gnupg/agent/minip12.c

1692 lines
43 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* minip12.c - A minimal pkcs-12 implementation.
* Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <gcrypt.h>
#ifdef TEST
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#endif
#include "../jnlib/logging.h"
#include "minip12.h"
#ifndef DIM
#define DIM(v) (sizeof(v)/sizeof((v)[0]))
#endif
enum
{
UNIVERSAL = 0,
APPLICATION = 1,
CONTEXT = 2,
PRIVATE = 3
};
enum
{
TAG_NONE = 0,
TAG_BOOLEAN = 1,
TAG_INTEGER = 2,
TAG_BIT_STRING = 3,
TAG_OCTET_STRING = 4,
TAG_NULL = 5,
TAG_OBJECT_ID = 6,
TAG_OBJECT_DESCRIPTOR = 7,
TAG_EXTERNAL = 8,
TAG_REAL = 9,
TAG_ENUMERATED = 10,
TAG_EMBEDDED_PDV = 11,
TAG_UTF8_STRING = 12,
TAG_REALTIVE_OID = 13,
TAG_SEQUENCE = 16,
TAG_SET = 17,
TAG_NUMERIC_STRING = 18,
TAG_PRINTABLE_STRING = 19,
TAG_TELETEX_STRING = 20,
TAG_VIDEOTEX_STRING = 21,
TAG_IA5_STRING = 22,
TAG_UTC_TIME = 23,
TAG_GENERALIZED_TIME = 24,
TAG_GRAPHIC_STRING = 25,
TAG_VISIBLE_STRING = 26,
TAG_GENERAL_STRING = 27,
TAG_UNIVERSAL_STRING = 28,
TAG_CHARACTER_STRING = 29,
TAG_BMP_STRING = 30
};
static unsigned char const oid_data[9] = {
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x07, 0x01 };
static unsigned char const oid_encryptedData[9] = {
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x07, 0x06 };
static unsigned char const oid_pkcs_12_pkcs_8ShroudedKeyBag[11] = {
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x0C, 0x0A, 0x01, 0x02 };
static unsigned char const oid_pkcs_12_CertBag[11] = {
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x0C, 0x0A, 0x01, 0x03 };
static unsigned char const oid_pkcs_12_CrlBag[11] = {
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x0C, 0x0A, 0x01, 0x04 };
static unsigned char const oid_pbeWithSHAAnd3_KeyTripleDES_CBC[10] = {
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x0C, 0x01, 0x03 };
static unsigned char const oid_pbeWithSHAAnd40BitRC2_CBC[10] = {
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x0C, 0x01, 0x06 };
static unsigned char const oid_x509Certificate_for_pkcs_12[10] = {
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x09, 0x16, 0x01 };
static unsigned char const oid_rsaEncryption[9] = {
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01 };
static unsigned char const data_3desiter2048[30] = {
0x30, 0x1C, 0x06, 0x0A, 0x2A, 0x86, 0x48, 0x86,
0xF7, 0x0D, 0x01, 0x0C, 0x01, 0x03, 0x30, 0x0E,
0x04, 0x08, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0x02, 0x02, 0x08, 0x00 };
#define DATA_3DESITER2048_SALT_OFF 18
static unsigned char const data_rc2iter2048[30] = {
0x30, 0x1C, 0x06, 0x0A, 0x2A, 0x86, 0x48, 0x86,
0xF7, 0x0D, 0x01, 0x0C, 0x01, 0x06, 0x30, 0x0E,
0x04, 0x08, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0x02, 0x02, 0x08, 0x00 };
#define DATA_RC2ITER2048_SALT_OFF 18
struct buffer_s
{
unsigned char *buffer;
size_t length;
};
struct tag_info
{
int class;
int is_constructed;
unsigned long tag;
unsigned long length; /* length part of the TLV */
int nhdr;
int ndef; /* It is an indefinite length */
};
/* Parse the buffer at the address BUFFER which is of SIZE and return
the tag and the length part from the TLV triplet. Update BUFFER
and SIZE on success. */
static int
parse_tag (unsigned char const **buffer, size_t *size, struct tag_info *ti)
{
int c;
unsigned long tag;
const unsigned char *buf = *buffer;
size_t length = *size;
ti->length = 0;
ti->ndef = 0;
ti->nhdr = 0;
/* Get the tag */
if (!length)
return -1; /* premature eof */
c = *buf++; length--;
ti->nhdr++;
ti->class = (c & 0xc0) >> 6;
ti->is_constructed = !!(c & 0x20);
tag = c & 0x1f;
if (tag == 0x1f)
{
tag = 0;
do
{
tag <<= 7;
if (!length)
return -1; /* premature eof */
c = *buf++; length--;
ti->nhdr++;
tag |= c & 0x7f;
}
while (c & 0x80);
}
ti->tag = tag;
/* Get the length */
if (!length)
return -1; /* prematureeof */
c = *buf++; length--;
ti->nhdr++;
if ( !(c & 0x80) )
ti->length = c;
else if (c == 0x80)
ti->ndef = 1;
else if (c == 0xff)
return -1; /* forbidden length value */
else
{
unsigned long len = 0;
int count = c & 0x7f;
for (; count; count--)
{
len <<= 8;
if (!length)
return -1; /* premature_eof */
c = *buf++; length--;
ti->nhdr++;
len |= c & 0xff;
}
ti->length = len;
}
if (ti->class == UNIVERSAL && !ti->tag)
ti->length = 0;
if (ti->length > length)
return -1; /* data larger than buffer. */
*buffer = buf;
*size = length;
return 0;
}
static int
string_to_key (int id, char *salt, int iter, const char *pw,
