mirror of
https://github.com/eddelbuettel/binb
synced 2024-12-22 04:29:59 +01:00
Added new Monash demo with more options
This commit is contained in:
parent
a9609356ae
commit
b4b3159a8b
147
inst/monashDemo/monashOptions.Rmd
Normal file
147
inst/monashDemo/monashOptions.Rmd
Normal file
@ -0,0 +1,147 @@
|
||||
---
|
||||
# Version of Monash demo to show off some available options
|
||||
author: Rob J Hyndman
|
||||
title: Monash
|
||||
date: \today
|
||||
titlefontsize: 22pt
|
||||
titlecolor: burntorange
|
||||
fontsize: 12pt
|
||||
classoption: aspectratio=169
|
||||
titlepage: title16x9.png
|
||||
toc: true
|
||||
tocheader: Time series graphics
|
||||
output:
|
||||
binb::monash:
|
||||
colortheme: monashblue
|
||||
keep_tex: yes
|
||||
fig_height: 3.3
|
||||
fig_width: 8
|
||||
header-includes:
|
||||
- \usepackage{booktabs}
|
||||
- \tabcolsep=0.12cm
|
||||
- \definecolor{burntorange}{rgb}{0.8, 0.33, 0.0}
|
||||
---
|
||||
|
||||
```{r setup, include=FALSE}
|
||||
knitr::opts_chunk$set(echo = TRUE)
|
||||
library(forecast)
|
||||
library(ggplot2)
|
||||
options(width=50)
|
||||
```
|
||||
|
||||
# Time plots
|
||||
|
||||
## Time plots
|
||||
|
||||
```{r}
|
||||
autoplot(USAccDeaths) +
|
||||
ylab("Total deaths") + xlab("Year")
|
||||
```
|
||||
|
||||
# Seasonal plots
|
||||
|
||||
## Seasonal plots
|
||||
|
||||
```{r}
|
||||
ggseasonplot(USAccDeaths, year.labels=TRUE,
|
||||
year.labels.left=TRUE) + ylab("Total deaths")
|
||||
```
|
||||
|
||||
## Seasonal plots
|
||||
|
||||
* Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
|
||||
* Something like a time plot except that the data from each season are overlapped.
|
||||
* Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
|
||||
* In R: `ggseasonplot()`
|
||||
|
||||
# Seasonal polar plots
|
||||
|
||||
## Seasonal polar plots
|
||||
|
||||
```{r, out.width="6.2cm"}
|
||||
ggseasonplot(USAccDeaths, year.labels=TRUE,
|
||||
polar=TRUE) + ylab("Total deaths")
|
||||
```
|
||||
|
||||
\only<2>{
|
||||
\begin{textblock}{4}(8,4)
|
||||
\begin{alertblock}{}
|
||||
Only change is to switch to polar coordinates.
|
||||
\end{alertblock}
|
||||
\end{textblock}
|
||||
}
|
||||
|
||||
# Seasonal subseries plots
|
||||
|
||||
## Seasonal subseries plots
|
||||
|
||||
```{r, echo=TRUE}
|
||||
ggsubseriesplot(USAccDeaths) +
|
||||
ylab("Total deaths")
|
||||
```
|
||||
|
||||
## Seasonal subseries plots
|
||||
|
||||
* Data for each season collected together in time plot as separate time series.
|
||||
* Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
|
||||
* In R: `ggsubseriesplot()`
|
||||
|
||||
|
||||
# Lag plots and autocorrelation
|
||||
|
||||
## Lagged scatterplots
|
||||
|
||||
```{r, fig.height=4.5, out.width="45%"}
|
||||
gglagplot(USAccDeaths/1000, lags=9)
|
||||
```
|
||||
|
||||
## Lagged scatterplots
|
||||
|
||||
```{r, fig.height=4.5, out.width="45%"}
|
||||
gglagplot(USAccDeaths/1000, lags=9, do.lines=FALSE)
|
||||
```
|
||||
|
||||
\only<2>{
|
||||
\begin{textblock}{6.8}(8.3,3)
|
||||
\begin{block}{}
|
||||
\begin{itemize}\tightlist
|
||||
\item Each graph shows $y_t$ plotted against $y_{t-k}$ for different values of $k$.
|
||||
\item Autocorrelations are correlations associated with these scatterplots.
|
||||
\end{itemize}
|
||||
\end{block}
|
||||
\end{textblock}
|
||||
}
|
||||
|
||||
## Autocorrelation
|
||||
|
||||
We denote the sample autocovariance at lag $k$ by $c_k$ and the sample autocorrelation at lag $k$ by $r_k$. Then define
|
||||
|
||||
\begin{block}{}
|
||||
\begin{align*}
|
||||
c_k &= \frac{1}{T}\sum_{t=k+1}^T (y_t-\bar{y})(y_{t-k}-\bar{y}) \\[0.cm]
|
||||
\text{and}\qquad
|
||||
r_{k} &= c_k/c_0
|
||||
\end{align*}
|
||||
\end{block}\pause\small
|
||||
|
||||
* $r_1$ indicates how successive values of $y$ relate to each other
|
||||
* $r_2$ indicates how $y$ values two periods apart relate to each other
|
||||
* $r_k$ is \textit{almost} the same as the sample correlation between $y_t$ and $y_{t-k}$.
|
||||
|
||||
## Autocorrelation
|
||||
|
||||
Results for first 9 lags for `USAccDeaths` data:
|
||||
|
||||
|
||||
```{r, echo=FALSE, results='asis'}
|
||||
USAccDeathsacf <- matrix(acf(c(USAccDeaths), lag.max=9,
|
||||
plot=FALSE)$acf[-1,,1], nrow=1)
|
||||
colnames(USAccDeathsacf) <- paste("$r_",1:9,"$",sep="")
|
||||
knitr::kable(USAccDeathsacf, booktabs=TRUE,
|
||||
align="c", digits=3,
|
||||
format.args=list(nsmall=3))
|
||||
```
|
||||
|
||||
```{r USAccDeathsacf, fig.height=2}
|
||||
ggAcf(USAccDeaths)
|
||||
```
|
BIN
inst/monashDemo/monashOptions.pdf
Normal file
BIN
inst/monashDemo/monashOptions.pdf
Normal file
Binary file not shown.
BIN
inst/monashDemo/title16x9.png
Normal file
BIN
inst/monashDemo/title16x9.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 414 KiB |
Loading…
x
Reference in New Issue
Block a user