mirror of
git://git.gnupg.org/gnupg.git
synced 2025-01-25 15:27:03 +01:00
2611 lines
75 KiB
C
2611 lines
75 KiB
C
/* getkey.c - Get a key from the database
|
||
* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
||
*
|
||
* This file is part of GnuPG.
|
||
*
|
||
* GnuPG is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 2 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* GnuPG is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; if not, write to the Free Software
|
||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
||
*/
|
||
|
||
#include <config.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
#include <ctype.h>
|
||
#include "util.h"
|
||
#include "packet.h"
|
||
#include "memory.h"
|
||
#include "iobuf.h"
|
||
#include "keydb.h"
|
||
#include "options.h"
|
||
#include "main.h"
|
||
#include "trustdb.h"
|
||
#include "i18n.h"
|
||
|
||
|
||
#define MAX_UNK_CACHE_ENTRIES 1000 /* we use a linked list - so I guess
|
||
* this is a reasonable limit */
|
||
#define MAX_PK_CACHE_ENTRIES 200
|
||
#define MAX_UID_CACHE_ENTRIES 200
|
||
|
||
#if MAX_PK_CACHE_ENTRIES < 2
|
||
#error We need the cache for key creation
|
||
#endif
|
||
|
||
|
||
/* A map of the all characters valid used for word_match()
|
||
* Valid characters are in in this table converted to uppercase.
|
||
* because the upper 128 bytes have special meaning, we assume
|
||
* that they are all valid.
|
||
* Note: We must use numerical values here in case that this program
|
||
* will be converted to those little blue HAL9000s with their strange
|
||
* EBCDIC character set (user ids are UTF-8).
|
||
* wk 2000-04-13: Hmmm, does this really make sense, given the fact that
|
||
* we can run gpg now on a S/390 running GNU/Linux, where the code
|
||
* translation is done by the device drivers?
|
||
*/
|
||
static const byte word_match_chars[256] = {
|
||
/* 00 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
/* 08 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
/* 10 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
/* 18 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
/* 20 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
/* 28 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
/* 30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
|
||
/* 38 */ 0x38, 0x39, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
/* 40 */ 0x00, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
|
||
/* 48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
|
||
/* 50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
|
||
/* 58 */ 0x58, 0x59, 0x5a, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
/* 60 */ 0x00, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
|
||
/* 68 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
|
||
/* 70 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
|
||
/* 78 */ 0x58, 0x59, 0x5a, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
/* 80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
||
/* 88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
|
||
/* 90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
|
||
/* 98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
|
||
/* a0 */ 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
||
/* a8 */ 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
|
||
/* b0 */ 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
|
||
/* b8 */ 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
|
||
/* c0 */ 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
|
||
/* c8 */ 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
|
||
/* d0 */ 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
|
||
/* d8 */ 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
|
||
/* e0 */ 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
|
||
/* e8 */ 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
|
||
/* f0 */ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
|
||
/* f8 */ 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
|
||
};
|
||
|
||
typedef struct {
|
||
int mode;
|
||
u32 keyid[2];
|
||
byte fprint[20];
|
||
char *namebuf;
|
||
const char *name;
|
||
} getkey_item_t;
|
||
|
||
struct getkey_ctx_s {
|
||
int exact;
|
||
KBNODE keyblock;
|
||
KBPOS kbpos;
|
||
KBNODE found_key; /* pointer into some keyblock */
|
||
int last_rc;
|
||
int req_usage;
|
||
int req_algo;
|
||
ulong count;
|
||
int not_allocated;
|
||
int nitems;
|
||
getkey_item_t items[1];
|
||
};
|
||
|
||
#if 0
|
||
static struct {
|
||
int any;
|
||
int okay_count;
|
||
int nokey_count;
|
||
int error_count;
|
||
} lkup_stats[21];
|
||
#endif
|
||
|
||
typedef struct keyid_list {
|
||
struct keyid_list *next;
|
||
u32 keyid[2];
|
||
} *keyid_list_t;
|
||
|
||
|
||
#if MAX_UNK_CACHE_ENTRIES
|
||
static keyid_list_t unknown_keyids;
|
||
static int unk_cache_entries; /* number of entries in unknown keys cache */
|
||
static int unk_cache_disabled;
|
||
#endif
|
||
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
typedef struct pk_cache_entry {
|
||
struct pk_cache_entry *next;
|
||
u32 keyid[2];
|
||
PKT_public_key *pk;
|
||
} *pk_cache_entry_t;
|
||
static pk_cache_entry_t pk_cache;
|
||
static int pk_cache_entries; /* number of entries in pk cache */
|
||
static int pk_cache_disabled;
|
||
#endif
|
||
|
||
#if MAX_UID_CACHE_ENTRIES < 5
|
||
#error we really need the userid cache
|
||
#endif
|
||
typedef struct user_id_db {
|
||
struct user_id_db *next;
|
||
keyid_list_t keyids;
|
||
int len;
|
||
char name[1];
|
||
} *user_id_db_t;
|
||
static user_id_db_t user_id_db;
|
||
static int uid_cache_entries; /* number of entries in uid cache */
|
||
|
||
|
||
|
||
static char* prepare_word_match( const byte *name );
|
||
static int lookup( GETKEY_CTX ctx, KBNODE *ret_kb, int secmode );
|
||
static void merge_selfsigs( KBNODE keyblock );
|
||
|
||
|
||
#if 0
|
||
static void
|
||
print_stats()
|
||
{
|
||
int i;
|
||
for(i=0; i < DIM(lkup_stats); i++ ) {
|
||
if( lkup_stats[i].any )
|
||
fprintf(stderr,
|
||
"lookup stats: mode=%-2d ok=%-6d nokey=%-6d err=%-6d\n",
|
||
i,
|
||
lkup_stats[i].okay_count,
|
||
lkup_stats[i].nokey_count,
|
||
lkup_stats[i].error_count );
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
void
|
||
cache_public_key( PKT_public_key *pk )
|
||
{
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
pk_cache_entry_t ce;
|
||
u32 keyid[2];
|
||
|
||
if( pk_cache_disabled )
|
||
return;
|
||
|
||
if( is_ELGAMAL(pk->pubkey_algo)
|
||
|| pk->pubkey_algo == PUBKEY_ALGO_DSA
|
||
|| is_RSA(pk->pubkey_algo) ) {
|
||
keyid_from_pk( pk, keyid );
|
||
}
|
||
else
|
||
return; /* don't know how to get the keyid */
|
||
|
||
for( ce = pk_cache; ce; ce = ce->next )
|
||
if( ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1] ) {
|
||
if( DBG_CACHE )
|
||
log_debug("cache_public_key: already in cache\n");
|
||
return;
|
||
}
|
||
|
||
if( pk_cache_entries >= MAX_PK_CACHE_ENTRIES ) {
|
||
/* fixme: use another algorithm to free some cache slots */
|
||
pk_cache_disabled=1;
|
||
if( opt.verbose > 1 )
|
||
log_info(_("too many entries in pk cache - disabled\n"));
|
||
return;
|
||
}
|
||
pk_cache_entries++;
|
||
ce = m_alloc( sizeof *ce );
|
||
ce->next = pk_cache;
|
||
pk_cache = ce;
|
||
ce->pk = copy_public_key( NULL, pk );
|
||
ce->keyid[0] = keyid[0];
|
||
ce->keyid[1] = keyid[1];
|
||
#endif
|
||
}
|
||
|
||
|
||
/*
|
||
* Return the user ID from the given keyblock.
|
||
* We use the primary uid flag which has been set by the merge_selfsigs
|
||
* function. The returned value is only valid as long as then given
|
||
* keyblock is not changed
|
||
*/
|
||
static const char *
|
||
get_primary_uid ( KBNODE keyblock, size_t *uidlen )
|
||
{
|
||
KBNODE k;
|
||
const char *s;
|
||
|
||
for (k=keyblock; k; k=k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID
|
||
&& k->pkt->pkt.user_id->is_primary ) {
|
||
*uidlen = k->pkt->pkt.user_id->len;
|
||
return k->pkt->pkt.user_id->name;
|
||
}
|
||
}
|
||
/* fixme: returning translatable constants instead of a user ID is
|
||
* not good because they are probably not utf-8 encoded. */
|
||
s = _("[User id not found]");
|
||
*uidlen = strlen (s);
|
||
return s;
|
||
}
|
||
|
||
|
||
static void
|
||
release_keyid_list ( keyid_list_t k )
|
||
{
|
||
while ( k ) {
|
||
keyid_list_t k2 = k->next;
|
||
m_free (k);
|
||
k = k2;
|
||
}
|
||
}
|
||
|
||
/****************
|
||
* Store the association of keyid and userid
|
||
* Feed only public keys to this function.