int req_keylen, unsigned char *keybuf)
{
int rc, i, j;
gcry_md_hd_t md;
gcry_mpi_t num_b1 = NULL;
int pwlen;
unsigned char hash[20], buf_b[64], buf_i[128], *p;
size_t cur_keylen;
size_t n;
cur_keylen = 0;
pwlen = strlen (pw);
if (pwlen > 63/2)
{
log_error ("password too long\n");
return -1;
}
/* Store salt and password in BUF_I */
p = buf_i;
for(i=0; i < 64; i++)
*p++ = salt [i%8];
for(i=j=0; i < 64; i += 2)
{
*p++ = 0;
*p++ = pw[j];
if (++j > pwlen) /* Note, that we include the trailing zero */
j = 0;
}
for (;;)
{
rc = gcry_md_open (&md, GCRY_MD_SHA1, 0);
if (rc)
{
log_error ( "gcry_md_open failed: %s\n", gpg_strerror (rc));
return rc;
}
for(i=0; i < 64; i++)
gcry_md_putc (md, id);
gcry_md_write (md, buf_i, 128);
memcpy (hash, gcry_md_read (md, 0), 20);
gcry_md_close (md);
for (i=1; i < iter; i++)
gcry_md_hash_buffer (GCRY_MD_SHA1, hash, hash, 20);
for (i=0; i < 20 && cur_keylen < req_keylen; i++)
keybuf[cur_keylen++] = hash[i];
if (cur_keylen == req_keylen)
{
gcry_mpi_release (num_b1);
return 0; /* ready */
}
/* need more bytes. */
for(i=0; i < 64; i++)
buf_b[i] = hash[i % 20];
rc = gcry_mpi_scan (&num_b1, GCRYMPI_FMT_USG, buf_b, 64, &n);
if (rc)
{
log_error ( "gcry_mpi_scan failed: %s\n", gpg_strerror (rc));
return -1;
}
gcry_mpi_add_ui (num_b1, num_b1, 1);
for (i=0; i < 128; i += 64)
{
gcry_mpi_t num_ij;
rc = gcry_mpi_scan (&num_ij, GCRYMPI_FMT_USG, buf_i + i, 64, &n);
if (rc)
{
log_error ( "gcry_mpi_scan failed: %s\n",
gpg_strerror (rc));
return -1;
}
gcry_mpi_add (num_ij, num_ij, num_b1);
gcry_mpi_clear_highbit (num_ij, 64*8);
rc = gcry_mpi_print (GCRYMPI_FMT_USG, buf_i + i, 64, &n, num_ij);
if (rc)
{
log_error ( "gcry_mpi_print failed: %s\n",
gpg_strerror (rc));
return -1;
}
gcry_mpi_release (num_ij);
}
}
}
static int
set_key_iv (gcry_cipher_hd_t chd, char *salt, int iter, const char *pw,
int keybytes)
{
unsigned char keybuf[24];
int rc;
assert (keybytes == 5 || keybytes == 24);
if (string_to_key (1, salt, iter, pw, keybytes, keybuf))
return -1;
rc = gcry_cipher_setkey (chd, keybuf, keybytes);
if (rc)
{
log_error ( "gcry_cipher_setkey failed: %s\n", gpg_strerror (rc));
return -1;
}
if (string_to_key (2, salt, iter, pw, 8, keybuf))
return -1;
rc = gcry_cipher_setiv (chd, keybuf, 8);
if (rc)
{
log_error ("gcry_cipher_setiv failed: %s\n", gpg_strerror (rc));
return -1;
}
return 0;
}
static void
crypt_block (unsigned char *buffer, size_t length, char *salt, int iter,
const char *pw, int cipher_algo, int encrypt)
{
gcry_cipher_hd_t chd;
int rc;
rc = gcry_cipher_open (&chd, cipher_algo, GCRY_CIPHER_MODE_CBC, 0);
if (rc)
{
log_error ( "gcry_cipher_open failed: %s\n", gpg_strerror(rc));
wipememory (buffer, length);
return;
}
if (set_key_iv (chd, salt, iter, pw,
cipher_algo == GCRY_CIPHER_RFC2268_40? 5:24))
{
wipememory (buffer, length);
goto leave;
}
rc = encrypt? gcry_cipher_encrypt (chd, buffer, length, NULL, 0)
: gcry_cipher_decrypt (chd, buffer, length, NULL, 0);
if (rc)
{
wipememory (buffer, length);
log_error ( "en/de-crytion failed: %s\n", gpg_strerror (rc));
goto leave;
}
leave:
gcry_cipher_close (chd);
}
static int
parse_bag_encrypted_data (const unsigned char *buffer, size_t length,
int startoffset, const char *pw,
void (*certcb)(void*, const unsigned char*, size_t),
void *certcbarg)
{
struct tag_info ti;
const unsigned char *p = buffer;
size_t n = length;
const char *where;
char salt[8];
unsigned int iter;
unsigned char *plain = NULL;
int bad_pass = 0;
where = "start";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class != CONTEXT || ti.tag)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.tag != TAG_SEQUENCE)
goto bailout;
where = "bag.encryptedData.version";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.tag != TAG_INTEGER || ti.length != 1 || *p != 0)
goto bailout;
p++; n--;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.tag != TAG_SEQUENCE)
goto bailout;
where = "bag.encryptedData.data";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.tag != TAG_OBJECT_ID || ti.length != DIM(oid_data)
|| memcmp (p, oid_data, DIM(oid_data)))
goto bailout;
p += DIM(oid_data);
n -= DIM(oid_data);
where = "bag.encryptedData.keyinfo";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (!ti.class && ti.tag == TAG_OBJECT_ID
&& ti.length == DIM(oid_pbeWithSHAAnd40BitRC2_CBC)
&& !memcmp (p, oid_pbeWithSHAAnd40BitRC2_CBC,
DIM(oid_pbeWithSHAAnd40BitRC2_CBC)))
{
p += DIM(oid_pbeWithSHAAnd40BitRC2_CBC);
n -= DIM(oid_pbeWithSHAAnd40BitRC2_CBC);
}
else
goto bailout;
