1
0
mirror of https://github.com/CovidBraceletPrj/CovidBracelet.git synced 2025-01-24 20:07:13 +01:00

327 lines
8.7 KiB
Python
Raw Normal View History

2022-05-30 13:16:43 +02:00
import json
import os
import numpy as np
import math
import matplotlib.pyplot as plt
from eval_utility import slugify, cached, init_cache, load_env_config
import matplotlib.ticker as ticker
from matplotlib.ticker import PercentFormatter
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
import matplotlib as mpl
VOLTS = 3.0
METHOD_PREFIX = 'export_'
CONFIDENCE_FILL_COLOR = '0.8'
NUM_NODES = 24
def load_plot_defaults():
# Configure as needed
plt.rc('lines', linewidth=2.0)
plt.rc('legend', framealpha=1.0, fancybox=True)
plt.rc('errorbar', capsize=3)
plt.rc('pdf', fonttype=42)
plt.rc('ps', fonttype=42)
2022-08-03 14:35:38 +02:00
plt.rc('font', size=10, family="serif", serif=['Times New Roman'] + plt.rcParams['font.serif'])
2022-05-30 13:16:43 +02:00
#mpl.style.use('tableau-colorblind10')
2022-08-03 14:35:38 +02:00
load_plot_defaults()
2022-05-30 13:16:43 +02:00
2022-05-31 04:20:40 +02:00
idle_avg = 0.00252
idle_max = 0.02325
2022-05-30 13:16:43 +02:00
IDLE_LABEL = 'idle'
consumptions = {}
durations = {}
times_per_day = {}
scaled_consumptions = {}
raw_scaled_consumptions = {}
def add_consumption(label, consumption_msrmnt, duration, tpd, repetitions=1):
consumptions[label] = consumption_msrmnt
durations[label] = duration/repetitions
times_per_day[label] = tpd
def calculate_usage_seconds_per_day(labels, normalize_with_idle=True):
# we first calculate the times for each label
usage_seconds = {
IDLE_LABEL: 0
}
sum = 0
for l in labels:
if l == IDLE_LABEL:
continue
usage_seconds[l] = durations[l]*times_per_day[l]
assert 0 <= usage_seconds[l] <= 24*3600.0
sum += usage_seconds[l]
if sum < 24*3600.0:
usage_seconds[IDLE_LABEL] = 24*3600.0-sum # we spent the rest of the time idling!
cons_per_day = {}
for l in labels:
cons_per_day[l] = usage_seconds[l] # also convert to ampere hours!
return cons_per_day
def calculate_consumption_per_day(labels, normalize_with_idle=True):
# we first calculate the times for each label
usage_seconds = {
IDLE_LABEL: 0
}
sum = 0
for l in labels:
if l == IDLE_LABEL:
continue
usage_seconds[l] = durations[l]*times_per_day[l]
assert 0 <= usage_seconds[l] <= 24*3600.0
sum += usage_seconds[l]
if sum < 24*3600.0:
usage_seconds[IDLE_LABEL] = 24*3600.0-sum # we spent the rest of the time idling!
cons_per_day = {}
for l in labels:
cons_per_day[l] = consumptions[l]*usage_seconds[l]*(1/3600.0) # also convert to ampere hours!
return cons_per_day
# calculate the remaining idle time
# THE TOTAL EXPECTED AMOUNT PER DAY in milli ampere
expected_consumption_per_day = 0.0
2022-05-31 00:54:02 +02:00
idle_consumption = 0.00256
2022-05-30 13:16:43 +02:00
add_consumption(IDLE_LABEL, idle_consumption, 1.0, 1.0)
# ADVERTISING
adv_interval = 0.250
2022-05-31 04:20:40 +02:00
adv_consumptions = [
2.45,
2.47,
2.41,
2.35,
2.47,
2.39,
2.45,
2.47,
2.49,
2.45
]
adv_max_consumption = [
7.66,
8.31,
6.96,
7.3,
7.77,
7.6,
8.55,
6.94,
7.14,
6.85
]