|
||
*/
|
||
static void
|
||
cache_user_id( KBNODE keyblock )
|
||
{
|
||
user_id_db_t r;
|
||
const char *uid;
|
||
size_t uidlen;
|
||
keyid_list_t keyids = NULL;
|
||
KBNODE k;
|
||
|
||
for (k=keyblock; k; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
keyid_list_t a = m_alloc_clear ( sizeof *a );
|
||
/* Hmmm: For a long list of keyids it might be an advantage
|
||
* to append the keys */
|
||
keyid_from_pk( k->pkt->pkt.public_key, a->keyid );
|
||
/* first check for duplicates */
|
||
for(r=user_id_db; r; r = r->next ) {
|
||
keyid_list_t b = r->keyids;
|
||
for ( b = r->keyids; b; b = b->next ) {
|
||
if( b->keyid[0] == a->keyid[0]
|
||
&& b->keyid[1] == a->keyid[1] ) {
|
||
if( DBG_CACHE )
|
||
log_debug("cache_user_id: already in cache\n");
|
||
release_keyid_list ( keyids );
|
||
m_free ( a );
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
/* now put it into the cache */
|
||
a->next = keyids;
|
||
keyids = a;
|
||
}
|
||
}
|
||
if ( !keyids )
|
||
BUG (); /* No key no fun */
|
||
|
||
|
||
uid = get_primary_uid ( keyblock, &uidlen );
|
||
|
||
if( uid_cache_entries >= MAX_UID_CACHE_ENTRIES ) {
|
||
/* fixme: use another algorithm to free some cache slots */
|
||
r = user_id_db;
|
||
user_id_db = r->next;
|
||
release_keyid_list ( r->keyids );
|
||
m_free(r);
|
||
uid_cache_entries--;
|
||
}
|
||
r = m_alloc( sizeof *r + uidlen-1 );
|
||
r->keyids = keyids;
|
||
r->len = uidlen;
|
||
memcpy(r->name, uid, r->len);
|
||
r->next = user_id_db;
|
||
user_id_db = r;
|
||
uid_cache_entries++;
|
||
}
|
||
|
||
|
||
void
|
||
getkey_disable_caches()
|
||
{
|
||
#if MAX_UNK_CACHE_ENTRIES
|
||
{
|
||
keyid_list_t kl, kl2;
|
||
for( kl = unknown_keyids; kl; kl = kl2 ) {
|
||
kl2 = kl->next;
|
||
m_free(kl);
|
||
}
|
||
unknown_keyids = NULL;
|
||
unk_cache_disabled = 1;
|
||
}
|
||
#endif
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
{
|
||
pk_cache_entry_t ce, ce2;
|
||
|
||
for( ce = pk_cache; ce; ce = ce2 ) {
|
||
ce2 = ce->next;
|
||
free_public_key( ce->pk );
|
||
m_free( ce );
|
||
}
|
||
pk_cache_disabled=1;
|
||
pk_cache_entries = 0;
|
||
pk_cache = NULL;
|
||
}
|
||
#endif
|
||
/* fixme: disable user id cache ? */
|
||
}
|
||
|
||
|
||
static void
|
||
pk_from_block ( GETKEY_CTX ctx, PKT_public_key *pk, KBNODE keyblock )
|
||
{
|
||
KBNODE a = ctx->found_key ? ctx->found_key : keyblock;
|
||
|
||
assert ( a->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| a->pkt->pkttype == PKT_PUBLIC_SUBKEY );
|
||
|
||
copy_public_key ( pk, a->pkt->pkt.public_key );
|
||
}
|
||
|
||
static void
|
||
sk_from_block ( GETKEY_CTX ctx,
|
||
PKT_secret_key *sk, KBNODE keyblock )
|
||
{
|
||
KBNODE a = ctx->found_key ? ctx->found_key : keyblock;
|
||
|
||
assert ( a->pkt->pkttype == PKT_SECRET_KEY
|
||
|| a->pkt->pkttype == PKT_SECRET_SUBKEY );
|
||
|
||
copy_secret_key( sk, a->pkt->pkt.secret_key);
|
||
}
|
||
|
||
|
||
/****************
|
||
* Get a public key and store it into the allocated pk
|
||
* can be called with PK set to NULL to just read it into some
|
||
* internal structures.
|
||
*/
|
||
int
|
||
get_pubkey( PKT_public_key *pk, u32 *keyid )
|
||
{
|
||
int internal = 0;
|
||
int rc = 0;
|
||
|
||
#if MAX_UNK_CACHE_ENTRIES
|
||
{ /* let's see whether we checked the keyid already */
|
||
keyid_list_t kl;
|
||
for( kl = unknown_keyids; kl; kl = kl->next )
|
||
if( kl->keyid[0] == keyid[0] && kl->keyid[1] == keyid[1] )
|
||
return G10ERR_NO_PUBKEY; /* already checked and not found */
|
||
}
|
||
#endif
|
||
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
{ /* Try to get it from the cache */
|
||
pk_cache_entry_t ce;
|
||
for( ce = pk_cache; ce; ce = ce->next ) {
|
||
if( ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1] ) {
|
||
if( pk )
|
||
copy_public_key( pk, ce->pk );
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
/* more init stuff */
|
||
if( !pk ) {
|
||
pk = m_alloc_clear( sizeof *pk );
|
||
internal++;
|
||
}
|
||
|
||
|
||
/* do a lookup */
|
||
{ struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.exact = 1; /* use the key ID exactly as given */
|
||
ctx.not_allocated = 1;
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = 11;
|
||
ctx.items[0].keyid[0] = keyid[0];
|
||
ctx.items[0].keyid[1] = keyid[1];
|
||
ctx.req_algo = pk->req_algo;
|
||
ctx.req_usage = pk->req_usage;
|
||
rc = lookup( &ctx, &kb, 0 );
|
||
if ( !rc ) {
|
||
pk_from_block ( &ctx, pk, kb );
|
||
}
|
||
get_pubkey_end( &ctx );
|
||
release_kbnode ( kb );
|
||
}
|
||
if( !rc )
|
||
goto leave;
|
||
|
||
#if MAX_UNK_CACHE_ENTRIES
|
||
/* not found: store it for future reference */
|
||
if( unk_cache_disabled )
|
||
;
|
||
else if( ++unk_cache_entries > MAX_UNK_CACHE_ENTRIES ) {
|
||
unk_cache_disabled = 1;
|
||
if( opt.verbose > 1 )
|
||
log_info(_("too many entries in unk cache - disabled\n"));
|
||
}
|
||
else {
|
||
keyid_list_t kl;
|
||
|
||
kl = m_alloc( sizeof *kl );
|
||
kl->keyid[0] = keyid[0];
|
||
kl->keyid[1] = keyid[1];
|
||
kl->next = unknown_keyids;
|
||
unknown_keyids = kl;
|
||
}
|
||
#endif
|
||
rc = G10ERR_NO_PUBKEY;
|
||
|
||
leave:
|
||
if( !rc )
|
||
cache_public_key( pk );
|
||
if( internal )
|
||
free_public_key(pk);
|
||
return rc;
|
||
}
|
||
|
||
|
||
KBNODE
|
||
get_pubkeyblock( u32 *keyid )
|
||
{
|
||
struct getkey_ctx_s ctx;
|
||
int rc = 0;
|
||
KBNODE keyblock = NULL;
|
||
|
||
memset( &ctx, 0, sizeof ctx );
|
||
/* co need to set exact here because we want the entire block */
|
||
ctx.not_allocated = 1;
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = 11;
|
||
ctx.items[0].keyid[0] = keyid[0];
|
||
ctx.items[0].keyid[1] = keyid[1];
|
||
rc = lookup( &ctx, &keyblock, 0 );
|
||
get_pubkey_end( &ctx );
|
||
|
||
return rc ? NULL : keyblock;
|
||
}
|
||
|
||
|
||
|
||
|
||
/****************
|
||
* Get a secret key and store it into sk
|
||
*/
|
||
int
|
||
get_seckey( PKT_secret_key *sk, u32 *keyid )
|
||
{
|
||
int rc;
|
||
struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.exact = 1; /* use the key ID exactly as given */
|
||
ctx.not_allocated = 1;
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = 11;
|
||
ctx.items[0].keyid[0] = keyid[0];
|
||
ctx.items[0].keyid[1] = keyid[1];
|
||
ctx.req_algo = sk->req_algo;
|
||
ctx.req_usage = sk->req_usage;
|
||
rc = lookup( &ctx, &kb, 1 );
|
||
if ( !rc ) {
|
||
sk_from_block ( &ctx, sk, kb );
|
||
}
|
||
get_seckey_end( &ctx );
|
||
release_kbnode ( kb );
|
||
|
||
if( !rc ) {
|
||
/* check the secret key (this may prompt for a passprase to
|
||
* unlock the secret key
|
||
*/
|
||
rc = check_secret_key( sk, 0 );
|
||
}
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
/****************
|
||
* Check whether the secret key is available. This is just a fast
|
||
* check and does not tell us whether the secret key is valid. It
|
||
* merely tells other whether there is some secret key.
|
||
* Returns: 0 := key is available
|
||
* G10ERR_NO_SECKEY := not availabe
|
||
*/
|
||
int
|
||
seckey_available( u32 *keyid )
|
||
{
|
||
#if 0
|
||
int rc;
|
||
struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.exact = 1; /* use the key ID exactly as given */
|
||
ctx.not_allocated = 1;
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = 11;
|
||
ctx.items[0].keyid[0] = keyid[0];
|
||
ctx.items[0].keyid[1] = keyid[1];
|
||
rc = lookup( &ctx, &kb, 1 );
|
||
get_seckey_end( &ctx );
|
||
release_kbnode ( kb );
|
||
return rc;
|
||
#endif
|
||
int rc;
|
||
int found = 0;
|
||
int oldmode = set_packet_list_mode (0);
|
||
KBNODE keyblock = NULL;
|
||
KBPOS kbpos;
|
||
|
||
rc = enum_keyblocks ( 5, &kbpos, NULL );
|
||
if ( !rc ) {
|
||
while ( !(rc = enum_keyblocks (1, &kbpos, &keyblock)) ) {
|
||
KBNODE k;
|
||
|
||
for (k=keyblock; k; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_SECRET_KEY
|
||
|| k->pkt->pkttype == PKT_SECRET_SUBKEY ) {
|
||
u32 aki[2];
|
||
keyid_from_sk (k->pkt->pkt.secret_key, aki );
|
||
if( aki[1] == keyid[1] && aki[0] == keyid[0] ) {
|
||
found = 1;
|
||
goto leave;
|
||
}
|
||
}
|
||
}
|
||
release_kbnode (keyblock); keyblock = NULL;
|
||
}
|
||
}
|
||
if( rc && rc != -1 )
|
||
log_error ("enum_keyblocks failed: %s\n", g10_errstr(rc));
|
||
leave:
|
||
release_kbnode (keyblock);
|
||
enum_keyblocks ( 2, &kbpos, NULL );
|
||
set_packet_list_mode (oldmode);
|
||
return found? 0 : G10ERR_NO_SECKEY;
|
||
}
|
||
|
||
|
||
|
||
static int
|
||
hextobyte( const byte *s )
|
||
{
|
||
int c;
|
||
|
||
if( *s >= '0' && *s <= '9' )
|
||
c = 16 * (*s - '0');
|
||
else if( *s >= 'A' && *s <= 'F' )
|
||
c = 16 * (10 + *s - 'A');
|
||
else if( *s >= 'a' && *s <= 'f' )
|
||
c = 16 * (10 + *s - 'a');
|
||
else
|
||
return -1;
|
||
s++;
|
||
if( *s >= '0' && *s <= '9' )
|
||
c += *s - '0';
|
||
else if( *s >= 'A' && *s <= 'F' )
|
||
c += 10 + *s - 'A';
|
||
else if( *s >= 'a' && *s <= 'f' )
|
||
c += 10 + *s - 'a';
|
||
else
|
||
return -1;
|
||
return c;
|
||
}
|
||
|
||
|
||
|
||
/****************
|
||
* Return the type of the user id:
|
||
*
|
||
* 0 = Invalid user ID
|
||
* 1 = exact match
|
||
* 2 = match a substring
|
||
* 3 = match an email address
|
||
* 4 = match a substring of an email address
|
||
* 5 = match an email address, but compare from end
|
||
* 6 = word match mode
|
||
* 10 = it is a short KEYID (don't care about keyid[0])
|
||
* 11 = it is a long KEYID
|
||
* 12 = it is a trustdb index (keyid is looked up)
|
||
* 16 = it is a 16 byte fingerprint
|
||
* 20 = it is a 20 byte fingerprint
|
||
* 21 = Unified fingerprint :fpr:pk_algo:
|
||
* (We don't use pk_algo yet)
|
||
*
|
||
* if fprint is not NULL, it should be an array of at least 20 bytes.