where = "rc2-params";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_OCTET_STRING || ti.length != 8 )
goto bailout;
memcpy (salt, p, 8);
p += 8;
n -= 8;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_INTEGER || !ti.length )
goto bailout;
for (iter=0; ti.length; ti.length--)
{
iter <<= 8;
iter |= (*p++) & 0xff;
n--;
}
where = "rc2-ciphertext";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class != CONTEXT || ti.tag != 0 || !ti.length )
goto bailout;
log_info ("%lu bytes of RC2 encrypted text\n", ti.length);
plain = gcry_malloc_secure (ti.length);
if (!plain)
{
log_error ("error allocating decryption buffer\n");
goto bailout;
}
memcpy (plain, p, ti.length);
crypt_block (plain, ti.length, salt, iter, pw, GCRY_CIPHER_RFC2268_40, 0);
n = ti.length;
startoffset = 0;
buffer = p = plain;
/* { */
/* # warning debug code is enabled */
/* FILE *fp = fopen ("tmp-rc2-plain.der", "wb"); */
/* if (!fp || fwrite (p, n, 1, fp) != 1) */
/* exit (2); */
/* fclose (fp); */
/* } */
where = "outer.outer.seq";
if (parse_tag (&p, &n, &ti))
{
bad_pass = 1;
goto bailout;
}
if (ti.class || ti.tag != TAG_SEQUENCE)
{
bad_pass = 1;
goto bailout;
}
if (parse_tag (&p, &n, &ti))
{
bad_pass = 1;
goto bailout;
}
/* Loop over all certificates inside the bab. */
while (n)
{
int isbag = 0;
where = "certbag.nextcert";
if (ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
where = "certbag.objectidentifier";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_OBJECT_ID)
goto bailout;
if ( ti.length == DIM(oid_pkcs_12_CertBag)
&& !memcmp (p, oid_pkcs_12_CertBag, DIM(oid_pkcs_12_CertBag)))
{
p += DIM(oid_pkcs_12_CertBag);
n -= DIM(oid_pkcs_12_CertBag);
}
else if ( ti.length == DIM(oid_pkcs_12_CrlBag)
&& !memcmp (p, oid_pkcs_12_CrlBag, DIM(oid_pkcs_12_CrlBag)))
{
p += DIM(oid_pkcs_12_CrlBag);
n -= DIM(oid_pkcs_12_CrlBag);
isbag = 1;
}
else
goto bailout;
where = "certbag.before.certheader";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class != CONTEXT || ti.tag)
goto bailout;
if (isbag)
{
log_info ("skipping unsupported crlBag\n");
p += ti.length;
n -= ti.length;
}
else
{
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_OBJECT_ID
|| ti.length != DIM(oid_x509Certificate_for_pkcs_12)
|| memcmp (p, oid_x509Certificate_for_pkcs_12,
DIM(oid_x509Certificate_for_pkcs_12)))
goto bailout;
p += DIM(oid_x509Certificate_for_pkcs_12);
n -= DIM(oid_x509Certificate_for_pkcs_12);
where = "certbag.before.octetstring";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class != CONTEXT || ti.tag)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_OCTET_STRING || ti.ndef)
goto bailout;
/* Return the certificate. */
if (certcb)
certcb (certcbarg, p, ti.length);
p += ti.length;
n -= ti.length;
}
/* Ugly hack to cope with the padding: Forget about the rest if
that is less or equal to the cipher's block length. We can
reasonable assume that all valid data will be longer than
just one block. */
if (n <= 8)
n = 0;
/* Skip the optional SET with the pkcs12 cert attributes. */
if (n)
{
where = "bag.attributes";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (!ti.class && ti.tag == TAG_SEQUENCE)
; /* No attributes. */
else if (!ti.class && ti.tag == TAG_SET && !ti.ndef)
{ /* The optional SET. */
p += ti.length;
n -= ti.length;
if (n <= 8)
n = 0;
if (n && parse_tag (&p, &n, &ti))
goto bailout;
}
else
goto bailout;
}
}
gcry_free (plain);
return 0;
bailout:
gcry_free (plain);
log_error ("encryptedData error at \"%s\", offset %u\n",
where, (p - buffer)+startoffset);
if (bad_pass)
{
/* Note, that the following string might be used by other programs
to check for a bad passphrase; it should therefore not be
translated or changed. */
log_error ("possibly bad passphrase given\n");
}
return -1;
}
static gcry_mpi_t *
parse_bag_data (const unsigned char *buffer, size_t length, int startoffset,
const char *pw)
{
int rc;
struct tag_info ti;
const unsigned char *p = buffer;
size_t n = length;
const char *where;
char salt[8];
unsigned int iter;
int len;
unsigned char *plain = NULL;
gcry_mpi_t *result = NULL;
int result_count, i;
where = "start";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class != CONTEXT || ti.tag)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_OCTET_STRING)
goto bailout;
where = "data.outerseqs";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
where = "data.objectidentifier";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_OBJECT_ID
|| ti.length != DIM(oid_pkcs_12_pkcs_8ShroudedKeyBag)