2022-05-30 13:16:43 +02:00
# TODO: Add error bars if possible!
# measured_duration
# duration
# repetitions
2022-08-03 13:50:39 +02:00
adv_consumption = sum(list(adv_consumptions)) / len(adv_consumptions)
2022-05-30 13:16:43 +02:00
2022-05-31 04:20:40 +02:00
add_consumption('adv', adv_consumption, 0.004, (24*3600)/0.25)
2022-05-30 13:16:43 +02:00
# SCANNING
2022-05-31 04:20:40 +02:00
scan_consumption = 6.01
scan_consumption_max = 8.71
2022-08-03 13:50:39 +02:00
add_consumption('scan', scan_consumption, 2.015, 24*12)
2022-05-30 13:16:43 +02:00
2022-08-03 13:50:39 +02:00
crypt_duration = 0.22
2022-05-31 04:20:40 +02:00
crypt_consumption_avg = 3.2
crypt_consumption_max = 5.96
add_consumption('daily_crypto', crypt_consumption_avg, 0.22, 10)
2022-05-30 13:16:43 +02:00
# A table for the timings of the cryptographic fundamentals
# One detailed graph as a comparison of the advertisements
# One bar graph for each of the factors involved in the daily energy usage
2022-05-31 04:26:50 +02:00
tek_check_duration = 2.081
tek_check_amount = 144
tek_check_consumption = 3.74
tek_check_consumption_max = 4.49
2022-05-30 13:16:43 +02:00
# generate graph with keys to check
# Worst case scenario: Flash is fully used!
# we generate a bloom filter of all records!
# How long does it take to create the bloom filter for the whole dataset?
#64kByte
# then check keys (i.e., maybe 32 teks at once?)
# measure time
# measure consumption
# extrapolate numbers for more keys!
def export_consumption_per_day():
cpd = calculate_consumption_per_day([
2022-08-03 13:50:39 +02:00
IDLE_LABEL, 'adv', 'scan', 'daily_crypto'
2022-05-30 13:16:43 +02:00
])
2022-08-03 13:50:39 +02:00
print("export_consumption_per_day")
print(cpd)
2022-05-30 13:16:43 +02:00
print(sum(cpd.values()))
ys = ['Idle', 'Adv.', 'Scan', 'Crypto\n(Daily)']
2022-08-03 13:50:39 +02:00
xs = [cpd[IDLE_LABEL], cpd['adv'], cpd['scan'], cpd['daily_crypto']]
2022-05-30 13:16:43 +02:00
fig, ax = plt.subplots()
2022-08-03 14:35:38 +02:00
ax.set_ylabel('Avg. Daily Consumption [mA h]')
2022-05-30 13:16:43 +02:00
ax.set_xlabel('Functionality')
bars = ax.bar(ys,xs)
2022-08-03 13:50:39 +02:00
xs_labels = ["{:.2f}".format(x) if x >= 0.01 else "<0.01" for x in xs]
2022-08-03 15:18:05 +02:00
ax.bar_label(bars, padding=0, labels=xs_labels)
2022-05-30 13:16:43 +02:00
# Adapt the figure size as needed
2022-08-03 13:50:39 +02:00
2022-08-03 14:35:38 +02:00
fig.set_size_inches(2.5, 2.75)
2022-08-03 13:50:39 +02:00
ax.set_ylim([0, 2])
2022-05-30 13:16:43 +02:00
plt.tight_layout()
plt.savefig("../out/weighted_consumption.pdf", format="pdf", bbox_inches='tight')
plt.close()
def export_usage_seconds_per_day():
cpd = calculate_usage_seconds_per_day([
2022-08-03 13:50:39 +02:00
IDLE_LABEL, 'adv', 'scan', 'daily_crypto'
2022-05-30 13:16:43 +02:00
])
2022-08-03 13:50:39 +02:00
print("export_usage_seconds_per_day")
2022-05-30 13:16:43 +02:00
print(sum(cpd.values()))
2022-08-03 13:50:39 +02:00
print(cpd)
2022-05-30 13:16:43 +02:00
ys = ['Idle', 'Adv.', 'Scan', 'Crypto\n(Daily)']
2022-08-03 13:50:39 +02:00
xs = [cpd[IDLE_LABEL], cpd['adv'], cpd['scan'], cpd['daily_crypto']]
xs = [100*x/(24*3600) for x in xs]
2022-05-30 13:16:43 +02:00
fig, ax = plt.subplots()
ax.set_ylabel('Estimated Duration per Day [%]')
ax.set_xlabel('Functionality')
bars = ax.bar(ys,xs)
2022-08-03 13:50:39 +02:00
2022-08-03 14:35:38 +02:00
xs_labels = ["{:.2f}".format(x) if x >= 0.01 else "<0.01" for x in xs]
2022-08-03 15:18:05 +02:00
ax.bar_label(bars, padding=0, labels=xs_labels)
2022-08-03 13:50:39 +02:00
ax = plt.gca()