|
||
*
|
||
* Rules used:
|
||
* - If the username starts with 8,9,16 or 17 hex-digits (the first one
|
||
* must be in the range 0..9), this is considered a keyid; depending
|
||
* on the length a short or complete one.
|
||
* - If the username starts with 32,33,40 or 41 hex-digits (the first one
|
||
* must be in the range 0..9), this is considered a fingerprint.
|
||
* - If the username starts with a left angle, we assume it is a complete
|
||
* email address and look only at this part.
|
||
* - If the username starts with a colon we assume it is a unified
|
||
* key specfification.
|
||
* - If the username starts with a '.', we assume it is the ending
|
||
* part of an email address
|
||
* - If the username starts with an '@', we assume it is a part of an
|
||
* email address
|
||
* - If the userid start with an '=' an exact compare is done.
|
||
* - If the userid starts with a '*' a case insensitive substring search is
|
||
* done (This is the default).
|
||
* - If the userid starts with a '+' we will compare individual words
|
||
* and a match requires that all the words are in the userid.
|
||
* Words are delimited by white space or "()<>[]{}.@-+_,;/&!"
|
||
* (note that you can't search for these characters). Compare
|
||
* is not case sensitive.
|
||
*/
|
||
|
||
static int
|
||
classify_user_id2( const char *name, u32 *keyid, byte *fprint,
|
||
const char **retstr, size_t *retlen, int *force_exact )
|
||
{
|
||
const char * s;
|
||
int mode = 0;
|
||
int hexprefix = 0;
|
||
int hexlength;
|
||
|
||
*force_exact = 0;
|
||
/* skip leading spaces. FIXME: what is with leading spaces? */
|
||
for(s = name; *s && isspace(*s); s++ )
|
||
;
|
||
|
||
switch (*s) {
|
||
case 0: /* empty string is an error */
|
||
return 0;
|
||
|
||
case '.': /* an email address, compare from end */
|
||
mode = 5;
|
||
s++;
|
||
break;
|
||
|
||
case '<': /* an email address */
|
||
mode = 3;
|
||
break;
|
||
|
||
case '@': /* part of an email address */
|
||
mode = 4;
|
||
s++;
|
||
break;
|
||
|
||
case '=': /* exact compare */
|
||
mode = 1;
|
||
s++;
|
||
break;
|
||
|
||
case '*': /* case insensitive substring search */
|
||
mode = 2;
|
||
s++;
|
||
break;
|
||
|
||
case '+': /* compare individual words */
|
||
mode = 6;
|
||
s++;
|
||
break;
|
||
|
||
case '#': /* local user id */
|
||
mode = 12;
|
||
s++;
|
||
if (keyid) {
|
||
if (keyid_from_lid(strtoul(s, NULL, 10), keyid))
|
||
keyid[0] = keyid[1] = 0;
|
||
}
|
||
break;
|
||
|
||
case ':': /*Unified fingerprint */
|
||
{
|
||
const char *se, *si;
|
||
int i;
|
||
|
||
se = strchr( ++s,':');
|
||
if ( !se )
|
||
return 0;
|
||
for (i=0,si=s; si < se; si++, i++ ) {
|
||
if ( !strchr("01234567890abcdefABCDEF", *si ) )
|
||
return 0; /* invalid digit */
|
||
}
|
||
if (i != 32 && i != 40)
|
||
return 0; /* invalid length of fpr*/
|
||
if (fprint) {
|
||
for (i=0,si=s; si < se; i++, si +=2)
|
||
fprint[i] = hextobyte(si);
|
||
for ( ; i < 20; i++)
|
||
fprint[i]= 0;
|
||
}
|
||
s = se + 1;
|
||
mode = 21;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
if (s[0] == '0' && s[1] == 'x') {
|
||
hexprefix = 1;
|
||
s += 2;
|
||
}
|
||
|
||
hexlength = strspn(s, "0123456789abcdefABCDEF");
|
||
if (hexlength >= 8 && s[hexlength] =='!') {
|
||
*force_exact = 1;
|
||
hexlength++; /* just for the following check */
|
||
}
|
||
|
||
/* check if a hexadecimal number is terminated by EOS or blank */
|
||
if (hexlength && s[hexlength] && !isspace(s[hexlength])) {
|
||
if (hexprefix) /* a "0x" prefix without correct */
|
||
return 0; /* termination is an error */
|
||
else /* The first chars looked like */
|
||
hexlength = 0; /* a hex number, but really were not. */
|
||
}
|
||
|
||
if (*force_exact)
|
||
hexlength--;
|
||
|
||
if (hexlength == 8
|
||
|| (!hexprefix && hexlength == 9 && *s == '0')){
|
||
/* short keyid */
|
||
if (hexlength == 9)
|
||
s++;
|
||
if (keyid) {
|
||
keyid[0] = 0;
|
||
keyid[1] = strtoul( s, NULL, 16 );
|
||
}
|
||
mode = 10;
|
||
}
|
||
else if (hexlength == 16
|
||
|| (!hexprefix && hexlength == 17 && *s == '0')) {
|
||
/* complete keyid */
|
||
char buf[9];
|
||
if (hexlength == 17)
|
||
s++;
|
||
mem2str(buf, s, 9 );
|
||
keyid[0] = strtoul( buf, NULL, 16 );
|
||
keyid[1] = strtoul( s+8, NULL, 16 );
|
||
mode = 11;
|
||
}
|
||
else if (hexlength == 32 || (!hexprefix && hexlength == 33
|
||
&& *s == '0')) {
|
||
/* md5 fingerprint */
|
||
int i;
|
||
if (hexlength == 33)
|
||
s++;
|
||
if (fprint) {
|
||
memset(fprint+16, 4, 0);
|
||
for (i=0; i < 16; i++, s+=2) {
|
||
int c = hextobyte(s);
|
||
if (c == -1)
|
||
return 0;
|
||
fprint[i] = c;
|
||
}
|
||
}
|
||
mode = 16;
|
||
}
|
||
else if (hexlength == 40 || (!hexprefix && hexlength == 41
|
||
&& *s == '0')) {
|
||
/* sha1/rmd160 fingerprint */
|
||
int i;
|
||
if (hexlength == 41)
|
||
s++;
|
||
if (fprint) {
|
||
for (i=0; i < 20; i++, s+=2) {
|
||
int c = hextobyte(s);
|
||
if (c == -1)
|
||
return 0;
|
||
fprint[i] = c;
|
||
}
|
||
}
|
||
mode = 20;
|
||
}
|
||
else {
|
||
if (hexprefix) /* This was a hex number with a prefix */
|
||
return 0; /* and a wrong length */
|
||
|
||
*force_exact = 0;
|
||
mode = 2; /* Default is case insensitive substring search */
|
||
}
|
||
}
|
||
|
||
if( retstr )
|
||
*retstr = s;
|
||
if( retlen )
|
||
*retlen = strlen(s);
|
||
|
||
return mode;
|
||
}
|
||
|
||
int
|
||
classify_user_id( const char *name, u32 *keyid, byte *fprint,
|
||
const char **retstr, size_t *retlen )
|
||
{
|
||
int dummy;
|
||
return classify_user_id2 (name, keyid, fprint, retstr, retlen, &dummy);
|
||
}
|
||
|
||
/****************
|
||
* Try to get the pubkey by the userid. This function looks for the
|
||
* first pubkey certificate which has the given name in a user_id.
|
||
* if pk/sk has the pubkey algo set, the function will only return
|
||
* a pubkey with that algo.
|
||
* The caller should provide storage for either the pk or the sk.
|
||
* If ret_kb is not NULL the function will return the keyblock there.
