mirror of
git://git.gnupg.org/gnupg.git
synced 2024-12-23 10:29:58 +01:00
137 lines
3.2 KiB
ArmAsm
137 lines
3.2 KiB
ArmAsm
/* IBM POWER submul_1 -- Multiply a limb vector with a limb and subtract
|
|
* the result from a second limb vector.
|
|
*
|
|
* Copyright (C) 1992, 1994, 1999 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
|
* USA.
|
|
*/
|
|
|
|
#include "sysdep.h"
|
|
#include "asm-syntax.h"
|
|
|
|
|
|
/*
|
|
|
|
# INPUT PARAMETERS
|
|
# res_ptr r3
|
|
# s1_ptr r4
|
|
# size r5
|
|
# s2_limb r6
|
|
|
|
# The RS/6000 has no unsigned 32x32->64 bit multiplication instruction. To
|
|
# obtain that operation, we have to use the 32x32->64 signed multiplication
|
|
# instruction, and add the appropriate compensation to the high limb of the
|
|
# result. We add the multiplicand if the multiplier has its most significant
|
|
# bit set, and we add the multiplier if the multiplicand has its most
|
|
# significant bit set. We need to preserve the carry flag between each
|
|
# iteration, so we have to compute the compensation carefully (the natural,
|
|
# srai+and doesn't work). Since the POWER architecture has a branch unit
|
|
# we can branch in zero cycles, so that's how we perform the additions.
|
|
*/
|
|
|
|
.toc
|
|
.csect .mpihelp_submul_1[PR]
|
|
.align 2
|
|
.globl mpihelp_submul_1
|
|
.globl .mpihelp_submul_1
|
|
.csect mpihelp_submul_1[DS]
|
|
mpihelp_submul_1:
|
|
.long .mpihelp_submul_1[PR], TOC[tc0], 0
|
|
.csect .mpihelp_submul_1[PR]
|
|
.mpihelp_submul_1:
|
|
|
|
cal 3,-4(3)
|
|
l 0,0(4)
|
|
cmpi 0,6,0
|
|
mtctr 5
|
|
mul 9,0,6
|
|
srai 7,0,31
|
|
and 7,7,6
|
|
mfmq 11
|
|
cax 9,9,7
|
|
l 7,4(3)
|
|
sf 8,11,7 # add res_limb
|
|
a 11,8,11 # invert cy (r11 is junk)
|
|
blt Lneg
|
|
Lpos: bdz Lend
|
|
|
|
Lploop: lu 0,4(4)
|
|
stu 8,4(3)
|
|
cmpi 0,0,0
|
|
mul 10,0,6
|
|
mfmq 0
|
|
ae 11,0,9 # low limb + old_cy_limb + old cy
|
|
l 7,4(3)
|
|
aze 10,10 # propagate cy to new cy_limb
|
|
sf 8,11,7 # add res_limb
|
|
a 11,8,11 # invert cy (r11 is junk)
|
|
bge Lp0
|
|
cax 10,10,6 # adjust high limb for negative limb from s1
|
|
Lp0: bdz Lend0
|
|
lu 0,4(4)
|
|
stu 8,4(3)
|
|
cmpi 0,0,0
|
|
mul 9,0,6
|
|
mfmq 0
|
|
ae 11,0,10
|
|
l 7,4(3)
|
|
aze 9,9
|
|
sf 8,11,7
|
|
a 11,8,11 # invert cy (r11 is junk)
|
|
bge Lp1
|
|
cax 9,9,6 # adjust high limb for negative limb from s1
|
|
Lp1: bdn Lploop
|
|
|
|
b Lend
|
|
|
|
Lneg: cax 9,9,0
|
|
bdz Lend
|
|
Lnloop: lu 0,4(4)
|
|
stu 8,4(3)
|
|
cmpi 0,0,0
|
|
mul 10,0,6
|
|
mfmq 7
|
|
ae 11,7,9
|
|
l 7,4(3)
|
|
ae 10,10,0 # propagate cy to new cy_limb
|
|
sf 8,11,7 # add res_limb
|
|
a 11,8,11 # invert cy (r11 is junk)
|
|
bge Ln0
|
|
cax 10,10,6 # adjust high limb for negative limb from s1
|
|
Ln0: bdz Lend0
|
|
lu 0,4(4)
|
|
stu 8,4(3)
|
|
cmpi 0,0,0
|
|
mul 9,0,6
|
|
mfmq 7
|
|
ae 11,7,10
|
|
l 7,4(3)
|
|
ae 9,9,0 # propagate cy to new cy_limb
|
|
sf 8,11,7 # add res_limb
|
|
a 11,8,11 # invert cy (r11 is junk)
|
|
bge Ln1
|
|
cax 9,9,6 # adjust high limb for negative limb from s1
|
|
Ln1: bdn Lnloop
|
|
b Lend
|
|
|
|
Lend0: cal 9,0(10)
|
|
Lend: st 8,4(3)
|
|
aze 3,9
|
|
br
|
|
|