mirror of
https://github.com/eddelbuettel/binb
synced 2025-07-04 04:16:45 +02:00
IQSS vignette now in inst/iqssDemo as Libertinus not universal
This commit is contained in:
parent
83a5f08253
commit
241cbbcc9e
12 changed files with 8 additions and 6 deletions
248
inst/iqssDemo/iqssDemo.Rmd
Normal file
248
inst/iqssDemo/iqssDemo.Rmd
Normal file
|
@ -0,0 +1,248 @@
|
|||
---
|
||||
author: Ista Zahn and Gary King
|
||||
classoption: compress
|
||||
fontsize: 12pt
|
||||
title: IQSS Beamer Class Demonstration
|
||||
date: \today
|
||||
institute: IQSS
|
||||
output: binb::iqss
|
||||
vignette: >
|
||||
%\VignetteIndexEntry{binb IQSS Demo}
|
||||
%\VignetteKeywords{binb,vignette}
|
||||
%\VignettePackage{binb}
|
||||
%\VignetteEngine{knitr::rmarkdown}
|
||||
---
|
||||
|
||||
|
||||
# Beamer Features
|
||||
|
||||
## Some of Gary's Examples
|
||||
|
||||
### What's this course about?
|
||||
|
||||
|
||||
::: incremental
|
||||
|
||||
- \alert{Specific statistical methods for many research problems}
|
||||
- How to learn (or create) new methods
|
||||
- Inference: \underline{Using facts you know to learn about
|
||||
facts you don't know}
|
||||
- \alert{How to write a publishable scholarly paper}
|
||||
- \alert{All the practical tools of research} --- theory,
|
||||
applications, simulation, programming, word processing, plumbing,
|
||||
whatever is useful
|
||||
- $\leadsto$ \alert{Outline and class materials:}
|
||||
- \mbox{{\huge\parbox[b][.5in][t]{1in}{\alert{j.mp/G2001}}}
|
||||
$\qquad\qquad$\includegraphics[width=.95in]{figs/phbAr.png}}
|
||||
- The syllabus gives topics, not a weekly plan.
|
||||
- We will go as fast as possible subject to everyone following along
|
||||
- We cover different amounts of material each week
|
||||
|
||||
:::
|
||||
|
||||
### How much math will you scare us with?
|
||||
|
||||
- All math requires two parts: \alertb{proof} and \alertb{concepts \& intuition}
|
||||
- Different classes emphasize:
|
||||
- \alert{Baby Stats}: dumbed down proofs, vague intuition
|
||||
- \alert{Math Stats}: rigorous mathematical proofs
|
||||
- \alert{\underline{Practical Stats}}: deep concepts and intuition, proofs when needed
|
||||
- Goal: how to do empirical research, in depth
|
||||
- Use rigorous statistical theory --- when needed
|
||||
- Insure we understand the intuition --- always
|
||||
- Always traverse from theoretical foundations to practical applications
|
||||
- Includes ``how to'' computation
|
||||
- $\leadsto$ Fewer proofs, more concepts, better practical knowledge
|
||||
- Do you have the background for this class?
|
||||
|
||||
. . .
|
||||
|
||||
\alert{A Test: What's this?
|
||||
\begin{align*}
|
||||
b=(X'X)^{-1}X'y
|
||||
\end{align*} }
|
||||
|
||||
|
||||
### Systematic Components: Examples
|
||||
|
||||
\includegraphics[width=8cm]{figs/functionalForms}
|
||||
|
||||
- \alertb{$E(Y_i) \equiv \mu_i = X_i\beta = \beta_0 +
|
||||
\beta_1X_{1i} +\dots+\beta_kX_{ki}$}
|
||||
- \alertc{$\Pr(Y_i=1) \equiv \pi_i =
|
||||
\frac{1}{1+e^{-x_i\beta}}$}
|
||||
- \alertd{$V(Y_i)\equiv \sigma_i^2 = e^{x_i\beta}$}
|
||||
- Interpretation:
|
||||
- Each is a \alert{class of functional forms}
|
||||
- Set $\beta$ and it picks out one \alert{member of the class}
|
||||
- \alert{$\beta$} in each is an ``effect parameter'' vector,
|
||||
with different meaning
|
||||
|
||||
|
||||
### Negative Binomial Derivation
|
||||
|
||||
\uncover<+->{Recall:}
|
||||
|
||||
\begin{equation*}
|
||||
\uncover<+->{\Pr(A|B)=\frac{\Pr(AB)}{\Pr(B)} \implies
|
||||
\alertb{\Pr(AB)}=\alerte{\Pr(A|B)}\alertd{\Pr(B)}}
|
||||
\end{equation*}
|
||||
|
||||
\alertb<1-1>{one}
|
||||
\alertc<2-2>{two}
|
||||
\alertd<3-3>{three}
|
||||
|
||||
\begin{align*}
|
||||
\uncover<+->{\text{NegBin}(y|\phi,\sigma^2) &= \int_0^\infty
|
||||
\alerte{\text{Poisson}(y|\lambda)}
|
||||
\times\alertd{\text{gamma}(\lambda|\phi,\sigma^2)}d\lambda\\}
|
||||
\uncover<+->{&= \int_0^\infty
|
||||
\alertb{\P(y,\lambda|\phi,\sigma^2) }d\lambda\\}
|
||||
\uncover<+->{&=
|
||||
\frac{\Gamma\left(\frac{\phi}{\sigma^2-1}+y_i\right)}
|
||||
{y_i!\Gamma\left(\frac{\phi}{\sigma^2-1}\right)}
|
||||
\left(\frac{\sigma^2-1}{\sigma^2}\right)^{y_i}
|
||||
\left(\sigma^2\right)^{\frac{-\phi}{\sigma^2-1}}}
|
||||
\end{align*}
|
||||
|
||||
|
||||
# Other Features
|
||||
|
||||
## Structural Features
|
||||
|
||||
### Structural Features
|
||||
|
||||
#### Levels of Structure
|
||||
|
||||
- usual \LaTeX\ \textbackslash\ section, \textbackslash\ subsection commands
|
||||
- `frame` environments provide slides
|
||||
- `block` environments divide slides into logical sections
|
||||
- `columns` environments divide slides vertically (example later)
|
||||
- overlays (\`a la prosper) change content of slides dynamically
|
||||
|
||||
#### \alertc{Overlay Alerts}
|
||||
|
||||
On the first overlay, \alert<1>{this text} is highlighted (or \emph{alerted}).