#ax.set_xlim([xmin, xmax])
ax.set_ylim([0, 109])
2022-05-30 13:16:43 +02:00
# Adapt the figure size as needed
2022-08-03 14:35:38 +02:00
fig.set_size_inches(2.5, 2.7)
2022-05-30 13:16:43 +02:00
plt.tight_layout()
plt.savefig("../out/export_usage_seconds_per_day.pdf", format="pdf", bbox_inches='tight')
plt.close()
def export_current_per_functionality():
2022-08-03 13:50:39 +02:00
ys = ['Idle', 'Adv.', 'Scan', 'Crypto\n(Daily)']
xs = [consumptions[IDLE_LABEL], consumptions['adv'], consumptions['scan'], consumptions['daily_crypto']]
print("export_current_per_functionality")
print(consumptions)
2022-05-30 13:16:43 +02:00
fig, ax = plt.subplots()
ax.set_ylabel('Avg. Consumption [mA]')
ax.set_xlabel('Functionality')
bars = ax.bar(ys,xs)
2022-08-03 13:50:39 +02:00
xs_labels = ["{:.2f}".format(x) if x >= 0.01 else "<0.01" for x in xs]
2022-08-03 15:18:05 +02:00
ax.bar_label(bars, padding=0, fmt='%.2f', labels=xs_labels)
2022-05-30 13:16:43 +02:00
# Adapt the figure size as needed
2022-08-03 14:35:38 +02:00
fig.set_size_inches(2.5, 2.75)
2022-08-03 13:50:39 +02:00
ax.set_ylim([0, 8])
2022-05-30 13:16:43 +02:00
plt.tight_layout()
plt.savefig("../out/current_per_functionality.pdf", format="pdf", bbox_inches='tight')
plt.close()
def export_tek_check():
2022-08-03 13:50:39 +02:00
xs = [0, 1250000, 2500000, 5000000]
means = {}
for l in ['GAEN', 'TEK Transport', 'TEK Check']:
means[l] = []
2022-05-30 13:16:43 +02:00
2022-08-03 13:50:39 +02:00
for tpd in xs:
add_consumption('tek_check_' + str(tpd), tek_check_consumption, tek_check_duration, tpd, repetitions=tek_check_amount)
add_consumption('tek_transport_' + str(tpd), 8, 1.0, tpd, repetitions=3125)
print(tpd)
#upd = calculate_usage_seconds_per_day([
# IDLE_LABEL, 'adv', 'scan', 'daily_crypto', 'tek_check_' + str(tpd), 'tek_transport_' + str(tpd)
#])
#print(upd)
cpd = calculate_consumption_per_day([
IDLE_LABEL, 'adv', 'scan', 'daily_crypto', 'tek_check_' + str(tpd), 'tek_transport_' + str(tpd)
])
print(cpd)
means['GAEN'].append(cpd[IDLE_LABEL]+ cpd['adv']+cpd['scan']+ cpd['daily_crypto'])
means['TEK Transport'].append(cpd['tek_transport_' + str(tpd)])
means['TEK Check'].append(cpd['tek_check_' + str(tpd)])
labels = ['GAEN', 'TEK Transport', 'TEK Check']
width = 0.4 # the width of the bars: can also be len(x) sequence
2022-05-30 13:16:43 +02:00
fig, ax = plt.subplots()
2022-08-03 13:50:39 +02:00
#xs = [str(x) for x in xs]
xs = ['0', '1,250,000', '2,500,000', '5,000,000']
ax.bar(xs, means['GAEN'], width, label='GAEN')
ax.bar(xs, means['TEK Transport'], width, label='TEK Transport', bottom=means['GAEN'])
bars = ax.bar(xs, means['TEK Check'], width, label='TEK Check', bottom=[means['GAEN'][i]+means['TEK Transport'][i] for (i,x) in enumerate(xs)])
bar_labels = [means['GAEN'][i]+means['TEK Transport'][i]+means['TEK Check'][i] for (i,x) in enumerate(xs)]
bar_labels = ['{:.2f}'.format(l) for l in bar_labels]
print(bar_labels)
2022-08-03 15:18:05 +02:00
ax.bar_label(bars, padding=0, labels=bar_labels)
2022-08-03 13:50:39 +02:00
2022-08-03 14:35:38 +02:00
ax.set_ylabel('Estimated Daily Consumption [mAh]')
2022-08-03 13:50:39 +02:00
ax.set_xlabel('Number of TEKs per Day')
ax.legend()
2022-05-30 13:16:43 +02:00
# Adapt the figure size as needed
2022-08-03 14:35:38 +02:00
fig.set_size_inches(3.6, 2.8)
2022-08-03 13:50:39 +02:00
ax.set_ylim([0, 100])
2022-05-30 13:16:43 +02:00
plt.tight_layout()
plt.savefig("../out/tek_check.pdf", format="pdf", bbox_inches='tight')
plt.close()
export_usage_seconds_per_day()
export_consumption_per_day()
export_current_per_functionality()
export_tek_check()