|
||
*/
|
||
|
||
static int
|
||
key_byname( GETKEY_CTX *retctx, STRLIST namelist,
|
||
PKT_public_key *pk, PKT_secret_key *sk, int secmode,
|
||
KBNODE *ret_kb )
|
||
{
|
||
int rc = 0;
|
||
int n;
|
||
STRLIST r;
|
||
GETKEY_CTX ctx;
|
||
KBNODE help_kb = NULL;
|
||
int exact;
|
||
|
||
if( retctx ) /* reset the returned context in case of error */
|
||
*retctx = NULL;
|
||
|
||
/* build the search context */
|
||
/* Performance hint: Use a static buffer if there is only one name */
|
||
/* and we don't have mode 6 */
|
||
for(n=0, r=namelist; r; r = r->next )
|
||
n++;
|
||
ctx = m_alloc_clear( sizeof *ctx + (n-1)*sizeof ctx->items );
|
||
ctx->nitems = n;
|
||
|
||
for(n=0, r=namelist; r; r = r->next, n++ ) {
|
||
int mode = classify_user_id2 ( r->d,
|
||
ctx->items[n].keyid,
|
||
ctx->items[n].fprint,
|
||
&ctx->items[n].name,
|
||
NULL, &exact );
|
||
|
||
if ( exact )
|
||
ctx->exact = 1;
|
||
ctx->items[n].mode = mode;
|
||
if( !ctx->items[n].mode ) {
|
||
m_free( ctx );
|
||
return G10ERR_INV_USER_ID;
|
||
}
|
||
if( ctx->items[n].mode == 6 ) {
|
||
ctx->items[n].namebuf = prepare_word_match(ctx->items[n].name);
|
||
ctx->items[n].name = ctx->items[n].namebuf;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
if ( !ret_kb )
|
||
ret_kb = &help_kb;
|
||
|
||
if( secmode ) {
|
||
if (sk) {
|
||
ctx->req_algo = sk->req_algo;
|
||
ctx->req_usage = sk->req_usage;
|
||
}
|
||
rc = lookup( ctx, ret_kb, 1 );
|
||
if ( !rc && sk ) {
|
||
sk_from_block ( ctx, sk, *ret_kb );
|
||
}
|
||
}
|
||
else {
|
||
if (pk) {
|
||
ctx->req_algo = pk->req_algo;
|
||
ctx->req_usage = pk->req_usage;
|
||
}
|
||
rc = lookup( ctx, ret_kb, 0 );
|
||
if ( !rc && pk ) {
|
||
pk_from_block ( ctx, pk, *ret_kb );
|
||
}
|
||
}
|
||
|
||
release_kbnode ( help_kb );
|
||
|
||
if( retctx ) /* caller wants the context */
|
||
*retctx = ctx;
|
||
else {
|
||
/* Hmmm, why not get_pubkey-end here?? */
|
||
enum_keyblocks( 2, &ctx->kbpos, NULL );
|
||
memset (&ctx->kbpos, 0, sizeof ctx->kbpos);
|
||
for(n=0; n < ctx->nitems; n++ )
|
||
m_free( ctx->items[n].namebuf );
|
||
m_free( ctx );
|
||
}
|
||
|
||
return rc;
|
||
}
|
||
|
||
int
|
||
get_pubkey_byname( GETKEY_CTX *retctx, PKT_public_key *pk,
|
||
const char *name, KBNODE *ret_keyblock )
|
||
{
|
||
int rc;
|
||
STRLIST namelist = NULL;
|
||
|
||
add_to_strlist( &namelist, name );
|
||
rc = key_byname( retctx, namelist, pk, NULL, 0, ret_keyblock );
|
||
free_strlist( namelist );
|
||
return rc;
|
||
}
|
||
|
||
int
|
||
get_pubkey_bynames( GETKEY_CTX *retctx, PKT_public_key *pk,
|
||
STRLIST names, KBNODE *ret_keyblock )
|
||
{
|
||
return key_byname( retctx, names, pk, NULL, 0, ret_keyblock );
|
||
}
|
||
|
||
int
|
||
get_pubkey_next( GETKEY_CTX ctx, PKT_public_key *pk, KBNODE *ret_keyblock )
|
||
{
|
||
int rc;
|
||
|
||
rc = lookup( ctx, ret_keyblock, 0 );
|
||
if ( !rc && pk && ret_keyblock )
|
||
pk_from_block ( ctx, pk, *ret_keyblock );
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
void
|
||
get_pubkey_end( GETKEY_CTX ctx )
|
||
{
|
||
if( ctx ) {
|
||
int n;
|
||
|
||
enum_keyblocks( 2, &ctx->kbpos, NULL );
|
||
memset (&ctx->kbpos, 0, sizeof ctx->kbpos);
|
||
for(n=0; n < ctx->nitems; n++ )
|
||
m_free( ctx->items[n].namebuf );
|
||
if( !ctx->not_allocated )
|
||
m_free( ctx );
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/****************
|
||
* Search for a key with the given fingerprint.
|
||
* FIXME:
|
||
* We should replace this with the _byname function. Thiscsan be done
|
||
* by creating a userID conforming to the unified fingerprint style.
|
||
*/
|
||
int
|
||
get_pubkey_byfprint( PKT_public_key *pk,
|
||
const byte *fprint, size_t fprint_len)
|
||
{
|
||
int rc;
|
||
|
||
if( fprint_len == 20 || fprint_len == 16 ) {
|
||
struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.exact = 1 ;
|
||
ctx.not_allocated = 1;
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = fprint_len;
|
||
memcpy( ctx.items[0].fprint, fprint, fprint_len );
|
||
rc = lookup( &ctx, &kb, 0 );
|
||
if (!rc && pk )
|
||
pk_from_block ( &ctx, pk, kb );
|
||
release_kbnode ( kb );
|
||
get_pubkey_end( &ctx );
|
||
}
|
||
else
|
||
rc = G10ERR_GENERAL; /* Oops */
|
||
return rc;
|
||
}
|
||
|
||
/****************
|
||
* Search for a key with the given fingerprint and return the
|
||
* complete keyblock which may have more than only this key.
|
||
*/
|
||
int
|
||
get_keyblock_byfprint( KBNODE *ret_keyblock, const byte *fprint,
|
||
size_t fprint_len )
|
||
{
|
||
int rc;
|
||
|
||
if( fprint_len == 20 || fprint_len == 16 ) {
|
||
struct getkey_ctx_s ctx;
|
||
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.not_allocated = 1;
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = fprint_len;
|
||
memcpy( ctx.items[0].fprint, fprint, fprint_len );
|
||
rc = lookup( &ctx, ret_keyblock, 0 );
|
||
get_pubkey_end( &ctx );
|
||
}
|
||
else
|
||
rc = G10ERR_GENERAL; /* Oops */
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
|
||
/****************
|
||
* Search for a key with the given lid and return the entire keyblock
|
||
*/
|
||
int
|
||
get_keyblock_bylid( KBNODE *ret_keyblock, ulong lid )
|
||
{
|
||
int rc;
|
||
struct getkey_ctx_s ctx;
|
||
u32 kid[2];
|
||
|
||
if( keyid_from_lid( lid, kid ) )
|
||
kid[0] = kid[1] = 0;
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.exact = 1;
|
||
ctx.not_allocated = 1;
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = 12;
|
||
ctx.items[0].keyid[0] = kid[0];
|
||
ctx.items[0].keyid[1] = kid[1];
|
||
rc = lookup( &ctx, ret_keyblock, 0 );
|
||
get_pubkey_end( &ctx );
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
/****************
|
||
* Get a secret key by name and store it into sk
|
||
* If NAME is NULL use the default key
|
||
*/
|
||
static int
|
||
get_seckey_byname2( GETKEY_CTX *retctx,
|
||
PKT_secret_key *sk, const char *name, int unprotect,
|
||
KBNODE *retblock )
|
||
{
|
||
STRLIST namelist = NULL;
|
||
int rc;
|
||
|
||
if( !name && opt.def_secret_key && *opt.def_secret_key ) {
|
||
add_to_strlist( &namelist, opt.def_secret_key );
|
||
rc = key_byname( retctx, namelist, NULL, sk, 1, retblock );
|
||
}
|
||
else if( !name ) { /* use the first one as default key */
|
||
struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
|
||
assert (!retctx ); /* do we need this at all */
|
||
assert (!retblock);
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.not_allocated = 1;
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = 15;
|
||
rc = lookup( &ctx, &kb, 1 );
|
||
if (!rc && sk )
|
||
sk_from_block ( &ctx, sk, kb );
|
||
release_kbnode ( kb );
|
||
get_seckey_end( &ctx );
|
||
}
|
||
else {
|
||
add_to_strlist( &namelist, name );
|
||
rc = key_byname( retctx, namelist, NULL, sk, 1, retblock );
|
||
}
|
||
|
||
free_strlist( namelist );
|
||
|
||
if( !rc && unprotect )
|
||
rc = check_secret_key( sk, 0 );
|
||
|
||
return rc;
|
||
}
|
||
|
||
int
|
||
get_seckey_byname( PKT_secret_key *sk, const char *name, int unlock )
|
||
{
|
||
return get_seckey_byname2 ( NULL, sk, name, unlock, NULL );
|
||
}
|
||
|
||
|
||
int
|
||
get_seckey_bynames( GETKEY_CTX *retctx, PKT_secret_key *sk,
|
||
STRLIST names, KBNODE *ret_keyblock )
|
||
{
|
||
return key_byname( retctx, names, NULL, sk, 1, ret_keyblock );
|
||
}
|
||
|
||
|
||
int
|
||
get_seckey_next( GETKEY_CTX ctx, PKT_secret_key *sk, KBNODE *ret_keyblock )
|
||
{
|
||
int rc;
|
||
|
||
rc = lookup( ctx, ret_keyblock, 1 );
|
||
if ( !rc && sk && ret_keyblock )
|
||
sk_from_block ( ctx, sk, *ret_keyblock );
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
void
|
||
get_seckey_end( GETKEY_CTX ctx )
|
||
{
|
||
get_pubkey_end( ctx );
|
||
}
|
||
|
||
|
||
|
||
/*******************************************************
|
||
************** compare functions **********************
|
||
*******************************************************/
|
||
|
||
/****************
|
||
* Do a word match (original user id starts with a '+').
|
||
* The pattern is already tokenized to a more suitable format:
|
||
* There are only the real words in it delimited by one space
|
||
* and all converted to uppercase.
|
||
*
|
||
* Returns: 0 if all words match.
|
||
*
|
||
* Note: This algorithm is a straightforward one and not very
|
||
* fast. It works for UTF-8 strings. The uidlen should
|
||
* be removed but due to the fact that old versions of
|
||
* pgp don't use UTF-8 we still use the length; this should
|
||
* be fixed in parse-packet (and replace \0 by some special
|
||
* UTF-8 encoding)
|
||
*/
|
||
static int
|
||
word_match( const byte *uid, size_t uidlen, const byte *pattern )
|
||
{
|
||
size_t wlen, n;
|
||
const byte *p;
|
||
const byte *s;
|
||
|
||
for( s=pattern; *s; ) {
|
||
do {
|
||
/* skip leading delimiters */
|
||
while( uidlen && !word_match_chars[*uid] )
|
||
uid++, uidlen--;
|
||
/* get length of the word */
|
||
n = uidlen; p = uid;
|
||
while( n && word_match_chars[*p] )
|
||
p++, n--;
|
||
wlen = p - uid;
|
||
/* and compare against the current word from pattern */
|
||
for(n=0, p=uid; n < wlen && s[n] != ' ' && s[n] ; n++, p++ ) {
|
||
if( word_match_chars[*p] != s[n] )
|
||
break;
|
||
}
|
||
if( n == wlen && (s[n] == ' ' || !s[n]) )
|
||
break; /* found */
|
||
uid += wlen;
|
||
uidlen -= wlen;
|
||
} while( uidlen );
|
||
if( !uidlen )
|
||
return -1; /* not found */
|
||
|
||
/* advance to next word in pattern */
|
||
for(; *s != ' ' && *s ; s++ )
|
||
;
|
||
if( *s )
|
||
s++ ;
|
||
}
|
||
return 0; /* found */
|
||
}
|
||
|
||
/****************
|
||
* prepare word word_match; that is parse the name and
|
||
* build the pattern.