|| memcmp (p, oid_pkcs_12_pkcs_8ShroudedKeyBag,
DIM(oid_pkcs_12_pkcs_8ShroudedKeyBag)))
goto bailout;
p += DIM(oid_pkcs_12_pkcs_8ShroudedKeyBag);
n -= DIM(oid_pkcs_12_pkcs_8ShroudedKeyBag);
where = "shrouded,outerseqs";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class != CONTEXT || ti.tag)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_OBJECT_ID
|| ti.length != DIM(oid_pbeWithSHAAnd3_KeyTripleDES_CBC)
|| memcmp (p, oid_pbeWithSHAAnd3_KeyTripleDES_CBC,
DIM(oid_pbeWithSHAAnd3_KeyTripleDES_CBC)))
goto bailout;
p += DIM(oid_pbeWithSHAAnd3_KeyTripleDES_CBC);
n -= DIM(oid_pbeWithSHAAnd3_KeyTripleDES_CBC);
where = "3des-params";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_OCTET_STRING || ti.length != 8 )
goto bailout;
memcpy (salt, p, 8);
p += 8;
n -= 8;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_INTEGER || !ti.length )
goto bailout;
for (iter=0; ti.length; ti.length--)
{
iter <<= 8;
iter |= (*p++) & 0xff;
n--;
}
where = "3des-ciphertext";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class || ti.tag != TAG_OCTET_STRING || !ti.length )
goto bailout;
log_info ("%lu bytes of 3DES encrypted text\n", ti.length);
plain = gcry_malloc_secure (ti.length);
if (!plain)
{
log_error ("error allocating decryption buffer\n");
goto bailout;
}
memcpy (plain, p, ti.length);
crypt_block (plain, ti.length, salt, iter, pw, GCRY_CIPHER_3DES, 0);
n = ti.length;
startoffset = 0;
buffer = p = plain;
where = "decrypted-text";
if (parse_tag (&p, &n, &ti) || ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
if (parse_tag (&p, &n, &ti) || ti.class || ti.tag != TAG_INTEGER
|| ti.length != 1 || *p)
goto bailout;
p++; n--;
if (parse_tag (&p, &n, &ti) || ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
len = ti.length;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (len < ti.nhdr)
goto bailout;
len -= ti.nhdr;
if (ti.class || ti.tag != TAG_OBJECT_ID
|| ti.length != DIM(oid_rsaEncryption)
|| memcmp (p, oid_rsaEncryption,
DIM(oid_rsaEncryption)))
goto bailout;
p += DIM (oid_rsaEncryption);
n -= DIM (oid_rsaEncryption);
if (len < ti.length)
goto bailout;
len -= ti.length;
if (n < len)
goto bailout;
p += len;
n -= len;
if (parse_tag (&p, &n, &ti) || ti.class || ti.tag != TAG_OCTET_STRING)
goto bailout;
if (parse_tag (&p, &n, &ti) || ti.class || ti.tag != TAG_SEQUENCE)
goto bailout;
len = ti.length;
result = gcry_calloc (10, sizeof *result);
if (!result)
{
log_error ( "error allocating result array\n");
goto bailout;
}
result_count = 0;
where = "reading.key-parameters";
for (result_count=0; len && result_count < 9;)
{
if (parse_tag (&p, &n, &ti) || ti.class || ti.tag != TAG_INTEGER)
goto bailout;
if (len < ti.nhdr)
goto bailout;
len -= ti.nhdr;
if (len < ti.length)
goto bailout;
len -= ti.length;
if (!result_count && ti.length == 1 && !*p)
; /* ignore the very first one if it is a 0 */
else
{
rc = gcry_mpi_scan (result+result_count, GCRYMPI_FMT_USG, p,
ti.length, NULL);
if (rc)
{
log_error ("error parsing key parameter: %s\n",
gpg_strerror (rc));
goto bailout;
}
result_count++;
}
p += ti.length;
n -= ti.length;
}
if (len)
goto bailout;
return result;
bailout:
gcry_free (plain);
if (result)
{
for (i=0; result[i]; i++)
gcry_mpi_release (result[i]);
gcry_free (result);
}
log_error ( "data error at \"%s\", offset %u\n",
where, (p - buffer) + startoffset);
return NULL;
}
/* Parse a PKCS12 object and return an array of MPI representing the
secret key parameters. This is a very limited implementation in
that it is only able to look for 3DES encoded encryptedData and
tries to extract the first private key object it finds. In case of
an error NULL is returned. CERTCB and CERRTCBARG are used to pass
X.509 certificates back to the caller. */
gcry_mpi_t *
p12_parse (const unsigned char *buffer, size_t length, const char *pw,
void (*certcb)(void*, const unsigned char*, size_t),
void *certcbarg)
{
struct tag_info ti;
const unsigned char *p = buffer;
size_t n = length;
const char *where;
int bagseqlength, len;
where = "pfx";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.tag != TAG_SEQUENCE)
goto bailout;
where = "pfxVersion";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.tag != TAG_INTEGER || ti.length != 1 || *p != 3)
goto bailout;
p++; n--;
where = "authSave";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.tag != TAG_SEQUENCE)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.tag != TAG_OBJECT_ID || ti.length != DIM(oid_data)
|| memcmp (p, oid_data, DIM(oid_data)))
