not set or results in no DFAs but
// // there is some facet conditions we return a placeholder.
// let documents_ids = match order_by_facet {
// Some((fid, ftype, is_ascending)) => {
// self.facet_ordered(fid, ftype, is_ascending, facet_candidates.clone(), limit)?
// },
// None => facet_candidates.iter().take(limit).collect(),
// };
// return Ok(SearchResult {
// documents_ids,
// candidates: facet_candidates,
// ..Default::default()
// })
// },
// (None, None) => {
// // If the query is not set or results in no DFAs we return a placeholder.
// let all_docids = self.index.documents_ids(self.rtxn)?;
// let documents_ids = match order_by_facet {
// Some((fid, ftype, is_ascending)) => {
// self.facet_ordered(fid, ftype, is_ascending, all_docids.clone(), limit)?
// },
// None => all_docids.iter().take(limit).collect(),
// };
// return Ok(SearchResult { documents_ids, candidates: all_docids,..Default::default() })
// },
// };
// debug!("candidates: {:?} took {:.02?}", candidates, before.elapsed());
// // The mana depth first search is a revised DFS that explore
// // solutions in the order of their proximities.
// let mut mdfs = Mdfs::new(self.index, self.rtxn, &derived_words, candidates.clone());
// let mut documents = Vec::new();
// // We execute the Mdfs iterator until we find enough documents.
// while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
// match mdfs.next().transpose()? {
// Some((proximity, answer)) => {
// debug!("answer with a proximity of {}: {:?}", proximity, answer);
// documents.push(answer);
// },
// None => break,
// }
// }
// let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
// let documents_ids = match order_by_facet {
// Some((fid, ftype, order)) => {
// let mut ordered_documents = Vec::new();
// for documents_ids in documents {
// let docids = self.facet_ordered(fid, ftype, order, documents_ids, limit)?;
// ordered_documents.push(docids);
// if ordered_documents.iter().map(Vec::len).sum::<usize>() >= limit { break }
// }
// ordered_documents.into_iter().flatten().take(limit).collect()
// },
// None => documents.into_iter().flatten().take(limit).collect(),
// };
// Ok(SearchResult { found_words, candidates, documents_ids })
}
}
impl fmt::Debug for Search<'_> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Search { query, facet_condition, offset, limit, rtxn: _, index: _ } = self;
f.debug_struct("Search")
.field("query", query)
.field("facet_condition", facet_condition)
.field("offset", offset)
.field("limit", limit)
.finish()
}
}
#[derive(Default)]
pub struct SearchResult {
pub found_words: HashSet<String>,
pub candidates: RoaringBitmap,
// TODO those documents ids should be associated with their criteria scores.
pub documents_ids: Vec<DocumentId>,
}
pub fn word_typos(word: &str, is_prefix: bool, max_typo: u8, fst: &fst::Set<Cow<[u8]>>) -> anyhow::Result<Vec<(String, u8)>> {
let dfa = {
let lev = match max_typo {
0 => &LEVDIST0,
1 => &LEVDIST1,
_ => &LEVDIST2,
};
if is_prefix {
lev.build_prefix_dfa(&word)
} else {
lev.build_dfa(&word)
}
};
let mut derived_words = Vec::new();
let mut stream = fst.search_with_state(&dfa).into_stream();
while let Some((word, state)) = stream.next() {
let word = std::str::from_utf8(word)?;
let distance = dfa.distance(state);
derived_words.push((word.to_string(), distance.to_u8()));
}
Ok(derived_words)
}