|
||
* caller has to free the returned pattern
|
||
*/
|
||
static char*
|
||
prepare_word_match( const byte *name )
|
||
{
|
||
byte *pattern, *p;
|
||
int c;
|
||
|
||
/* the original length is always enough for the pattern */
|
||
p = pattern = m_alloc(strlen(name)+1);
|
||
do {
|
||
/* skip leading delimiters */
|
||
while( *name && !word_match_chars[*name] )
|
||
name++;
|
||
/* copy as long as we don't have a delimiter and convert
|
||
* to uppercase.
|
||
* fixme: how can we handle utf8 uppercasing */
|
||
for( ; *name && (c=word_match_chars[*name]); name++ )
|
||
*p++ = c;
|
||
*p++ = ' '; /* append pattern delimiter */
|
||
} while( *name );
|
||
p[-1] = 0; /* replace last pattern delimiter by EOS */
|
||
|
||
return pattern;
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
static int
|
||
compare_name( const char *uid, size_t uidlen, const char *name, int mode )
|
||
{
|
||
int i;
|
||
const char *s, *se;
|
||
|
||
if( mode == 1 ) { /* exact match */
|
||
for(i=0; name[i] && uidlen; i++, uidlen-- )
|
||
if( uid[i] != name[i] )
|
||
break;
|
||
if( !uidlen && !name[i] )
|
||
return 0; /* found */
|
||
}
|
||
else if( mode == 2 ) { /* case insensitive substring */
|
||
if( ascii_memistr( uid, uidlen, name ) )
|
||
return 0;
|
||
}
|
||
else if( mode >= 3 && mode <= 5 ) { /* look at the email address */
|
||
for( i=0, s= uid; i < uidlen && *s != '<'; s++, i++ )
|
||
;
|
||
if( i < uidlen ) {
|
||
/* skip opening delim and one char and look for the closing one*/
|
||
s++; i++;
|
||
for( se=s+1, i++; i < uidlen && *se != '>'; se++, i++ )
|
||
;
|
||
if( i < uidlen ) {
|
||
i = se - s;
|
||
if( mode == 3 ) { /* exact email address */
|
||
if( strlen(name)-2 == i
|
||
&& !ascii_memcasecmp( s, name+1, i) )
|
||
return 0;
|
||
}
|
||
else if( mode == 4 ) { /* email substring */
|
||
if( ascii_memistr( s, i, name ) )
|
||
return 0;
|
||
}
|
||
else { /* email from end */
|
||
/* nyi */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if( mode == 6 )
|
||
return word_match( uid, uidlen, name );
|
||
else
|
||
BUG();
|
||
|
||
return -1; /* not found */
|
||
}
|
||
|
||
|
||
|
||
|
||
/************************************************
|
||
************* Merging stuff ********************
|
||
************************************************/
|
||
|
||
/****************
|
||
* merge all selfsignatures with the keys.
|
||
* FIXME: replace this at least for the public key parts
|
||
* by merge_selfsigs.
|
||
* It is still used in keyedit.c and
|
||
* at 2 or 3 other places - check whether it is really needed.
|
||
* It might be needed by the key edit and import stuff because
|
||
* the keylock is changed.
|
||
*/
|
||
void
|
||
merge_keys_and_selfsig( KBNODE keyblock )
|
||
{
|
||
PKT_public_key *pk = NULL;
|
||
PKT_secret_key *sk = NULL;
|
||
PKT_signature *sig;
|
||
KBNODE k;
|
||
u32 kid[2] = { 0, 0 };
|
||
u32 sigdate = 0;
|
||
|
||
if (keyblock && keyblock->pkt->pkttype == PKT_PUBLIC_KEY ) {
|
||
/* divert to our new function */
|
||
merge_selfsigs (keyblock);
|
||
return;
|
||
}
|
||
/* still need the old one because the new one can't handle secret keys */
|
||
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
pk = k->pkt->pkt.public_key; sk = NULL;
|
||
if( pk->version < 4 )
|
||
pk = NULL; /* not needed for old keys */
|
||
else if( k->pkt->pkttype == PKT_PUBLIC_KEY )
|
||
keyid_from_pk( pk, kid );
|
||
else if( !pk->expiredate ) { /* and subkey */
|
||
/* insert the expiration date here */
|
||
/*FIXME!!! pk->expiredate = subkeys_expiretime( k, kid );*/
|
||
}
|
||
sigdate = 0;
|
||
}
|
||
else if( k->pkt->pkttype == PKT_SECRET_KEY
|
||
|| k->pkt->pkttype == PKT_SECRET_SUBKEY ) {
|
||
pk = NULL; sk = k->pkt->pkt.secret_key;
|
||
if( sk->version < 4 )
|
||
sk = NULL;
|
||
else if( k->pkt->pkttype == PKT_SECRET_KEY )
|
||
keyid_from_sk( sk, kid );
|
||
sigdate = 0;
|
||
}
|
||
else if( (pk || sk ) && k->pkt->pkttype == PKT_SIGNATURE
|
||
&& (sig=k->pkt->pkt.signature)->sig_class >= 0x10
|
||
&& sig->sig_class <= 0x30 && sig->version > 3
|
||
&& !(sig->sig_class == 0x18 || sig->sig_class == 0x28)
|
||
&& sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1] ) {
|
||
/* okay this is a self-signature which can be used.
|
||
* This is not used for subkey binding signature, becuase this
|
||
* is done above.
|
||
* FIXME: We should only use this if the signature is valid
|
||
* but this is time consuming - we must provide another
|
||
* way to handle this
|
||
*/
|
||
const byte *p;
|
||
u32 ed;
|
||
|
||
p = parse_sig_subpkt( sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL );
|
||
if( pk ) {
|
||
ed = p? pk->timestamp + buffer_to_u32(p):0;
|
||
if( sig->timestamp > sigdate ) {
|
||
pk->expiredate = ed;
|
||
sigdate = sig->timestamp;
|
||
}
|
||
}
|
||
else {
|
||
ed = p? sk->timestamp + buffer_to_u32(p):0;
|
||
if( sig->timestamp > sigdate ) {
|
||
sk->expiredate = ed;
|
||
sigdate = sig->timestamp;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Apply information from SIGNODE (which is the valid self-signature
|
||
* associated with that UID) to the UIDNODE:
|
||
* - wether the UID has been revoked
|
||
* - assumed creation date of the UID
|
||
* - temporary store the keyflags here
|
||
* - temporary store the key expiration time here
|
||
* - mark whether the primary user ID flag hat been set.
|
||
* - store the preferences
|
||
*/
|
||
static void
|
||
fixup_uidnode ( KBNODE uidnode, KBNODE signode, u32 keycreated )
|
||
{
|
||
PKT_user_id *uid = uidnode->pkt->pkt.user_id;
|
||
PKT_signature *sig = signode->pkt->pkt.signature;
|
||
const byte *p, *sym, *hash, *zip;
|
||
size_t n, nsym, nhash, nzip;
|
||
|
||
uid->created = 0; /* not created == invalid */
|
||
if ( IS_UID_REV ( sig ) ) {
|
||
uid->is_revoked = 1;
|
||
return; /* has been revoked */
|
||
}
|
||
|
||
uid->created = sig->timestamp; /* this one is okay */
|
||
|
||
/* store the key flags in the helper variable for later processing */
|
||
uid->help_key_usage = 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_FLAGS, &n );
|
||
if ( p && n ) {
|
||
/* first octet of the keyflags */
|
||
if ( (*p & 3) )
|
||
uid->help_key_usage |= PUBKEY_USAGE_SIG;
|
||
if ( (*p & 12) )
|
||
uid->help_key_usage |= PUBKEY_USAGE_ENC;
|
||
}
|
||
|
||
/* ditto or the key expiration */
|
||
uid->help_key_expire = 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if ( p ) {
|
||
uid->help_key_expire = keycreated + buffer_to_u32(p);
|
||
}
|
||
|
||
/* Set the primary user ID flag - we will later wipe out some
|
||
* of them to only have one in our keyblock */
|
||
uid->is_primary = 0;
|
||
p = parse_sig_subpkt ( sig->hashed, SIGSUBPKT_PRIMARY_UID, NULL );
|
||
if ( p && *p )
|
||
uid->is_primary = 1;
|
||
/* We could also query this from the unhashed area if it is not in
|
||
* the hased area and then later try to decide which is the better
|
||
* there should be no security problem with this.
|
||
* For now we only look at the hashed one.