goto bailout;
p += DIM(oid_data);
n -= DIM(oid_data);
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class != CONTEXT || ti.tag)
goto bailout;
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class != UNIVERSAL || ti.tag != TAG_OCTET_STRING)
goto bailout;
where = "bags";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class != UNIVERSAL || ti.tag != TAG_SEQUENCE)
goto bailout;
bagseqlength = ti.length;
while (bagseqlength)
{
/*log_debug ( "at offset %u\n", (p - buffer));*/
where = "bag-sequence";
if (parse_tag (&p, &n, &ti))
goto bailout;
if (ti.class != UNIVERSAL || ti.tag != TAG_SEQUENCE)
goto bailout;
if (bagseqlength < ti.nhdr)
goto bailout;
bagseqlength -= ti.nhdr;
if (bagseqlength < ti.length)
goto bailout;
bagseqlength -= ti.length;
len = ti.length;
if (parse_tag (&p, &n, &ti))
goto bailout;
len -= ti.nhdr;
if (ti.tag == TAG_OBJECT_ID && ti.length == DIM(oid_encryptedData)
&& !memcmp (p, oid_encryptedData, DIM(oid_encryptedData)))
{
p += DIM(oid_encryptedData);
n -= DIM(oid_encryptedData);
len -= DIM(oid_encryptedData);
where = "bag.encryptedData";
if (parse_bag_encrypted_data (p, n, (p - buffer), pw,
certcb, certcbarg))
goto bailout;
}
else if (ti.tag == TAG_OBJECT_ID && ti.length == DIM(oid_data)
&& !memcmp (p, oid_data, DIM(oid_data)))
{
p += DIM(oid_data);
n -= DIM(oid_data);
len -= DIM(oid_data);
return parse_bag_data (p, n, (p-buffer), pw);
}
else
log_info ( "unknown bag type - skipped\n");
if (len < 0 || len > n)
goto bailout;
p += len;
n -= len;
}
return NULL;
bailout:
log_error ("error at \"%s\", offset %u\n", where, (p - buffer));
return NULL;
}
static size_t
compute_tag_length (size_t n)
{
int needed = 0;
if (n < 128)
needed += 2; /* tag and one length byte */
else if (n < 256)
needed += 3; /* tag, number of length bytes, 1 length byte */
else if (n < 65536)
needed += 4; /* tag, number of length bytes, 2 length bytes */
else
{
log_error ("object too larger to encode\n");
return 0;
}
return needed;
}
static unsigned char *
store_tag_length (unsigned char *p, int tag, size_t n)
{
if (tag == TAG_SEQUENCE)
tag |= 0x20; /* constructed */
*p++ = tag;
if (n < 128)
*p++ = n;
else if (n < 256)
{
*p++ = 0x81;
*p++ = n;
}
else if (n < 65536)
{
*p++ = 0x82;
*p++ = n >> 8;
*p++ = n;
}
return p;
}
/* Create the final PKCS-12 object from the sequences contained in
SEQLIST. That array is terminated with an NULL object */
static unsigned char *
create_final (struct buffer_s *sequences, size_t *r_length)
{
int i;
size_t needed = 0;
size_t len[8], n;
unsigned char *result, *p;
size_t resultlen;
/* 8 steps to create the pkcs#12 Krampf. */
/* 7. All the buffers. */
for (i=0; sequences[i].buffer; i++)
needed += sequences[i].length;
/* 6. This goes into a sequences. */
len[6] = needed;
n = compute_tag_length (needed);
needed += n;
/* 5. Encapsulate all in an octet string. */
len[5] = needed;
n = compute_tag_length (needed);
needed += n;
/* 4. And tag it with [0]. */
len[4] = needed;
n = compute_tag_length (needed);
needed += n;
/* 3. Prepend an data OID. */
needed += 2 + DIM (oid_data);
/* 2. Put all into a sequences. */
len[2] = needed;
n = compute_tag_length (needed);
needed += n;
/* 1. Prepend the version integer 3. */
needed += 3;
/* 0. And the final outer sequence. */
len[0] = needed;
n = compute_tag_length (needed);
needed += n;
/* Allocate a buffer. */
result = gcry_malloc (needed);
if (!result)
{
log_error ("error allocating buffer\n");
return NULL;
}
p = result;
/* 0. Store the very outer sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[0]);
/* 1. Store the version integer 3. */
*p++ = TAG_INTEGER;
*p++ = 1;
*p++ = 3;
/* 2. Store another sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[2]);
/* 3. Store the data OID. */
p = store_tag_length (p, TAG_OBJECT_ID, DIM (oid_data));
memcpy (p, oid_data, DIM (oid_data));
p += DIM (oid_data);
/* 4. Next comes a context tag. */
p = store_tag_length (p, 0xa0, len[4]);
/* 5. And an octet string. */
p = store_tag_length (p, TAG_OCTET_STRING, len[5]);
/* 6. And the inner sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[6]);
/* 7. Append all the buffers. */
for (i=0; sequences[i].buffer; i++)
{
memcpy (p, sequences[i].buffer, sequences[i].length);
p += sequences[i].length;
}
/* Ready. */
resultlen = p - result;
if (needed != resultlen)
log_debug ("length mismatch: %u, %u\n", needed, resultlen);
*r_length = resultlen;
return result;
}
/* Build a DER encoded SEQUENCE with the key:
SEQUENCE {
INTEGER 0
