dev-python/hdbscan: new package (DANDI ephys stack)
Package-Manager: Portage-3.0.28, Repoman-3.0.3 Signed-off-by: Horea Christian <chr@chymera.eu>
This commit is contained in:
parent
fc23864e95
commit
3765ea2e04
4
dev-python/hdbscan/ChangeLog
Normal file
4
dev-python/hdbscan/ChangeLog
Normal file
@ -0,0 +1,4 @@
|
||||
*hdbscan-0.8.26 (12 Oct 2021)
|
||||
|
||||
12 Oct 2021; <chymera@gentoo.org> +hdbscan-0.8.26.ebuild, +metadata.xml:
|
||||
dev-python/hdbscan: new package (DANDI ephys stack)
|
1
dev-python/hdbscan/Manifest
Normal file
1
dev-python/hdbscan/Manifest
Normal file
@ -0,0 +1 @@
|
||||
DIST hdbscan-0.8.26.tar.gz 10776639 SHA256 2fd10906603b6565ee138656b6d59df3494c03c5e8099aede400d50b13af912b SHA512 7337f4246511d22e8e11308e7776aad6929f26674daecc1e174b01673782837815a40820a6565406315b1ae14ed059c4945810ac997abfde9e24abda352de622 WHIRLPOOL 792b2cfb440a5cfd17ef66c32418a1f59f5184a72e27c7afcb59433f51a4f6e432ef35cc91c5c6f4117c85d918a4a886ab99552b93b94e7cbcc5e5601aa31fef
|
32
dev-python/hdbscan/hdbscan-0.8.26.ebuild
Normal file
32
dev-python/hdbscan/hdbscan-0.8.26.ebuild
Normal file
@ -0,0 +1,32 @@
|
||||
# Copyright 2021 Gentoo Authors
|
||||
# Distributed under the terms of the GNU General Public License v2
|
||||
|
||||
EAPI=8
|
||||
|
||||
PYTHON_COMPAT=( python3_{8..10} )
|
||||
inherit distutils-r1
|
||||
|
||||
DESCRIPTION="A high performance implementation of HDBSCAN clustering."
|
||||
HOMEPAGE="https://github.com/scikit-learn-contrib/hdbscan"
|
||||
SRC_URI="https://github.com/scikit-learn-contrib/hdbscan/archive/refs/tags/${PV}.tar.gz -> ${P}.tar.gz"
|
||||
|
||||
LICENSE="BSD"
|
||||
SLOT="0"
|
||||
KEYWORDS="~amd64 ~x86"
|
||||
IUSE="test"
|
||||
RESTRICT="test"
|
||||
# Tests fail, reported to upstream
|
||||
# https://github.com/scikit-learn-contrib/hdbscan/issues/501
|
||||
|
||||
DEPEND=""
|
||||
RDEPEND="
|
||||
dev-python/cython[${PYTHON_USEDEP}]
|
||||
dev-python/joblib[${PYTHON_USEDEP}]
|
||||
dev-python/numpy[${PYTHON_USEDEP}]
|
||||
dev-python/scipy[${PYTHON_USEDEP}]
|
||||
dev-python/six[${PYTHON_USEDEP}]
|
||||
sci-libs/scikit-learn[${PYTHON_USEDEP}]
|
||||
"
|
||||
BDEPEND=""
|
||||
|
||||
distutils_enable_tests pytest
|
28
dev-python/hdbscan/metadata.xml
Normal file
28
dev-python/hdbscan/metadata.xml
Normal file
@ -0,0 +1,28 @@
|
||||
<?xml version='1.0' encoding='UTF-8'?>
|
||||
<!DOCTYPE pkgmetadata SYSTEM "http://www.gentoo.org/dtd/metadata.dtd">
|
||||
<pkgmetadata>
|
||||
<maintainer type="person">
|
||||
<email>gentoo@chymera.eu</email>
|
||||
<name>Horea Christian</name>
|
||||
</maintainer>
|
||||
<maintainer type="project">
|
||||
<email>sci@gentoo.org</email>
|
||||
<name>Gentoo Science Project</name>
|
||||
</maintainer>
|
||||
<longdescription lang="en">
|
||||
HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with
|
||||
Noise. Performs DBSCAN over varying epsilon values and integrates the result
|
||||
to find a clustering that gives the best stability over epsilon. This allows
|
||||
HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more
|
||||
robust to parameter selection.
|
||||
|
||||
In practice this means that HDBSCAN returns a good clustering straight away
|
||||
with little or no parameter tuning -- and the primary parameter, minimum
|
||||
cluster size, is intuitive and easy to select. HDBSCAN is ideal for
|
||||
exploratory data analysis; it's a fast and robust algorithm that you can
|
||||
trust to return meaningful clusters (if there are any).
|
||||
</longdescription>
|
||||
<upstream>
|
||||
<remote-id type="github">scikit-learn-contrib/hdbscan</remote-id>
|
||||
</upstream>
|
||||
</pkgmetadata>
|
Loading…
x
Reference in New Issue
Block a user