|
||
*/
|
||
|
||
/* now build the preferences list. We try to get the preferences
|
||
* from the hashed list but if there are no such preferences, we
|
||
* try to get them from the unhashed list. There is no risk with
|
||
* that, because our implementation comes only with strong
|
||
* algorithms and it woulkd be fruitless for an attacker to insert
|
||
* an weak algorithm. */
|
||
p = parse_sig_subpkt2 ( sig, SIGSUBPKT_PREF_SYM, &n );
|
||
sym = p; nsym = p?n:0;
|
||
p = parse_sig_subpkt2 ( sig, SIGSUBPKT_PREF_HASH, &n );
|
||
hash = p; nhash = p?n:0;
|
||
p = parse_sig_subpkt2 ( sig, SIGSUBPKT_PREF_COMPR, &n );
|
||
zip = p; nzip = p?n:0;
|
||
if (uid->prefs)
|
||
m_free (uid->prefs);
|
||
n = nsym + nhash + nzip;
|
||
if (!n)
|
||
uid->prefs = NULL;
|
||
else {
|
||
uid->prefs = m_alloc (sizeof (*uid->prefs) * (n+1));
|
||
n = 0;
|
||
for (; nsym; nsym--, n++) {
|
||
uid->prefs[n].type = PREFTYPE_SYM;
|
||
uid->prefs[n].value = *sym++;
|
||
}
|
||
for (; nhash; nhash--, n++) {
|
||
uid->prefs[n].type = PREFTYPE_HASH;
|
||
uid->prefs[n].value = *hash++;
|
||
}
|
||
for (; nzip; nzip--, n++) {
|
||
uid->prefs[n].type = PREFTYPE_ZIP;
|
||
uid->prefs[n].value = *sym++;
|
||
}
|
||
uid->prefs[n].type = PREFTYPE_NONE; /* end of list marker */
|
||
uid->prefs[n].value = 0;
|
||
}
|
||
|
||
}
|
||
|
||
static void
|
||
merge_selfsigs_main( KBNODE keyblock, int *r_revoked )
|
||
{
|
||
PKT_public_key *pk = NULL;
|
||
KBNODE k;
|
||
u32 kid[2];
|
||
u32 sigdate = 0, uiddate=0, uiddate2;
|
||
KBNODE signode, uidnode, uidnode2;
|
||
u32 curtime = make_timestamp ();
|
||
unsigned int key_usage = 0;
|
||
u32 keytimestamp = 0;
|
||
u32 key_expire = 0;
|
||
int key_expire_seen = 0;
|
||
|
||
*r_revoked = 0;
|
||
if ( keyblock->pkt->pkttype != PKT_PUBLIC_KEY )
|
||
BUG ();
|
||
pk = keyblock->pkt->pkt.public_key;
|
||
keytimestamp = pk->timestamp;
|
||
|
||
keyid_from_pk( pk, kid );
|
||
pk->main_keyid[0] = kid[0];
|
||
pk->main_keyid[1] = kid[1];
|
||
|
||
if ( pk->version < 4 ) {
|
||
/* before v4 the key packet itself contains the expiration date
|
||
* and there was noway to change it. So we also use only the
|
||
* one from the key packet */
|
||
key_expire = pk->expiredate;
|
||
key_expire_seen = 1;
|
||
}
|
||
|
||
/* first pass: find the latest direct key self-signature.
|
||
* We assume that the newest one overrides all others
|
||
*/
|
||
signode = NULL;
|
||
sigdate = 0; /* helper to find the latest signature */
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_SIGNATURE ) {
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
if ( sig->keyid[0] == kid[0] && sig->keyid[1]==kid[1] ) {
|
||
if ( check_key_signature( keyblock, k, NULL ) )
|
||
; /* signature did not verify */
|
||
else if ( IS_KEY_REV (sig) ){
|
||
/* key has been revoked - there is no way to override
|
||
* such a revocation, so we theoretically can stop now.
|
||
* We should not cope with expiration times for revocations
|
||
* here because we have to assume that an attacker can
|
||
* generate all kinds of signatures. However due to the
|
||
* fact that the key has been revoked it does not harm
|
||
* either and by continuing we gather some more info on
|
||
* that key.
|
||
*/
|
||
*r_revoked = 1;
|
||
}
|
||
else if ( IS_KEY_SIG (sig) && sig->timestamp >= sigdate ) {
|
||
const byte *p;
|
||
|
||
p = parse_sig_subpkt( sig->hashed,
|
||
SIGSUBPKT_SIG_EXPIRE, NULL );
|
||
if ( p && (sig->timestamp + buffer_to_u32(p)) >= curtime )
|
||
; /* signature has expired - ignore it */
|
||
else {
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if ( signode ) {
|
||
/* some information from a direct key signature take precedence
|
||
* over the same information given in UID sigs.
|
||
*/
|
||
PKT_signature *sig = signode->pkt->pkt.signature;
|
||
const byte *p;
|
||
size_t n;
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_FLAGS, &n );
|
||
if ( p && n ) {
|
||
/* first octet of the keyflags */
|
||
if ( (*p & 3) )
|
||
key_usage |= PUBKEY_USAGE_SIG;
|
||
if ( (*p & 12) )
|
||
key_usage |= PUBKEY_USAGE_ENC;
|
||
}
|
||
|
||
if ( pk->version > 3 ) {
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if ( p ) {
|
||
key_expire = keytimestamp + buffer_to_u32(p);
|
||
key_expire_seen = 1;
|
||
}
|
||
}
|
||
/* mark that key as valid: one direct key signature should
|
||
* render a key as valid */
|
||
pk->is_valid = 1;
|
||
}
|
||
|
||
|
||
/* second pass: look at the self-signature of all user IDs */
|
||
signode = uidnode = NULL;
|
||
sigdate = 0; /* helper to find the latest signature in one user ID */
|
||
uiddate = 0; /* and over of all user IDs */
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID ) {
|
||
if ( uidnode && signode )
|
||
fixup_uidnode ( uidnode, signode, keytimestamp );
|
||
uidnode = k;
|
||
signode = NULL;
|
||
if ( sigdate > uiddate )
|
||
uiddate = sigdate;
|
||
sigdate = 0;
|
||
}
|
||
else if ( k->pkt->pkttype == PKT_SIGNATURE && uidnode ) {
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
if ( sig->keyid[0] == kid[0] && sig->keyid[1]==kid[1] ) {
|
||
if ( check_key_signature( keyblock, k, NULL ) )
|
||
; /* signature did not verify */
|
||
else if ( (IS_UID_SIG (sig) || IS_UID_REV (sig))
|
||
&& sig->timestamp >= sigdate ) {
|
||
/* Note: we allow to invalidate cert revocations
|
||
* by a newer signature. An attacker can't use this
|
||
* because a key should be revoced with a key revocation.
|
||
* The reason why we have to allow for that is that at
|
||
* one time an email address may become invalid but later
|
||
* the same email address may become valid again (hired,
|
||
* fired, hired again).
|
||
*/
|
||
const byte *p;
|
||
|
||
p = parse_sig_subpkt (sig->hashed,
|
||
SIGSUBPKT_SIG_EXPIRE, NULL );
|
||
if ( p && (sig->timestamp + buffer_to_u32(p)) >= curtime )
|
||
; /* signature/revocation has expired - ignore it */
|
||
else {
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if ( uidnode && signode ) {
|
||
fixup_uidnode ( uidnode, signode, keytimestamp );
|
||
pk->is_valid = 1;
|
||
}
|
||
if ( sigdate > uiddate )
|
||
uiddate = sigdate;
|
||
|
||
|
||
/* Now that we had a look at all user IDs we can now get some information
|
||
* from those user IDs.
|
||
*/
|
||
|
||
if ( !key_usage ) {
|
||
/* find the latest user ID with key flags set */
|
||
uiddate = 0; /* helper to find the latest user ID */
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID ) {
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if ( uid->help_key_usage && uid->created > uiddate ) {
|
||
key_usage = uid->help_key_usage;
|
||
uiddate = uid->created;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if ( !key_usage ) { /* no key flags at all: get it from the algo */
|
||
key_usage = openpgp_pk_algo_usage ( pk->pubkey_algo );
|
||
}
|
||
else { /* check that the usage matches the usage as given by the algo */
|
||
int x = openpgp_pk_algo_usage ( pk->pubkey_algo );
|
||
if ( x ) /* mask it down to the actual allowed usage */
|
||
key_usage &= x;
|
||
}
|
||
pk->pubkey_usage = key_usage;
|
||
|
||
if ( !key_expire_seen ) {
|
||
/* find the latest valid user ID with a key expiration set
|
||
* Note, that this may be a different one from the above because
|
||
* some user IDs may have no expiration date set */
|
||
uiddate = 0;
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID ) {
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if ( uid->help_key_expire && uid->created > uiddate ) {
|
||
key_expire = uid->help_key_expire;
|
||
uiddate = uid->created;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
pk->has_expired = key_expire >= curtime? 0 : key_expire;
|
||
if ( pk->version >= 4 )
|
||
pk->expiredate = key_expire;
|
||
/* Fixme: we should see how to get rid of the expiretime fields but
|
||
* this needs changes at other places too. */
|
||
|
||
/* and now find the real primary user ID and delete all others */
|
||
uiddate = uiddate2 = 0;
|
||
uidnode = uidnode2 = NULL;
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID ) {
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if ( uid->is_primary && uid->created > uiddate ) {
|
||
uiddate = uid->created;
|
||
uidnode = k;
|
||
}
|
||
if ( !uid->is_primary && uid->created > uiddate2 ) {
|
||
uiddate2 = uid->created;
|
||
uidnode2 = k;
|
||
}
|
||
}
|
||
}
|
||
if ( uidnode ) {
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID ) {
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if ( k != uidnode )
|
||
uid->is_primary = 0;
|
||
}
|
||
}
|
||
}
|
||
else if( uidnode2 ) {
|
||
/* none is flagged primary - use the latest user ID we have */
|
||
uidnode2->pkt->pkt.user_id->is_primary = 1;
|
||
}
|
||
|
||
}
|
||
|
||
|
||
static void
|
||
merge_selfsigs_subkey( KBNODE keyblock, KBNODE subnode )
|
||
{
|
||
PKT_public_key *mainpk = NULL, *subpk = NULL;
|
||
PKT_signature *sig;
|
||
KBNODE k;
|
||
u32 mainkid[2];
|
||
u32 sigdate = 0;
|
||
KBNODE signode;
|
||
u32 curtime = make_timestamp ();
|
||
unsigned int key_usage = 0;
|
||
u32 keytimestamp = 0;
|
||
u32 key_expire = 0;
|
||
const byte *p;
|
||
size_t n;
|
||
|
||
if ( subnode->pkt->pkttype != PKT_PUBLIC_SUBKEY )
|
||
BUG ();
|
||
mainpk = keyblock->pkt->pkt.public_key;
|
||
if ( mainpk->version < 4 )
|
||
return; /* (actually this should never happen) */
|
||
keyid_from_pk( mainpk, mainkid );
|
||
subpk = subnode->pkt->pkt.public_key;
|
||
keytimestamp = subpk->timestamp;
|
||
|
||
subpk->is_valid = 0;
|
||
subpk->main_keyid[0] = mainpk->main_keyid[0];
|
||
subpk->main_keyid[1] = mainpk->main_keyid[1];
|
||
if ( subpk->version < 4 )
|
||
return; /* there are no v3 subkeys */
|
||
|
||
/* find the latest key binding self-signature. */
|
||
signode = NULL;
|
||
sigdate = 0; /* helper to find the latest signature */
|
||
for(k=subnode->next; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_SIGNATURE ) {
|
||
sig = k->pkt->pkt.signature;
|
||
if ( sig->keyid[0] == mainkid[0] && sig->keyid[1]==mainkid[1] ) {
|
||
if ( check_key_signature( keyblock, k, NULL ) )
|
||
; /* signature did not verify */
|
||
else if ( IS_SUBKEY_REV (sig) ) {
|
||
subpk->is_revoked = 1;
|
||
/* although we could stop now, we continue to
|
||
* figure out other information like the old expiration
|
||
* time */
|
||
}
|
||
else if ( IS_SUBKEY_SIG (sig) && sig->timestamp >= sigdate ) {
|
||
p = parse_sig_subpkt (sig->hashed,
|
||
SIGSUBPKT_SIG_EXPIRE, NULL );
|
||
if ( p && (sig->timestamp + buffer_to_u32(p)) >= curtime )
|
||
; /* signature has expired - ignore it */
|
||
else {
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if ( !signode ) {
|
||
return; /* no valid key binding */
|
||
}
|
||
|
||
subpk->is_valid = 1;
|
||
sig = signode->pkt->pkt.signature;
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_FLAGS, &n );
|
||
if ( p && n ) {
|
||
/* first octet of the keyflags */
|
||
if ( (*p & 3) )
|
||
key_usage |= PUBKEY_USAGE_SIG;
|
||
if ( (*p & 12) )
|
||
key_usage |= PUBKEY_USAGE_ENC;
|
||
}
|
||
if ( !key_usage ) { /* no key flags at all: get it from the algo */
|
||
key_usage = openpgp_pk_algo_usage ( subpk->pubkey_algo );
|
||
}
|
||
else { /* check that the usage matches the usage as given by the algo */
|
||
int x = openpgp_pk_algo_usage ( subpk->pubkey_algo );
|
||
if ( x ) /* mask it down to the actual allowed usage */
|
||
key_usage &= x;
|
||
}
|
||
subpk->pubkey_usage = key_usage;
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
|
||
if ( p )
|
||
key_expire = keytimestamp + buffer_to_u32(p);
|
||
else
|
||
key_expire = 0;
|
||
subpk->has_expired = key_expire >= curtime? 0 : key_expire;
|
||
subpk->expiredate = key_expire;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
* Merge information from the self-signatures with the key, so that
|
||
* we can later use them more easy.
