1
0
mirror of https://github.com/kidoman/embd synced 2024-12-22 12:50:19 +01:00
embd/sensor/bmp180/bmp180.go
2014-01-01 03:10:32 +05:30

476 lines
9.5 KiB
Go

// Package bmp180 allows interfacing with Bosch BMP180 barometric pressure sensor. This sensor
// has the ability to provided compensated temperature and pressure readings.
package bmp180
import (
"log"
"math"
"sync"
"time"
"github.com/kid0m4n/go-rpi/i2c"
)
const (
address = 0x77
calAc1 = 0xAA
calAc2 = 0xAC
calAc3 = 0xAE
calAc4 = 0xB0
calAc5 = 0xB2
calAc6 = 0xB4
calB1 = 0xB6
calB2 = 0xB8
calMB = 0xBA
calMC = 0xBC
calMD = 0xBE
control = 0xF4
tempData = 0xF6
pressureData = 0xF6
readTempCmd = 0x2E
readPressureCmd = 0x34
tempReadDelay = 5 * time.Millisecond
p0 = 101325
pollDelay = 250
)
// A BMP180 implements access to the Bosch BMP180 sensor.
type BMP180 interface {
// SetPollDelay sets the delay between runs of the data acquisition loop.
SetPollDelay(delay int)
// Temperature returns the current temperature reading.
Temperature() (temp float64, err error)
// Pressure returns the current pressure reading.
Pressure() (pressure int, err error)
// Altitude returns the current altitude reading.
Altitude() (altitude float64, err error)
// Run starts the sensor data acquisition loop.
Run() error
// Close.
Close()
}
type bmp180 struct {
bus i2c.Bus
oss uint
ac1, ac2, ac3 int16
ac4, ac5, ac6 uint16
b1, b2, mb, mc, md int16
b5 int32
calibrated bool
cmu *sync.RWMutex
poll int
temps chan uint16
pressures chan int32
altitudes chan float64
quit chan struct{}
debug bool
}
// Default instance of the BMP180 sensor.
var Default = New(i2c.Default)
// New creates a new BMP180 interface. The bus variable controls
// the I2C bus used to communicate with the device.
func New(bus i2c.Bus) BMP180 {
return &bmp180{bus: bus, cmu: new(sync.RWMutex), poll: pollDelay}
}
// SetPollDelay sets the delay between runs of the data acquisition loop.
func (d *bmp180) SetPollDelay(delay int) {
d.poll = delay
}
func (d *bmp180) calibrate() (err error) {
d.cmu.RLock()
if d.calibrated {
d.cmu.RUnlock()
return
}
d.cmu.RUnlock()
d.cmu.Lock()
defer d.cmu.Unlock()
readInt16 := func(reg byte) (value int16, err error) {
var v int
if v, err = d.bus.ReadInt(address, reg); err != nil {
return
}
value = int16(v)
return
}
readUInt16 := func(reg byte) (value uint16, err error) {
var v int
if v, err = d.bus.ReadInt(address, reg); err != nil {
return
}
value = uint16(v)
return
}
d.ac1, err = readInt16(calAc1)
if err != nil {
return
}
d.ac2, err = readInt16(calAc2)
if err != nil {
return
}
d.ac3, err = readInt16(calAc3)
if err != nil {
return
}
d.ac4, err = readUInt16(calAc4)
if err != nil {
return
}
d.ac5, err = readUInt16(calAc5)
if err != nil {
return
}
d.ac6, err = readUInt16(calAc6)
if err != nil {
return
}
d.b1, err = readInt16(calB1)
if err != nil {
return
}
d.b2, err = readInt16(calB2)
if err != nil {
return
}
d.mb, err = readInt16(calMB)
if err != nil {
return
}
d.mc, err = readInt16(calMC)
if err != nil {
return
}
d.md, err = readInt16(calMD)
if err != nil {
return
}
