import json import os import numpy as np import math import matplotlib.pyplot as plt from eval_utility import slugify, cached, init_cache, load_env_config import matplotlib.ticker as ticker from matplotlib.ticker import PercentFormatter from matplotlib.ticker import (MultipleLocator, AutoMinorLocator) import matplotlib as mpl VOLTS = 3.0 METHOD_PREFIX = 'export_' CONFIDENCE_FILL_COLOR = '0.8' NUM_NODES = 24 def load_plot_defaults(): # Configure as needed plt.rc('lines', linewidth=2.0) plt.rc('legend', framealpha=1.0, fancybox=True) plt.rc('errorbar', capsize=3) plt.rc('pdf', fonttype=42) plt.rc('ps', fonttype=42) plt.rc('font', size=8, family="serif", serif=['Times New Roman'] + plt.rcParams['font.serif']) #mpl.style.use('tableau-colorblind10') IDLE_LABEL = 'idle' consumptions = {} durations = {} times_per_day = {} scaled_consumptions = {} raw_scaled_consumptions = {} def add_consumption(label, consumption_msrmnt, duration, tpd, repetitions=1): consumptions[label] = consumption_msrmnt durations[label] = duration/repetitions times_per_day[label] = tpd def calculate_usage_seconds_per_day(labels, normalize_with_idle=True): # we first calculate the times for each label usage_seconds = { IDLE_LABEL: 0 } sum = 0 for l in labels: if l == IDLE_LABEL: continue usage_seconds[l] = durations[l]*times_per_day[l] assert 0 <= usage_seconds[l] <= 24*3600.0 sum += usage_seconds[l] if sum < 24*3600.0: usage_seconds[IDLE_LABEL] = 24*3600.0-sum # we spent the rest of the time idling! cons_per_day = {} for l in labels: cons_per_day[l] = usage_seconds[l] # also convert to ampere hours! return cons_per_day def calculate_consumption_per_day(labels, normalize_with_idle=True): # we first calculate the times for each label usage_seconds = { IDLE_LABEL: 0 } sum = 0 for l in labels: if l == IDLE_LABEL: continue usage_seconds[l] = durations[l]*times_per_day[l] assert 0 <= usage_seconds[l] <= 24*3600.0 sum += usage_seconds[l] if sum < 24*3600.0: usage_seconds[IDLE_LABEL] = 24*3600.0-sum # we spent the rest of the time idling! cons_per_day = {} for l in labels: cons_per_day[l] = consumptions[l]*usage_seconds[l]*(1/3600.0) # also convert to ampere hours! return cons_per_day # calculate the remaining idle time # THE TOTAL EXPECTED AMOUNT PER DAY in milli ampere expected_consumption_per_day = 0.0 idle_consumption = 0.00256 add_consumption(IDLE_LABEL, idle_consumption, 1.0, 1.0) # ADVERTISING adv_interval = 0.250 per_adv_consumption = { 0: 2.23, -4: 1.49 , -8: 1.43, -16: 1.38, -20: 1.3, -40: 1.22, } # TODO: Add error bars if possible! # measured_duration # duration # repetitions adv_consumption = sum(list(per_adv_consumption.values())) / len(per_adv_consumption.values()) add_consumption('adv', adv_consumption, 0.01, (24*3600)/0.25) # SCANNING scan_consumption = 5.440 add_consumption('scan', scan_consumption, 1.0, 24*60) crypt_duration = 0.01 generate_tek_consumption = 2 derive_tek_consumption = 2 derive_rpi_consumption = 2 encrypt_aem_consumption = 2 add_consumption('generate_tek', generate_tek_consumption, crypt_duration, 1) add_consumption('derive_tek', derive_tek_consumption, crypt_duration, 1) add_consumption('derive_rpi', derive_rpi_consumption, crypt_duration, 144) add_consumption('encrypt_aem', encrypt_aem_consumption, crypt_duration, 144*len(per_adv_consumption.values())) # A table for the timings of the cryptographic fundamentals # One detailed graph as a comparison of the advertisements # One bar graph for each of the factors involved in the daily energy usage tek_check_duration = 0.020 tek_check_amount = 32 tek_check_consumption = 4 # generate graph with keys to check # Worst case scenario: Flash is fully used! # we generate a bloom filter of