|
||
* The function works by first applying the self signatures to the
|
||
* primary key and the to each subkey.
|
||
* Here are the rules we use to decide which inormation from which
|
||
* self-signature is used:
|
||
* We check all self signatures or validity and ignore all invalid signatures.
|
||
* All signatures are then ordered by their creation date ....
|
||
* For the primary key:
|
||
* FIXME the docs
|
||
*/
|
||
static void
|
||
merge_selfsigs( KBNODE keyblock )
|
||
{
|
||
KBNODE k;
|
||
int revoked;
|
||
PKT_public_key *main_pk;
|
||
prefitem_t *prefs;
|
||
|
||
if ( keyblock->pkt->pkttype != PKT_PUBLIC_KEY ) {
|
||
if (keyblock->pkt->pkttype == PKT_SECRET_KEY ) {
|
||
log_error ("expected public key but found secret key "
|
||
"- must stop\n");
|
||
/* we better exit here becuase a public key is expected at
|
||
other places too. FIXME: Figure this out earlier and
|
||
don't get to here at all */
|
||
g10_exit (1);
|
||
}
|
||
BUG ();
|
||
}
|
||
|
||
merge_selfsigs_main ( keyblock, &revoked );
|
||
main_pk = keyblock->pkt->pkt.public_key;
|
||
if ( revoked ) {
|
||
/* if the primary key has been revoked we better set the revoke
|
||
* flag on that key and all subkeys */
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
PKT_public_key *pk = k->pkt->pkt.public_key;
|
||
pk->is_revoked = 1;
|
||
pk->main_keyid[0] = main_pk->main_keyid[0];
|
||
pk->main_keyid[1] = main_pk->main_keyid[1];
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* now merge in the data from each of the subkeys */
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
merge_selfsigs_subkey ( keyblock, k );
|
||
}
|
||
}
|
||
|
||
/* set the preference list of all keys to those of the primary
|
||
* user ID. Note: we use these preferences when we don't know by
|
||
* which user ID the key has been selected.
|
||
* fixme: we should keep atoms of commonly used preferences or
|
||
* use reference counting to optimize the preference lists storage.
|
||
* FIXME: it might be better to use the intersection of
|
||
* all preferences.
|
||
*/
|
||
prefs = NULL;
|
||
for (k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) {
|
||
if (k->pkt->pkttype == PKT_USER_ID
|
||
&& k->pkt->pkt.user_id->is_primary) {
|
||
prefs = k->pkt->pkt.user_id->prefs;
|
||
break;
|
||
}
|
||
}
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
PKT_public_key *pk = k->pkt->pkt.public_key;
|
||
if (pk->prefs)
|
||
m_free (pk->prefs);
|
||
pk->prefs = copy_prefs (prefs);
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
|
||
/*
|
||
* Merge the secret keys from secblock into the pubblock thereby
|
||
* replacing the public (sub)keys with their secret counterparts Hmmm:
|
||
* It might be better to get away from the concept of entire secret
|
||
* keys at all and have a way to store just the real secret parts
|
||
* from the key.
|
||
*/
|
||
static void
|
||
merge_public_with_secret ( KBNODE pubblock, KBNODE secblock )
|
||
{
|
||
KBNODE pub;
|
||
|
||
assert ( pubblock->pkt->pkttype == PKT_PUBLIC_KEY );
|
||
assert ( secblock->pkt->pkttype == PKT_SECRET_KEY );
|
||
|
||
for (pub=pubblock; pub; pub = pub->next ) {
|
||
if ( pub->pkt->pkttype == PKT_PUBLIC_KEY ) {
|
||
PKT_public_key *pk = pub->pkt->pkt.public_key;
|
||
PKT_secret_key *sk = secblock->pkt->pkt.secret_key;
|
||
assert ( pub == pubblock ); /* only in the first node */
|
||
/* there is nothing to compare in this case, so just replace
|
||
* some information */
|
||
copy_public_parts_to_secret_key ( pk, sk );
|
||
free_public_key ( pk );
|
||
pub->pkt->pkttype = PKT_SECRET_KEY;
|
||
pub->pkt->pkt.secret_key = copy_secret_key (NULL, sk);
|
||
}
|
||
else if ( pub->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
KBNODE sec;
|
||
PKT_public_key *pk = pub->pkt->pkt.public_key;
|
||
|
||
/* this is more complicated: it may happen that the sequence
|
||
* of the subkeys dosn't match, so we have to find the
|
||
* appropriate secret key */
|
||
for (sec=secblock->next; sec; sec = sec->next ) {
|
||
if ( sec->pkt->pkttype == PKT_SECRET_SUBKEY ) {
|
||
PKT_secret_key *sk = sec->pkt->pkt.secret_key;
|
||
if ( !cmp_public_secret_key ( pk, sk ) ) {
|
||
copy_public_parts_to_secret_key ( pk, sk );
|
||
free_public_key ( pk );
|
||
pub->pkt->pkttype = PKT_SECRET_SUBKEY;
|
||
pub->pkt->pkt.secret_key = copy_secret_key (NULL, sk);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if ( !sec )
|
||
BUG(); /* already checked in premerge */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function checks that for every public subkey a corresponding
|
||
* secret subkey is avalable and deletes the public subkey otherwise.
|
||
* We need this function becuase we can'tdelete it later when we
|
||
* actually merge the secret parts into the pubring.
|
||
*/
|
||
static void
|
||
premerge_public_with_secret ( KBNODE pubblock, KBNODE secblock )
|
||
{
|
||
KBNODE last, pub;
|
||
|
||
assert ( pubblock->pkt->pkttype == PKT_PUBLIC_KEY );
|
||
assert ( secblock->pkt->pkttype == PKT_SECRET_KEY );
|
||
|
||
for (pub=pubblock,last=NULL; pub; last = pub, pub = pub->next ) {
|
||
if ( pub->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
KBNODE sec;
|
||
PKT_public_key *pk = pub->pkt->pkt.public_key;
|
||
|
||
for (sec=secblock->next; sec; sec = sec->next ) {
|
||
if ( sec->pkt->pkttype == PKT_SECRET_SUBKEY ) {
|
||
PKT_secret_key *sk = sec->pkt->pkt.secret_key;
|
||
if ( !cmp_public_secret_key ( pk, sk ) ) {
|
||
if ( sk->protect.s2k.mode == 1001 ) {
|
||
/* The secret parts are not available so
|
||
we can't use that key for signing etc.
