2022-05-30 13:16:43 +02:00
|
|
|
import json
|
|
|
|
import os
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import math
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from eval_utility import slugify, cached, init_cache, load_env_config
|
|
|
|
|
|
|
|
import matplotlib.ticker as ticker
|
|
|
|
from matplotlib.ticker import PercentFormatter
|
|
|
|
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
|
|
|
|
import matplotlib as mpl
|
|
|
|
|
|
|
|
VOLTS = 3.0
|
|
|
|
|
|
|
|
METHOD_PREFIX = 'export_'
|
|
|
|
|
|
|
|
CONFIDENCE_FILL_COLOR = '0.8'
|
|
|
|
|
|
|
|
NUM_NODES = 24
|
|
|
|
|
|
|
|
def load_plot_defaults():
|
|
|
|
# Configure as needed
|
|
|
|
plt.rc('lines', linewidth=2.0)
|
|
|
|
plt.rc('legend', framealpha=1.0, fancybox=True)
|
|
|
|
plt.rc('errorbar', capsize=3)
|
|
|
|
plt.rc('pdf', fonttype=42)
|
|
|
|
plt.rc('ps', fonttype=42)
|
|
|
|
plt.rc('font', size=8, family="serif", serif=['Times New Roman'] + plt.rcParams['font.serif'])
|
|
|
|
#mpl.style.use('tableau-colorblind10')
|
|
|
|
|
|
|
|
|
|
|
|
IDLE_LABEL = 'idle'
|
|
|
|
consumptions = {}
|
|
|
|
durations = {}
|
|
|
|
times_per_day = {}
|
|
|
|
scaled_consumptions = {}
|
|
|
|
raw_scaled_consumptions = {}
|
|
|
|
|
|
|
|
def add_consumption(label, consumption_msrmnt, duration, tpd, repetitions=1):
|
|
|
|
consumptions[label] = consumption_msrmnt
|
|
|
|
durations[label] = duration/repetitions
|
|
|
|
times_per_day[label] = tpd
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_usage_seconds_per_day(labels, normalize_with_idle=True):
|
|
|
|
# we first calculate the times for each label
|
|
|
|
usage_seconds = {
|
|
|
|
IDLE_LABEL: 0
|
|
|
|
}
|
|
|
|
sum = 0
|
|
|
|
for l in labels:
|
|
|
|
if l == IDLE_LABEL:
|
|
|
|
continue
|
|
|
|
usage_seconds[l] = durations[l]*times_per_day[l]
|
|
|
|
assert 0 <= usage_seconds[l] <= 24*3600.0
|
|
|
|
sum += usage_seconds[l]
|
|
|
|
|
|
|
|
if sum < 24*3600.0:
|
|
|
|
usage_seconds[IDLE_LABEL] = 24*3600.0-sum # we spent the rest of the time idling!
|
|
|
|
|
|
|
|
cons_per_day = {}
|
|
|
|
for l in labels:
|
|
|
|
cons_per_day[l] = usage_seconds[l] # also convert to ampere hours!
|
|
|
|
return cons_per_day
|
|
|
|
|
|
|
|
def calculate_consumption_per_day(labels, normalize_with_idle=True):
|
|
|
|
# we first calculate the times for each label
|
|
|
|
usage_seconds = {
|
|
|
|
IDLE_LABEL: 0
|
|
|
|
}
|
|
|
|
sum = 0
|
|
|
|
for l in labels:
|
|
|
|
if l == IDLE_LABEL:
|
|
|
|
continue
|
|
|
|
usage_seconds[l] = durations[l]*times_per_day[l]
|
|
|
|
assert 0 <= usage_seconds[l] <= 24*3600.0
|
|
|
|
sum += usage_seconds[l]
|
|
|
|
|
|
|
|
if sum < 24*3600.0:
|
|
|
|
usage_seconds[IDLE_LABEL] = 24*3600.0-sum # we spent the rest of the time idling!
|
|
|
|
|
|
|
|
cons_per_day = {}
|
|
|
|
for l in labels:
|
|
|
|
cons_per_day[l] = consumptions[l]*usage_seconds[l]*(1/3600.0) # also convert to ampere hours!
