added support for us020 ultra sonic range finder

This commit is contained in:
Nikesh Vora 2013-12-13 05:51:22 +05:30
parent d19e1713d6
commit 1355a9d959
4 changed files with 126 additions and 0 deletions

View File

@ -1,3 +1,4 @@
Karan Misra <kidoman@gmail.com>
Kunal Powar <kunalpowar1203@gmail.com>
Nikesh Vora <nikesh.voratp@gmail.com>
Akhil Sahdev <akhilsahdev@thoughtworks.com>

View File

@ -25,3 +25,9 @@ Use various sensors on the RaspberryPi with Golang (like a ninja!)
Accelerometer and magnetometer
[Documentation](http://godoc.org/github.com/kid0m4n/go-rpi/sensor/lsm303) [Datasheet](https://www.sparkfun.com/datasheets/Sensors/Magneto/LSM303%20Datasheet.pdf)
### US020
Ultrasonic proximity sensor
[Documentation](http://godoc.org/github.com/kid0m4n/go-rpi/sensor/us020) [Product Page](http://www.digibay.in/sensor/object-detection-and-proximity?product_id=239)

22
samples/us020.go Normal file
View File

@ -0,0 +1,22 @@
package main
import (
"log"
"time"
"github.com/kid0m4n/go-rpi/sensor/us020"
)
func main() {
rangeFinder := us020.New(10, 9)
for {
distance, err := rangeFinder.Distance()
if err != nil {
log.Panic(err)
}
log.Printf("Distance is %v", distance)
time.Sleep(500 * time.Millisecond)
}
}

97
sensor/us020/us020.go Normal file
View File

@ -0,0 +1,97 @@
// Package us020 allows interfacing with the US020 ultrasonic range finder.
package us020
import (
"sync"
"time"
"github.com/kid0m4n/go-rpi/sensor/bmp085"
"github.com/stianeikeland/go-rpio"
)
const (
pulseDelay = 30000 * time.Nanosecond
)
// A US020 implements access to a US020 ultrasonic range finder.
type US020 interface {
// Distance computes the distance of the bot from the closest obstruction.
Distance() (float64, error)
}
type us020 struct {
echoPinNumber, triggerPinNumber int
echoPin rpio.Pin
triggerPin rpio.Pin
speedSound float64
initialized bool
mu *sync.RWMutex
}
// New creates a new US020 interface. The bus variable controls
// the I2C bus used to communicate with the device.
func New(e, t int) US020 {
return &us020{echoPinNumber: e, triggerPinNumber: t, mu: new(sync.RWMutex)}
}
func (d *us020) setup() (err error) {
d.mu.RLock()
if d.initialized {
d.mu.RUnlock()
return
}
d.mu.RUnlock()
d.mu.Lock()
defer d.mu.Unlock()
if err = rpio.Open(); err != nil {
return
}
d.echoPin = rpio.Pin(d.echoPinNumber) // ECHO port on the US020
d.triggerPin = rpio.Pin(d.triggerPinNumber) // TRIGGER port on the US020
temp, err := bmp085.Temperature()
if err != nil {
d.speedSound = 340
} else {
d.speedSound = 331.4 + 0.606*temp
}
d.initialized = true
return nil
}
// Distance computes the distance of the bot from the closest obstruction.
func (d *us020) Distance() (distance float64, err error) {
if err = d.setup(); err != nil {
return
}
// Generate a TRIGGER pulse
d.triggerPin.High()
time.Sleep(pulseDelay)
d.triggerPin.Low()
// Wait until ECHO goes high
for d.echoPin.Read() == rpio.Low {
}
startTime := time.Now() // Record time when ECHO goes high
// Wait until ECHO goes low
for d.echoPin.Read() == rpio.High {
}
duration := time.Since(startTime) // Calculate time lapsed for ECHO to transition from high to low
// Calculate the distance based on the time computed
distance = float64(duration.Nanoseconds()) / 10000000 * (d.speedSound / 2)
return
}