d.calibrated = true
if d.debug {
log.Print("bmp180: calibration data retrieved")
log.Printf("bmp180: param AC1 = %v", d.ac1)
log.Printf("bmp180: param AC2 = %v", d.ac2)
log.Printf("bmp180: param AC3 = %v", d.ac3)
log.Printf("bmp180: param AC4 = %v", d.ac4)
log.Printf("bmp180: param AC5 = %v", d.ac5)
log.Printf("bmp180: param AC6 = %v", d.ac6)
log.Printf("bmp180: param B1 = %v", d.b1)
log.Printf("bmp180: param B2 = %v", d.b2)
log.Printf("bmp180: param MB = %v", d.mb)
log.Printf("bmp180: param MC = %v", d.mc)
log.Printf("bmp180: param MD = %v", d.md)
}
return
}
func (d *bmp180) readUncompensatedTemp() (temp uint16, err error) {
if err = d.bus.WriteToReg(address, control, readTempCmd); err != nil {
return
}
time.Sleep(tempReadDelay)
var t int
t, err = d.bus.ReadInt(address, tempData)
if err != nil {
return
}
temp = uint16(t)
return
}
func (d *bmp180) calcTemp(utemp uint16) uint16 {
x1 := ((int(utemp) - int(d.ac6)) * int(d.ac5)) >> 15
x2 := (int(d.mc) << 11) / (x1 + int(d.md))
d.cmu.Lock()
d.b5 = int32(x1 + x2)
d.cmu.Unlock()
return uint16((d.b5 + 8) >> 4)
}
func (d *bmp180) measureTemp() (temp uint16, err error) {
if err = d.calibrate(); err != nil {
return
}
var utemp uint16
if utemp, err = d.readUncompensatedTemp(); err != nil {
return
}
if d.debug {
log.Printf("bcm180: uncompensated temp: %v", utemp)
}
temp = d.calcTemp(utemp)
if d.debug {
log.Printf("bcm180: compensated temp %v", temp)
}
return
}
// Temperature returns the current temperature reading.
func (d *bmp180) Temperature() (temp float64, err error) {
select {
case t := <-d.temps:
temp = float64(t) / 10
return
default:
if d.debug {
log.Print("bcm180: no temps available... measuring")
}
var t uint16
t, err = d.measureTemp()
if err != nil {
return
}
temp = float64(t) / 10
return
}
}
func (d *bmp180) readUncompensatedPressure() (pressure uint32, err error) {
if err = d.bus.WriteToReg(address, control, byte(readPressureCmd+(d.oss<<6))); err != nil {
return
}
time.Sleep(time.Duration(2+(3<<d.oss)) * time.Millisecond)
data := make([]byte, 3)
if err = d.bus.ReadFromReg(address, pressureData, data); err != nil {
return
}
pressure = ((uint32(data[0]) << 16) | (uint32(data[1]) << 8) | uint32(data[2])) >> (8 - d.oss)
return
}
func (d *bmp180) calcPressure(upressure uint32) (p int32) {
var x1, x2, x3 int32
l := func(s string, v interface{}) {
if d.debug {
log.Printf("bcm180: %v = %v", s, v)
}
}
b6 := d.b5 - 4000
l("b6", b6)
// Calculate b3
x1 = (int32(d.b2) * int32(b6*b6) >> 12) >> 11
x2 = (int32(d.ac2) * b6) >> 11
x3 = x1 + x2
b3 := (((int32(d.ac1)*4 + x3) << d.oss) + 2) >> 2
l("x1", x1)
l("x2", x2)
l("x3", x3)
l("b3", b3)
// Calculate b4
x1 = (int32(d.ac3) * b6) >> 13
x2 = (int32(d.b1) * ((b6 * b6) >> 12)) >> 16
x3 = ((x1 + x2) + 2) >> 2
b4 := (uint32(d.ac4) * uint32(x3+32768)) >> 15
l("x1", x1)
l("x2", x2)
l("x3", x3)
l("b4", b4)
b7 := (uint32(upressure-uint32(b3)) * (50000 >> d.oss))
if b7 < 0x80000000 {
p = int32((b7 << 1) / b4)
} else {
p = int32((b7 / b4) << 1)
}
l("b7", b7)
l("p", p)
x1 = (p >> 8) * (p >> 8)
x1 = (x1 * 3038) >> 16
