280 lines
7.1 KiB
Rust
Raw Permalink Normal View History

2024-06-11 16:03:45 +02:00
use meili_snap::{json_string, snapshot};
use crate::common::{GetAllDocumentsOptions, Server};
use crate::json;
use crate::vector::generate_default_user_provided_documents;
2024-10-02 11:20:29 +02:00
#[actix_rt::test]
async fn field_unavailable_for_source() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": { "manual": {"source": "userProvided", "documentTemplate": "{{doc.documentTemplate}}"}},
}))
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "`.embedders.manual`: Field `documentTemplate` unavailable for source `userProvided` (only available for sources: `huggingFace`, `openAi`, `ollama`, `rest`). Available fields: `source`, `dimensions`, `distribution`, `binaryQuantized`",
"code": "invalid_settings_embedders",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_settings_embedders"
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": { "default": {"source": "openAi", "revision": "42"}},
}))
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "`.embedders.default`: Field `revision` unavailable for source `openAi` (only available for sources: `huggingFace`). Available fields: `source`, `model`, `apiKey`, `documentTemplate`, `dimensions`, `distribution`, `url`, `binaryQuantized`",
"code": "invalid_settings_embedders",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_settings_embedders"
}
"###);
}
2024-06-11 16:03:45 +02:00
#[actix_rt::test]
async fn update_embedder() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false,
"editDocumentsByFunction": false,
"containsFilter": false
2024-06-11 16:03:45 +02:00
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": { "manual": {}},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 2,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
let ret = server.wait_task(response.uid()).await;
snapshot!(ret, @r###"
{
"uid": "[uid]",
2024-11-13 11:27:12 +01:00
"batchUid": "[batch_uid]",
2024-06-11 16:03:45 +02:00
"indexUid": "doggo",
2024-06-12 14:49:38 +02:00
"status": "succeeded",
2024-06-11 16:03:45 +02:00
"type": "settingsUpdate",
"canceledBy": null,
"details": {
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 2
}
}
},
2024-06-12 14:49:38 +02:00
"error": null,
2024-06-11 16:03:45 +02:00
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
}
#[actix_rt::test]
async fn reset_embedder_documents() {
let server = Server::new().await;
let index = generate_default_user_provided_documents(&server).await;
let (response, code) = index.delete_settings().await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
// Make sure the documents are still present
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions {
limit: None,
offset: None,
retrieve_vectors: false,
fields: None,
})
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir"
},
{
"id": 1,
"name": "echo"
},
{
"id": 2,
"name": "billou"
},
{
"id": 3,
"name": "intel"
},
{
"id": 4,
"name": "max"
}
],
"offset": 0,
"limit": 20,
"total": 5
}
"###);
// Make sure we are still able to retrieve their vectors
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
2024-06-11 16:03:45 +02:00
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
2024-06-12 18:13:34 +02:00
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
0.0,
0.0,
0.0
]
],
"regenerate": false
}
}
2024-06-11 16:03:45 +02:00
},
{
"id": 1,
2024-06-12 18:13:34 +02:00
"name": "echo",
"_vectors": {
"manual": {
"embeddings": [
[
1.0,
1.0,
1.0
]
],
"regenerate": false
}
}
2024-06-11 16:03:45 +02:00
},
{
"id": 2,
2024-06-12 18:13:34 +02:00
"name": "billou",
"_vectors": {
"manual": {
"embeddings": [
[
2.0,
2.0,
2.0
],
[
2.0,
2.0,
3.0
]
],
"regenerate": false
}
}
2024-06-11 16:03:45 +02:00
},
{
"id": 3,
2024-06-12 18:13:34 +02:00
"name": "intel",
"_vectors": {
"manual": {
"embeddings": [
[
3.0,
3.0,
3.0
]
],
"regenerate": false
}
}
2024-06-11 16:03:45 +02:00
},
{
"id": 4,
2024-06-12 18:13:34 +02:00
"name": "max",
"_vectors": {
"manual": {
"embeddings": [
[
4.0,
4.0,
4.0
],
[
4.0,
4.0,
5.0
]
],
"regenerate": false
}
}
2024-06-11 16:03:45 +02:00
}
],
"offset": 0,
"limit": 20,
"total": 5
}
"###);
// Make sure the arroy DB has been cleared
2024-09-17 16:30:04 +02:00
let (documents, _code) =
index.search_post(json!({ "vector": [1, 1, 1], "hybrid": {"embedder": "default"} })).await;
2024-06-11 16:03:45 +02:00
snapshot!(json_string!(documents), @r###"
{
"message": "Cannot find embedder with name `default`.",
"code": "invalid_embedder",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_embedder"
}
"###);
}