SEQUENCE {
OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1 1)
NULL
}
OCTET STRING, encapsulates {
SEQUENCE {
INTEGER 0
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
}
}
}
*/
static unsigned char *
build_key_sequence (gcry_mpi_t *kparms, size_t *r_length)
{
int rc, i;
size_t needed, n;
unsigned char *plain, *p;
size_t plainlen;
size_t outseqlen, oidseqlen, octstrlen, inseqlen;
needed = 3; /* The version(?) integer of value 0. */
for (i=0; kparms[i]; i++)
{
n = 0;
rc = gcry_mpi_print (GCRYMPI_FMT_STD, NULL, 0, &n, kparms[i]);
if (rc)
{
log_error ("error formatting parameter: %s\n", gpg_strerror (rc));
return NULL;
}
needed += n;
n = compute_tag_length (n);
if (!n)
return NULL;
needed += n;
}
if (i != 8)
{
log_error ("invalid paramters for p12_build\n");
return NULL;
}
/* Now this all goes into a sequence. */
inseqlen = needed;
n = compute_tag_length (needed);
if (!n)
return NULL;
needed += n;
/* Encapsulate all into an octet string. */
octstrlen = needed;
n = compute_tag_length (needed);
if (!n)
return NULL;
needed += n;
/* Prepend the object identifier sequence. */
oidseqlen = 2 + DIM (oid_rsaEncryption) + 2;
needed += 2 + oidseqlen;
/* The version number. */
needed += 3;
/* And finally put the whole thing into a sequence. */
outseqlen = needed;
n = compute_tag_length (needed);
if (!n)
return NULL;
needed += n;
/* allocate 8 extra bytes for padding */
plain = gcry_malloc_secure (needed+8);
if (!plain)
{
log_error ("error allocating encryption buffer\n");
return NULL;
}
/* And now fill the plaintext buffer. */
p = plain;
p = store_tag_length (p, TAG_SEQUENCE, outseqlen);
/* Store version. */
*p++ = TAG_INTEGER;
*p++ = 1;
*p++ = 0;
/* Store object identifier sequence. */
p = store_tag_length (p, TAG_SEQUENCE, oidseqlen);
p = store_tag_length (p, TAG_OBJECT_ID, DIM (oid_rsaEncryption));
memcpy (p, oid_rsaEncryption, DIM (oid_rsaEncryption));
p += DIM (oid_rsaEncryption);
*p++ = TAG_NULL;
*p++ = 0;
/* Start with the octet string. */
p = store_tag_length (p, TAG_OCTET_STRING, octstrlen);
p = store_tag_length (p, TAG_SEQUENCE, inseqlen);
/* Store the key parameters. */
*p++ = TAG_INTEGER;
*p++ = 1;
*p++ = 0;
for (i=0; kparms[i]; i++)
{
n = 0;
rc = gcry_mpi_print (GCRYMPI_FMT_STD, NULL, 0, &n, kparms[i]);
if (rc)
{
log_error ("oops: error formatting parameter: %s\n",
gpg_strerror (rc));
gcry_free (plain);
return NULL;
}
p = store_tag_length (p, TAG_INTEGER, n);
n = plain + needed - p;
rc = gcry_mpi_print (GCRYMPI_FMT_STD, p, n, &n, kparms[i]);
if (rc)
{
log_error ("oops: error storing parameter: %s\n",
gpg_strerror (rc));
gcry_free (plain);
return NULL;
}
p += n;
}
plainlen = p - plain;
assert (needed == plainlen);
/* Append some pad characters; we already allocated extra space. */
n = 8 - plainlen % 8;
for (;(plainlen % 8); plainlen++)
*p++ = n;
*r_length = plainlen;
return plain;
}
static unsigned char *
build_key_bag (unsigned char *buffer, size_t buflen, char *salt,
size_t *r_length)
{
size_t len[11], needed;
unsigned char *p, *keybag;
size_t keybaglen;
/* Walk 11 steps down to collect the info: */
/* 10. The data goes into an octet string. */
needed = compute_tag_length (buflen);
needed += buflen;
/* 9. Prepend the algorithm identifier. */
needed += DIM (data_3desiter2048);
/* 8. Put a sequence around. */
len[8] = needed;
needed += compute_tag_length (needed);
/* 7. Prepend a [0] tag. */
len[7] = needed;
needed += compute_tag_length (needed);
/* 6. Prepend the shroudedKeyBag OID. */
needed += 2 + DIM (oid_pkcs_12_pkcs_8ShroudedKeyBag);
/* 5+4. Put all into two sequences. */
len[5] = needed;
needed += compute_tag_length ( needed);
len[4] = needed;
needed += compute_tag_length (needed);
/* 3. This all goes into an octet string. */
len[3] = needed;
needed += compute_tag_length (needed);
/* 2. Prepend another [0] tag. */
len[2] = needed;
needed += compute_tag_length (needed);
/* 1. Prepend the data OID. */
needed += 2 + DIM (oid_data);
/* 0. Prepend another sequence. */
len[0] = needed;
needed += compute_tag_length (needed);
/* Now that we have all length information, allocate a buffer. */
p = keybag = gcry_malloc (needed);
if (!keybag)
{
log_error ("error allocating buffer\n");
return NULL;
}
/* Walk 11 steps up to store the data. */
/* 0. Store the first sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[0]);
/* 1. Store the data OID. */
p = store_tag_length (p, TAG_OBJECT_ID, DIM (oid_data));
memcpy (p, oid_data, DIM (oid_data));
p += DIM (oid_data);