all records! # How long does it take to create the bloom filter for the whole dataset? #64kByte # then check keys (i.e., maybe 32 teks at once?) # measure time # measure consumption # extrapolate numbers for more keys! # We then get keys to check # 1000, 10000, 100000 def export_adv_consumption(): xs = [per_adv_consumption[0], per_adv_consumption[-4], per_adv_consumption[-8], per_adv_consumption[-16], per_adv_consumption[-20], per_adv_consumption[-40]] ys = ['0', '-4', '-8', '-16', '-20', '-40'] width = 0.6 # the width of the bars: can also be len(x) sequence fig, ax = plt.subplots() ax.set_ylabel('Avg. Advertising Current [µA]') ax.set_xlabel('TX Power [dBm]') bars = ax.bar(ys,xs) ax.bar_label(bars, padding=5, fmt='%.2f') #ax.set_title('') #ax.legend() # (loc='upper center', bbox_to_anchor=(0.5, -0.5), ncol=2) # Adapt the figure size as needed fig.set_size_inches(3.5, 3.2) plt.tight_layout() plt.savefig("../out/adv_consumption.pdf", format="pdf", bbox_inches='tight') plt.close() def export_consumption_per_day(): cpd = calculate_consumption_per_day([ IDLE_LABEL, 'adv', 'scan', 'generate_tek', 'derive_tek', 'derive_rpi', 'encrypt_aem' ]) print(sum(cpd.values())) ys = ['Idle', 'Adv.', 'Scan', 'Crypto\n(Daily)'] xs = [cpd[IDLE_LABEL], cpd['adv'], cpd['scan'], cpd['generate_tek']+cpd['derive_tek']+cpd['derive_rpi']+ cpd['encrypt_aem']] fig, ax = plt.subplots() ax.set_ylabel('Avg. Consumption per Day [mA h]') ax.set_xlabel('Functionality') bars = ax.bar(ys,xs) ax.bar_label(bars, padding=5, fmt='%.2f') # Adapt the figure size as needed fig.set_size_inches(3.5, 3.2) plt.tight_layout() plt.savefig("../out/weighted_consumption.pdf", format="pdf", bbox_inches='tight') plt.close() def export_usage_seconds_per_day(): cpd = calculate_usage_seconds_per_day([ IDLE_LABEL, 'adv', 'scan', 'generate_tek', 'derive_tek', 'derive_rpi', 'encrypt_aem' ]) print(sum(cpd.values())) ys = ['Idle', 'Adv.', 'Scan', 'Crypto\n(Daily)'] xs = [cpd[IDLE_LABEL], cpd['adv'], cpd['scan'], cpd['generate_tek']+cpd['derive_tek']+cpd['derive_rpi']+ cpd['encrypt_aem']] xs = [x/(24*3600) for x in xs] fig, ax = plt.subplots() ax.set_ylabel('Estimated Duration per Day [%]') ax.set_xlabel('Functionality') bars = ax.bar(ys,xs) ax.bar_label(bars, padding=5, fmt='%.2f') # Adapt the figure size as needed fig.set_size_inches(3.5, 3.2) plt.tight_layout() plt.savefig("../out/export_usage_seconds_per_day.pdf", format="pdf", bbox_inches='tight') plt.close() def export_current_per_functionality(): ys = ['Idle', 'Adv.', 'Scan', 'Daily\nSecret', 'TEK', 'RPI', 'AEM'] xs = [consumptions[IDLE_LABEL], consumptions['adv'], consumptions['scan'], consumptions['generate_tek'], consumptions['derive_tek'], consumptions['derive_rpi'], consumptions['encrypt_aem']] fig, ax = plt.subplots() ax.set_ylabel('Avg. Consumption [mA]') ax.set_xlabel('Functionality') bars = ax.bar(ys,xs) ax.bar_label(bars, padding=5, fmt='%.2f') # Adapt the figure size as needed fig.set_size_inches(4.5, 3.2) plt.tight_layout() plt.savefig("../out/current_per_functionality.pdf", format="pdf", bbox_inches='tight') plt.close() def export_tek_check(): tek_check_duration = 0.020 xs = [1000, 10000, 1000000] ys = [x*tek_check_duration for x in xs] xs = [str(x) for x in xs] fig, ax = plt.subplots() ax.set_ylabel('Extrapolated Time [s]') ax.set_xlabel('Number of TEKs') bars = ax.bar(xs,ys) ax.bar_label(bars, padding=5, fmt='%d') # Adapt the figure size as needed fig.set_size_inches(4.5, 3.2) plt.tight_layout() plt.savefig("../out/tek_check.pdf", format="pdf", bbox_inches='tight') plt.close() export_adv_consumption() export_usage_seconds_per_day() export_consumption_per_day() export_current_per_functionality() export_tek_check()