|
||||
On the second, \alert<2>{this text} is.
|
||||
|
||||
|
||||
### Code blocks
|
||||
|
||||
\footnotesize
|
||||
|
||||
```r
|
||||
# Say hello in R
|
||||
hello <- function(name) paste("hello", name)
|
||||
```
|
||||
|
||||
. . .
|
||||
|
||||
```python
|
||||
# Say hello in Python
|
||||
def hello(name):
|
||||
return("Hello" + " " + name)
|
||||
```
|
||||
|
||||
. . .
|
||||
|
||||
```haskell
|
||||
-- Say hello in Haskell
|
||||
hello name = "Hello" ++ " " ++ name
|
||||
```
|
||||
|
||||
. . .
|
||||
|
||||
```c
|
||||
/* Say hello in C */
|
||||
#include <stdio.h>
|
||||
int main()
|
||||
{
|
||||
char name[256];
|
||||
fgets(name, sizeof(name), stdin);
|
||||
printf("Hello %s", name);
|
||||
return(0);
|
||||
}
|
||||
```
|
||||
|
||||
\normalsize
|
||||
|
||||
|
||||
### Alerts
|
||||
|
||||
- First level \alert{alert}
|
||||
- Second level \alertb{alert}
|
||||
- Third level \alertc{alert}
|
||||
- Fourth level \alertd{alert}
|
||||
- Fifth level \alerte{alert}
|
||||
|
||||
# More Features
|
||||
|
||||
## Blocks
|
||||
|
||||
### Other Features
|
||||
|
||||
#### Levels of Structure
|
||||
|
||||
- Clean, extensively customizable visual style
|
||||
- Hyperlinks ([http://github.com/izahn/iqss-beamer-theme](click here_)
|
||||
- No weird scaling prosper
|
||||
- slides are 96~mm~$\times$~128~mm
|
||||
- text is 10-12pt on slide
|
||||
- slide itself magnified with Adobe Reader/xpdf/gv to fill screen
|
||||
- pgf graphics framework easy to use
|
||||
- include external JPEG/PNG/PDF figures
|
||||
- output directly to pdf: no PostScript hurdles
|
||||
- detailed User's Manual (with good presentation advice, too)
|
||||
|
||||
|
||||
### Theorems and Proofs
|
||||
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
|
||||
|
||||
#### Theorem
|
||||
There is no largest prime number.
|
||||
|
||||
#### Proof
|
||||
> - Suppose $p$ were the largest prime number.
|
||||
> - Let $q$ be the product of the first $p$ numbers.
|
||||
> - Then $q+1$ is not divisible by any of them.
|
||||
> - But $q + 1$ is greater than $1$, thus divisible by some prime
|
||||
number not in the first $p$ numbers. \qedhere
|
||||
|
||||
### Blocks
|
||||
|
||||
#### Normal block
|
||||
A \alert{set} consists of elements.
|
||||
|
||||
|
||||
#### \alert{Alert block}
|
||||
$2=2$.
|
||||
|
||||
#### \alertc{Example block}
|
||||
The set $\{1,2,3,5\}$ has four elements.
|
||||
|
||||
|
||||
# Appendix
|
||||
|
||||
---
|
||||
|
||||
Backup Slides
|
||||
|
||||
<!-- \subsection{More stuff} -->
|
||||
|
||||
---
|
||||
|
||||
Details
|
||||
|
||||
---
|
||||
|
||||
Text omitted in main talk.
|
||||
|
||||
<!-- \subsection{Even more additional material} -->
|
||||
|
||||
---
|
||||
|
||||
More details
|
||||
|
||||
---
|
||||
|
||||
Even more details
|
Loading…
Add table
Add a link
Reference in a new issue