/* 2. Store a [0] tag. */
p = store_tag_length (p, 0xa0, len[2]);
/* 3. And an octet string. */
p = store_tag_length (p, TAG_OCTET_STRING, len[3]);
/* 4+5. Two sequences. */
p = store_tag_length (p, TAG_SEQUENCE, len[4]);
p = store_tag_length (p, TAG_SEQUENCE, len[5]);
/* 6. Store the shroudedKeyBag OID. */
p = store_tag_length (p, TAG_OBJECT_ID,
DIM (oid_pkcs_12_pkcs_8ShroudedKeyBag));
memcpy (p, oid_pkcs_12_pkcs_8ShroudedKeyBag,
DIM (oid_pkcs_12_pkcs_8ShroudedKeyBag));
p += DIM (oid_pkcs_12_pkcs_8ShroudedKeyBag);
/* 7. Store a [0] tag. */
p = store_tag_length (p, 0xa0, len[7]);
/* 8. Store a sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[8]);
/* 9. Now for the pre-encoded algorithm identifier and the salt. */
memcpy (p, data_3desiter2048, DIM (data_3desiter2048));
memcpy (p + DATA_3DESITER2048_SALT_OFF, salt, 8);
p += DIM (data_3desiter2048);
/* 10. And finally the octet string with the encrypted data. */
p = store_tag_length (p, TAG_OCTET_STRING, buflen);
memcpy (p, buffer, buflen);
p += buflen;
keybaglen = p - keybag;
if (needed != keybaglen)
log_debug ("length mismatch: %u, %u\n", needed, keybaglen);
*r_length = keybaglen;
return keybag;
}
static unsigned char *
build_cert_bag (unsigned char *buffer, size_t buflen, char *salt,
size_t *r_length)
{
size_t len[9], needed;
unsigned char *p, *certbag;
size_t certbaglen;
/* Walk 9 steps down to collect the info: */
/* 8. The data goes into an octet string. */
needed = compute_tag_length (buflen);
needed += buflen;
/* 7. The algorithm identifier. */
needed += DIM (data_rc2iter2048);
/* 6. The data OID. */
needed += 2 + DIM (oid_data);
/* 5. A sequence. */
len[5] = needed;
needed += compute_tag_length ( needed);
/* 4. An integer. */
needed += 3;
/* 3. A sequence. */
len[3] = needed;
needed += compute_tag_length (needed);
/* 2. A [0] tag. */
len[2] = needed;
needed += compute_tag_length (needed);
/* 1. The encryptedData OID. */
needed += 2 + DIM (oid_encryptedData);
/* 0. The first sequence. */
len[0] = needed;
needed += compute_tag_length (needed);
/* Now that we have all length information, allocate a buffer. */
p = certbag = gcry_malloc (needed);
if (!certbag)
{
log_error ("error allocating buffer\n");
return NULL;
}
/* Walk 9 steps up to store the data. */
/* 0. Store the first sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[0]);
/* 1. Store the encryptedData OID. */
p = store_tag_length (p, TAG_OBJECT_ID, DIM (oid_encryptedData));
memcpy (p, oid_encryptedData, DIM (oid_encryptedData));
p += DIM (oid_encryptedData);
/* 2. Store a [0] tag. */
p = store_tag_length (p, 0xa0, len[2]);
/* 3. Store a sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[3]);
/* 4. Store the integer 0. */
*p++ = TAG_INTEGER;
*p++ = 1;
*p++ = 0;
/* 5. Store a sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[5]);
/* 6. Store the data OID. */
p = store_tag_length (p, TAG_OBJECT_ID, DIM (oid_data));
memcpy (p, oid_data, DIM (oid_data));
p += DIM (oid_data);
/* 7. Now for the pre-encoded algorithm identifier and the salt. */
memcpy (p, data_rc2iter2048, DIM (data_rc2iter2048));
memcpy (p + DATA_RC2ITER2048_SALT_OFF, salt, 8);
p += DIM (data_rc2iter2048);
/* 8. And finally the [0] tag with the encrypted data. */
p = store_tag_length (p, 0xa0, buflen);
memcpy (p, buffer, buflen);
p += buflen;
certbaglen = p - certbag;
if (needed != certbaglen)
log_debug ("length mismatch: %u, %u\n", needed, certbaglen);
*r_length = certbaglen;
return certbag;
}
static unsigned char *
build_cert_sequence (unsigned char *buffer, size_t buflen, size_t *r_length)
{
size_t len[8], needed, n;
unsigned char *p, *certseq;
size_t certseqlen;
/* Walk 8 steps down to collect the info: */
/* 7. The data goes into an octet string. */
needed = compute_tag_length (buflen);
needed += buflen;
/* 6. A [0] tag. */
len[6] = needed;
needed += compute_tag_length (needed);
/* 5. An OID. */
needed += 2 + DIM (oid_x509Certificate_for_pkcs_12);
/* 4. A sequence. */
len[4] = needed;
needed += compute_tag_length (needed);
/* 3. A [0] tag. */
len[3] = needed;
needed += compute_tag_length (needed);
/* 2. An OID. */
needed += 2 + DIM (oid_pkcs_12_CertBag);
/* 1. A sequence. */
len[1] = needed;
needed += compute_tag_length (needed);
/* 0. The first sequence. */
len[0] = needed;
needed += compute_tag_length (needed);
/* Now that we have all length information, allocate a buffer. */
p = certseq = gcry_malloc (needed + 8 /*(for padding)*/);
if (!certseq)
{
log_error ("error allocating buffer\n");