|
|
|
|
return cons_per_day
|
|
|
|
|
|
|
|
|
|
|
|
# calculate the remaining idle time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# THE TOTAL EXPECTED AMOUNT PER DAY in milli ampere
|
|
|
|
expected_consumption_per_day = 0.0
|
|
|
|
|
2022-05-31 00:54:02 +02:00
|
|
|
idle_consumption = 0.00256
|
2022-05-30 13:16:43 +02:00
|
|
|
add_consumption(IDLE_LABEL, idle_consumption, 1.0, 1.0)
|
|
|
|
|
|
|
|
# ADVERTISING
|
|
|
|
adv_interval = 0.250
|
|
|
|
per_adv_consumption = {
|
|
|
|
0: 2.23,
|
|
|
|
-4: 1.49 ,
|
|
|
|
-8: 1.43,
|
|
|
|
-16: 1.38,
|
|
|
|
-20: 1.3,
|
|
|
|
-40: 1.22,
|
|
|
|
}
|
|
|
|
# TODO: Add error bars if possible!
|
|
|
|
# measured_duration
|
|
|
|
# duration
|
|
|
|
# repetitions
|
|
|
|
|
|
|
|
|
|
|
|
adv_consumption = sum(list(per_adv_consumption.values())) / len(per_adv_consumption.values())
|
|
|
|
|
|
|
|
add_consumption('adv', adv_consumption, 0.01, (24*3600)/0.25)
|
|
|
|
|
|
|
|
# SCANNING
|
|
|
|
scan_consumption = 5.440
|
|
|
|
add_consumption('scan', scan_consumption, 1.0, 24*60)
|
|
|
|
|
|
|
|
|
|
|
|
crypt_duration = 0.01
|
|
|
|
generate_tek_consumption = 2
|
|
|
|
derive_tek_consumption = 2
|
|
|
|
derive_rpi_consumption = 2
|
|
|
|
encrypt_aem_consumption = 2
|
|
|
|
|
|
|
|
add_consumption('generate_tek', generate_tek_consumption, crypt_duration, 1)
|
|
|
|
add_consumption('derive_tek', derive_tek_consumption, crypt_duration, 1)
|
|
|
|
add_consumption('derive_rpi', derive_rpi_consumption, crypt_duration, 144)
|
|
|
|
add_consumption('encrypt_aem', encrypt_aem_consumption, crypt_duration, 144*len(per_adv_consumption.values()))
|
|
|
|
|
|
|
|
# A table for the timings of the cryptographic fundamentals
|
|
|
|
# One detailed graph as a comparison of the advertisements
|
|
|
|
# One bar graph for each of the factors involved in the daily energy usage
|
|
|
|
|
|
|
|
tek_check_duration = 0.020
|
|
|
|
tek_check_amount = 32
|
|
|
|
tek_check_consumption = 4
|
|
|
|
|
|
|
|
# generate graph with keys to check
|
|
|
|
# Worst case scenario: Flash is fully used!
|
|
|
|
# we generate a bloom filter of all records!
|
|
|
|
|
|
|
|
|
|
|
|
# How long does it take to create the bloom filter for the whole dataset?
|
|
|
|
#64kByte
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# then check keys (i.e., maybe 32 teks at once?)
|
|
|
|
# measure time
|
|
|
|
# measure consumption
|
|
|
|
# extrapolate numbers for more keys!
|
|
|
|
|
|
|
|
# We then get keys to check
|
|
|
|
# 1000, 10000, 100000
|
|
|
|
|
|
|
|
|
|
|
|
def export_adv_consumption():
|
|
|
|
|
|
|
|
xs = [per_adv_consumption[0], per_adv_consumption[-4], per_adv_consumption[-8], per_adv_consumption[-16], per_adv_consumption[-20], per_adv_consumption[-40]]
|
|
|
|
ys = ['0', '-4', '-8', '-16', '-20', '-40']
|
|
|
|
|
|
|
|
width = 0.6 # the width of the bars: can also be len(x) sequence
|
|
|
|
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
|
|
|
|
ax.set_ylabel('Avg. Advertising Current [µA]')
|
|
|
|
ax.set_xlabel('TX Power [dBm]')
|
|
|
|
|
|
|
|
bars = ax.bar(ys,xs)
|
|
|
|
ax.bar_label(bars, padding=5, fmt='%.2f')
|
|
|
|
|
|
|
|
#ax.set_title('')
|
|
|
|
#ax.legend() # (loc='upper center', bbox_to_anchor=(0.5, -0.5), ncol=2)
|
|
|
|
|
|
|
|
# Adapt the figure size as needed
|
|
|
|
fig.set_size_inches(3.5, 3.2)
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.savefig("../out/adv_consumption.pdf", format="pdf", bbox_inches='tight')
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
def export_consumption_per_day():
|
|
|
|
cpd = calculate_consumption_per_day([