x2 = (-7357 * p) >> 16
p += (x1 + x2 + 3791) >> 4
l("x1", x1)
l("x2", x2)
l("x3", x3)
l("p", p)
return
}
func (d *bmp180) calcAltitude(pressure int32) float64 {
return 44330 * (1 - math.Pow(float64(pressure)/p0, 0.190295))
}
func (d *bmp180) measurePressureAndAltitude() (pressure int32, altitude float64, err error) {
if err = d.calibrate(); err != nil {
return
}
var upressure uint32
if upressure, err = d.readUncompensatedPressure(); err != nil {
return
}
if d.debug {
log.Printf("bcm180: uncompensated pressure: %v", upressure)
}
pressure = d.calcPressure(upressure)
if d.debug {
log.Printf("bcm180: compensated pressure %v", pressure)
}
altitude = d.calcAltitude(pressure)
if d.debug {
log.Printf("bcm180: calculated altitude %v", altitude)
}
return
}
// Pressure returns the current pressure reading.
func (d *bmp180) Pressure() (pressure int, err error) {
if err = d.calibrate(); err != nil {
return
}
select {
case p := <-d.pressures:
pressure = int(p)
return
default:
if d.debug {
log.Print("bcm180: no pressures available... measuring")
}
var p int32
p, _, err = d.measurePressureAndAltitude()
if err != nil {
return
}
pressure = int(p)
return
}
}
// Altitude returns the current altitude reading.
func (d *bmp180) Altitude() (altitude float64, err error) {
if err = d.calibrate(); err != nil {
return
}
select {
case altitude = <-d.altitudes:
return
default:
if d.debug {
log.Print("bcm180: no altitudes available... measuring")
}
_, altitude, err = d.measurePressureAndAltitude()
if err != nil {
return
}
return
}
}
// Run starts the sensor data acquisition loop.
func (d *bmp180) Run() (err error) {
go func() {
d.quit = make(chan struct{})
timer := time.Tick(time.Duration(d.poll) * time.Millisecond)
var temp uint16
var pressure int32
var altitude float64
for {
select {
case <-timer:
t, err := d.measureTemp()
if err == nil {
temp = t
}
if err == nil && d.temps == nil {
d.temps = make(chan uint16)
}
p, a, err := d.measurePressureAndAltitude()
if err == nil {
pressure = p
altitude = a
}
if err == nil && d.pressures == nil && d.altitudes == nil {
d.pressures = make(chan int32)
d.altitudes = make(chan float64)
}
case d.temps <- temp:
case d.pressures <- pressure:
case d.altitudes <- altitude:
case <-d.quit:
d.temps = nil
d.pressures = nil
d.altitudes = nil
return
}
}
}()
return
}
// Close.
func (d *bmp180) Close() {
if d.quit != nil {
d.quit <- struct{}{}
}
}
// SetPollDelay sets the delay between runs of the data acquisition loop.
func SetPollDelay(delay int) {
Default.SetPollDelay(delay)
}
// Temperature returns the current temperature reading.
func Temperature() (temp float64, err error) {
return Default.Temperature()
}
// Pressure returns the current pressure reading.
func Pressure() (pressure int, err error) {
return Default.Pressure()
}
// Altitude returns the current altitude reading.
func Altitude() (altitude float64, err error) {
return Default.Altitude()
}
// Run starts the sensor data acquisition loop.
func Run() (err error) {
return Default.Run()
}
// Close.
func Close() {
Default.Close()
}