return NULL;
}
/* Walk 8 steps up to store the data. */
/* 0. Store the first sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[0]);
/* 1. Store the second sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[1]);
/* 2. Store the pkcs12-cert-bag OID. */
p = store_tag_length (p, TAG_OBJECT_ID, DIM (oid_pkcs_12_CertBag));
memcpy (p, oid_pkcs_12_CertBag, DIM (oid_pkcs_12_CertBag));
p += DIM (oid_pkcs_12_CertBag);
/* 3. Store a [0] tag. */
p = store_tag_length (p, 0xa0, len[3]);
/* 4. Store a sequence. */
p = store_tag_length (p, TAG_SEQUENCE, len[4]);
/* 5. Store the x509Certificate OID. */
p = store_tag_length (p, TAG_OBJECT_ID,
DIM (oid_x509Certificate_for_pkcs_12));
memcpy (p, oid_x509Certificate_for_pkcs_12,
DIM (oid_x509Certificate_for_pkcs_12));
p += DIM (oid_x509Certificate_for_pkcs_12);
/* 6. Store a [0] tag. */
p = store_tag_length (p, 0xa0, len[6]);
/* 7. And finally the octet string with the actual certificate. */
p = store_tag_length (p, TAG_OCTET_STRING, buflen);
memcpy (p, buffer, buflen);
p += buflen;
certseqlen = p - certseq;
if (needed != certseqlen)
log_debug ("length mismatch: %u, %u\n", needed, certseqlen);
/* Append some pad characters; we already allocated extra space. */
n = 8 - certseqlen % 8;
for (;(certseqlen % 8); certseqlen++)
*p++ = n;
*r_length = certseqlen;
return certseq;
}
/* Expect the RSA key parameters in KPARMS and a password in
PW. Create a PKCS structure from it and return it as well as the
length in R_LENGTH; return NULL in case of an error. */
unsigned char *
p12_build (gcry_mpi_t *kparms, unsigned char *cert, size_t certlen,
const char *pw, size_t *r_length)
{
unsigned char *buffer;
size_t n, buflen;
char salt[8];
struct buffer_s seqlist[2];
int seqlistidx = 0;
n = buflen = 0; /* (avoid compiler warning). */
if (cert && certlen)
{
/* Encode the certificate. */
buffer = build_cert_sequence (cert, certlen, &buflen);
if (!buffer)
goto failure;
/* Encrypt it. */
gcry_randomize (salt, 8, GCRY_STRONG_RANDOM);
crypt_block (buffer, buflen, salt, 2048, pw, GCRY_CIPHER_RFC2268_40, 1);
/* Encode the encrypted stuff into a bag. */
seqlist[seqlistidx].buffer = build_cert_bag (buffer, buflen, salt, &n);
seqlist[seqlistidx].length = n;
gcry_free (buffer);
buffer = NULL;
if (!seqlist[seqlistidx].buffer)
goto failure;
seqlistidx++;
}
if (kparms)
{
/* Encode the key. */
buffer = build_key_sequence (kparms, &buflen);
if (!buffer)
goto failure;
/* Encrypt it. */
gcry_randomize (salt, 8, GCRY_STRONG_RANDOM);
crypt_block (buffer, buflen, salt, 2048, pw, GCRY_CIPHER_3DES, 1);
/* Encode the encrypted stuff into a bag. */
seqlist[seqlistidx].buffer = build_key_bag (buffer, buflen, salt, &n);
seqlist[seqlistidx].length = n;
gcry_free (buffer);
buffer = NULL;
if (!seqlist[seqlistidx].buffer)
goto failure;
seqlistidx++;
}
seqlist[seqlistidx].buffer = NULL;
seqlist[seqlistidx].length = 0;
buffer = create_final (seqlist, &buflen);
failure:
for ( ; seqlistidx; seqlistidx--)
gcry_free (seqlist[seqlistidx].buffer);
*r_length = buffer? buflen : 0;
return buffer;
}
#ifdef TEST
static void
cert_cb (void *opaque, const unsigned char *cert, size_t certlen)
{
printf ("got a certificate of %u bytes length\n", certlen);
}
int
main (int argc, char **argv)
{
FILE *fp;
struct stat st;
unsigned char *buf;
size_t buflen;
gcry_mpi_t *result;
if (argc != 3)
{
fprintf (stderr, "usage: testp12 file passphrase\n");
return 1;
}
gcry_control (GCRYCTL_DISABLE_SECMEM, NULL);
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, NULL);
fp = fopen (argv[1], "rb");
if (!fp)
{
fprintf (stderr, "can't open `%s': %s\n", argv[1], strerror (errno));
return 1;
}
if (fstat (fileno(fp), &st))
{
fprintf (stderr, "can't stat `%s': %s\n", argv[1], strerror (errno));
return 1;
}
buflen = st.st_size;
buf = gcry_malloc (buflen+1);
if (!buf || fread (buf, buflen, 1, fp) != 1)
{
fprintf (stderr, "error reading `%s': %s\n", argv[1], strerror (errno));
return 1;
}
fclose (fp);
result = p12_parse (buf, buflen, argv[2], cert_cb, NULL);
if (result)
{
int i, rc;
unsigned char *tmpbuf;
for (i=0; result[i]; i++)
{
rc = gcry_mpi_aprint (GCRYMPI_FMT_HEX, &tmpbuf,
NULL, result[i]);
if (rc)
printf ("%d: [error printing number: %s]\n",
i, gpg_strerror (rc));
else
{
printf ("%d: %s\n", i, tmpbuf);
gcry_free (tmpbuf);
}
}
}
return 0;
}
/*
Local Variables:
compile-command: "gcc -Wall -O -g -DTEST=1 -o minip12 minip12.c ../jnlib/libjnlib.a -L /usr/local/lib -lgcrypt -lgpg-error"
End:
*/
#endif /* TEST */