|
|
|
|
IDLE_LABEL, 'adv', 'scan', 'generate_tek', 'derive_tek', 'derive_rpi', 'encrypt_aem'
|
|
|
|
])
|
|
|
|
print(sum(cpd.values()))
|
|
|
|
ys = ['Idle', 'Adv.', 'Scan', 'Crypto\n(Daily)']
|
|
|
|
xs = [cpd[IDLE_LABEL], cpd['adv'], cpd['scan'], cpd['generate_tek']+cpd['derive_tek']+cpd['derive_rpi']+ cpd['encrypt_aem']]
|
|
|
|
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
|
|
|
|
ax.set_ylabel('Avg. Consumption per Day [mA h]')
|
|
|
|
ax.set_xlabel('Functionality')
|
|
|
|
|
|
|
|
bars = ax.bar(ys,xs)
|
|
|
|
ax.bar_label(bars, padding=5, fmt='%.2f')
|
|
|
|
|
|
|
|
# Adapt the figure size as needed
|
|
|
|
fig.set_size_inches(3.5, 3.2)
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.savefig("../out/weighted_consumption.pdf", format="pdf", bbox_inches='tight')
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
def export_usage_seconds_per_day():
|
|
|
|
cpd = calculate_usage_seconds_per_day([
|
|
|
|
IDLE_LABEL, 'adv', 'scan', 'generate_tek', 'derive_tek', 'derive_rpi', 'encrypt_aem'
|
|
|
|
])
|
|
|
|
print(sum(cpd.values()))
|
|
|
|
ys = ['Idle', 'Adv.', 'Scan', 'Crypto\n(Daily)']
|
|
|
|
xs = [cpd[IDLE_LABEL], cpd['adv'], cpd['scan'], cpd['generate_tek']+cpd['derive_tek']+cpd['derive_rpi']+ cpd['encrypt_aem']]
|
|
|
|
xs = [x/(24*3600) for x in xs]
|
|
|
|
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
|
|
|
|
ax.set_ylabel('Estimated Duration per Day [%]')
|
|
|
|
ax.set_xlabel('Functionality')
|
|
|
|
|
|
|
|
bars = ax.bar(ys,xs)
|
|
|
|
ax.bar_label(bars, padding=5, fmt='%.2f')
|
|
|
|
|
|
|
|
# Adapt the figure size as needed
|
|
|
|
fig.set_size_inches(3.5, 3.2)
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.savefig("../out/export_usage_seconds_per_day.pdf", format="pdf", bbox_inches='tight')
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
def export_current_per_functionality():
|
|
|
|
|
|
|
|
ys = ['Idle', 'Adv.', 'Scan', 'Daily\nSecret', 'TEK', 'RPI', 'AEM']
|
|
|
|
xs = [consumptions[IDLE_LABEL], consumptions['adv'], consumptions['scan'], consumptions['generate_tek'], consumptions['derive_tek'], consumptions['derive_rpi'], consumptions['encrypt_aem']]
|
|
|
|
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
|
|
|
|
ax.set_ylabel('Avg. Consumption [mA]')
|
|
|
|
ax.set_xlabel('Functionality')
|
|
|
|
|
|
|
|
bars = ax.bar(ys,xs)
|
|
|
|
ax.bar_label(bars, padding=5, fmt='%.2f')
|
|
|
|
|
|
|
|
# Adapt the figure size as needed
|
|
|
|
fig.set_size_inches(4.5, 3.2)
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.savefig("../out/current_per_functionality.pdf", format="pdf", bbox_inches='tight')
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
def export_tek_check():
|
|
|
|
tek_check_duration = 0.020
|
|
|
|
|
|
|
|
xs = [1000, 10000, 1000000]
|
|
|
|
ys = [x*tek_check_duration for x in xs]
|
|
|
|
|
|
|
|
xs = [str(x) for x in xs]
|
|
|
|
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
|
|
|
|
ax.set_ylabel('Extrapolated Time [s]')
|
|
|
|
ax.set_xlabel('Number of TEKs')
|
|
|
|
|
|
|
|
bars = ax.bar(xs,ys)
|
|
|
|
ax.bar_label(bars, padding=5, fmt='%d')
|
|
|
|
|
|
|
|
# Adapt the figure size as needed
|
|
|
|
fig.set_size_inches(4.5, 3.2)
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.savefig("../out/tek_check.pdf", format="pdf", bbox_inches='tight')
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
export_adv_consumption()
|
|
|
|
export_usage_seconds_per_day()
|
|
|
|
export_consumption_per_day()
|
|
|
|
export_current_per_functionality()
|
|
|
|
export_tek_check()
|