|
||
Fix the pubkey usage */
|
||
pk->pubkey_usage &= ~PUBKEY_USAGE_SIG;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if ( !sec ) {
|
||
KBNODE next, ll;
|
||
|
||
log_info ( "no secret subkey "
|
||
"for public subkey %08lX - ignoring\n",
|
||
(ulong)keyid_from_pk (pk,NULL) );
|
||
/* we have to remove the subkey in this case */
|
||
assert ( last );
|
||
/* find the next subkey */
|
||
for (next=pub->next,ll=pub;
|
||
next && pub->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
ll = next, next = next->next )
|
||
;
|
||
/* make new link */
|
||
last->next = next;
|
||
/* release this public subkey with all sigs */
|
||
ll->next = NULL;
|
||
release_kbnode( pub );
|
||
/* let the loop continue */
|
||
pub = last;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/************************************************
|
||
************* Find stuff ***********************
|
||
************************************************/
|
||
|
||
static PKT_user_id *
|
||
find_by_name( KBNODE keyblock, const char *name, int mode )
|
||
{
|
||
KBNODE k;
|
||
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if( k->pkt->pkttype == PKT_USER_ID
|
||
&& !compare_name( k->pkt->pkt.user_id->name,
|
||
k->pkt->pkt.user_id->len, name, mode)) {
|
||
return k->pkt->pkt.user_id;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
|
||
static KBNODE
|
||
find_by_keyid( KBNODE keyblock, u32 *keyid, int mode )
|
||
{
|
||
KBNODE k;
|
||
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
u32 aki[2];
|
||
keyid_from_pk( k->pkt->pkt.public_key, aki );
|
||
if( aki[1] == keyid[1] && ( mode == 10 || aki[0] == keyid[0] ) ) {
|
||
return k; /* found */
|
||
}
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
|
||
static KBNODE
|
||
find_by_fpr( KBNODE keyblock, const char *name, int mode )
|
||
{
|
||
KBNODE k;
|
||
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
byte afp[MAX_FINGERPRINT_LEN];
|
||
size_t an;
|
||
|
||
fingerprint_from_pk(k->pkt->pkt.public_key, afp, &an );
|
||
if ( mode == 21 ) {
|
||
/* Unified fingerprint. The fingerprint is always 20 bytes*/
|
||
while ( an < 20 )
|
||
afp[an++] = 0;
|
||
if ( !memcmp( afp, name, 20 ) )
|
||
return k;
|
||
}
|
||
else {
|
||
if( an == mode && !memcmp( afp, name, an) ) {
|
||
return k;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
|
||
|
||
/* See see whether the key fits
|
||
* our requirements and in case we do not
|
||
* request the primary key, we should select
|
||
* a suitable subkey.
|
||
* FIXME: Check against PGP 7 whether we still need a kludge
|
||
* to favor type 16 keys over type 20 keys when type 20
|
||
* has not been explitely requested.
|
||
* Returns: True when a suitable key has been found.
|
||
*
|
||
* We have to distinguish four cases: FIXME!
|
||
* 1. No usage and no primary key requested
|
||
* Examples for this case are that we have a keyID to be used
|
||
* for decrytion or verification.
|
||
* 2. No usage but primary key requested
|
||
* This is the case for all functions which work on an
|
||
* entire keyblock, e.g. for editing or listing
|
||
* 3. Usage and primary key requested
|
||
* FXME
|
||
* 4. Usage but no primary key requested
|
||
* FIXME
|
||
* FIXME: Tell what is going to happen here and something about the rationale
|
||
* Note: We don't use this function if no specific usage is requested;
|
||
* This way the getkey functions can be used for plain key listings.
|
||
*
|
||
* CTX ist the keyblock we are investigating, if FOUNDK is not NULL this
|
||
* is the key we actually found by looking at the keyid or a fingerprint and
|
||
* may eitehr point to the primary or one of the subkeys.
|
||
*/
|
||
|
||
static int
|
||
finish_lookup( GETKEY_CTX ctx, KBNODE foundk, PKT_user_id *foundu )
|
||
{
|
||
KBNODE keyblock = ctx->keyblock;
|
||
KBNODE k;
|
||
#define USAGE_MASK (PUBKEY_USAGE_SIG|PUBKEY_USAGE_ENC)
|
||
unsigned int req_usage = ( ctx->req_usage & USAGE_MASK );
|
||
u32 latest_date;
|
||
KBNODE latest_key;
|
||
u32 curtime = make_timestamp ();
|
||
|
||
assert( !foundk || foundk->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| foundk->pkt->pkttype == PKT_PUBLIC_SUBKEY );
|
||
assert( keyblock->pkt->pkttype == PKT_PUBLIC_KEY );
|
||
|
||
ctx->found_key = NULL;
|
||
|
||
if (!ctx->exact)
|
||
foundk = NULL;
|
||
|
||
if ( DBG_CACHE )
|
||
log_debug( "finish_lookup: checking key %08lX (%s)(req_usage=%x)\n",
|
||
(ulong)keyid_from_pk( keyblock->pkt->pkt.public_key, NULL),
|
||
foundk? "one":"all", req_usage);
|
||
|
||
if (!req_usage) {
|
||
latest_key = foundk? foundk:keyblock;
|
||
goto found;
|
||
}
|
||
|
||
if (!req_usage) {
|
||
PKT_public_key *pk = foundk->pkt->pkt.public_key;
|
||
if (pk->user_id)
|
||
free_user_id (pk->user_id);
|
||
pk->user_id = scopy_user_id (foundu);
|
||
ctx->found_key = foundk;
|
||
cache_user_id( keyblock );
|
||
return 1; /* found */
|
||
}
|
||
|
||
latest_date = 0;
|
||
latest_key = NULL;
|
||
if ( !foundk || foundk->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
KBNODE nextk;
|
||
/* either start a loop or check just this one subkey */
|
||
for (k=foundk?foundk:keyblock; k; k = nextk ) {
|
||
PKT_public_key *pk;
|
||
nextk = k->next;
|
||
if ( k->pkt->pkttype != PKT_PUBLIC_SUBKEY )
|
||
continue;
|
||
if ( foundk )
|
||
nextk = NULL; /* what a hack */
|
||
pk = k->pkt->pkt.public_key;
|
||
if (DBG_CACHE)
|
||
log_debug( "\tchecking subkey %08lX\n",
|
||
(ulong)keyid_from_pk( pk, NULL));
|
||
if ( !pk->is_valid ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tsubkey not valid\n");
|
||
continue;
|
||
}
|
||
if ( pk->is_revoked ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tsubkey has been revoked\n");
|
||
continue;
|
||
}
|
||
if ( pk->has_expired ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tsubkey has expired\n");
|
||
continue;
|
||
}
|
||
if ( pk->timestamp > curtime && !opt.ignore_valid_from ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tsubkey not yet valid\n");
|
||
continue;
|
||
}
|
||
|
||
if ( !((pk->pubkey_usage&USAGE_MASK) & req_usage) ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tusage does not match: want=%x have=%x\n",
|
||
req_usage, pk->pubkey_usage );
|
||
continue;
|
||
}
|
||
|
||
if (DBG_CACHE)
|
||
log_debug( "\tsubkey looks fine\n");
|
||
if ( pk->timestamp > latest_date ) {
|
||
latest_date = pk->timestamp;
|
||
latest_key = k;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Okay now try the primary key unless we have want an exact
|
||
* key ID match on a subkey */
|
||
if ( !latest_key && !(ctx->exact && foundk != keyblock) ) {
|
||
PKT_public_key *pk;
|
||
if (DBG_CACHE && !foundk )
|
||
log_debug( "\tno suitable subkeys found - trying primary\n");
|
||
pk = keyblock->pkt->pkt.public_key;
|
||
if ( !pk->is_valid ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tprimary key not valid\n");
|
||
}
|
||
else if ( pk->is_revoked ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tprimary key has been revoked\n");
|
||
}
|
||
else if ( pk->has_expired ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tprimary key has expired\n");
|
||
}
|
||
else if ( !((pk->pubkey_usage&USAGE_MASK) & req_usage) ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tprimary key usage does not match: "
|
||
"want=%x have=%x\n",
|
||
req_usage, pk->pubkey_usage );
|
||
}
|
||
else { /* okay */
|
||
if (DBG_CACHE)
|
||
log_debug( "\tprimary key may be used\n");
|
||
latest_key = keyblock;
|
||
latest_date = pk->timestamp;
|
||
}
|
||
}
|
||
|
||
if ( !latest_key ) {
|
||
if (DBG_CACHE)
|
||
log_debug("\tno suitable key found - giving up\n");
|
||
return 0;
|
||
}
|
||
|
||
found:
|
||
if (DBG_CACHE)
|
||
log_debug( "\tusing key %08lX\n",
|
||
(ulong)keyid_from_pk( latest_key->pkt->pkt.public_key, NULL) );
|
||
|
||
if (latest_key) {
|
||
PKT_public_key *pk = latest_key->pkt->pkt.public_key;
|
||
if (pk->user_id)
|
||
free_user_id (pk->user_id);
|
||
pk->user_id = scopy_user_id (foundu);
|
||
}
|
||
|
||
ctx->found_key = latest_key;
|
||
|
||
if (latest_key != keyblock && opt.verbose) {
|
||
log_info(_("using secondary key %08lX "
|
||
"instead of primary key %08lX\n"),
|
||
(ulong)keyid_from_pk( latest_key->pkt->pkt.public_key, NULL),
|
||
(ulong)keyid_from_pk( keyblock->pkt->pkt.public_key, NULL) );
|
||
}
|
||
|
||
cache_user_id( keyblock );
|
||
|
||
return 1; /* found */
|
||
}
|
||
|
||
|
||
static int
|
||
lookup( GETKEY_CTX ctx, KBNODE *ret_keyblock, int secmode )
|
||
{
|
||
int rc;
|
||
int oldmode = set_packet_list_mode(0);
|
||
KBNODE secblock = NULL; /* helper */
|
||
int no_suitable_key = 0;
|
||
|
||
if( !ctx->count ) /* first time */
|
||
rc = enum_keyblocks( secmode? 5:0, &ctx->kbpos, NULL );
|
||
else
|
||
rc = 0;
|
||
if( !rc ) {
|
||
while( !(rc = enum_keyblocks( 1, &ctx->kbpos, &ctx->keyblock )) ) {
|
||
int n;
|
||
getkey_item_t *item;
|
||
|
||
if ( secmode ) {
|
||
/* find the correspondig public key and use this
|
||
* this one for the selection process */
|
||
u32 aki[2];
|
||
KBNODE k = ctx->keyblock;
|
||
|
||
if ( k->pkt->pkttype != PKT_SECRET_KEY )
|
||
BUG();
|
||
keyid_from_sk( k->pkt->pkt.secret_key, aki );
|
||
k = get_pubkeyblock( aki );
|
||
if( !k ) {
|
||
if (!opt.quiet)
|
||
log_info(_("key %08lX: secret key without public key "
|
||
"- skipped\n"), (ulong)aki[1] );
|
||
goto skip;
|
||
}
|
||
secblock = ctx->keyblock;
|
||
ctx->keyblock = k;
|
||
premerge_public_with_secret ( ctx->keyblock, secblock );
|
||
}
|
||
|
||
|
||
/* loop over all the user ids we want to look for */
|
||
item = ctx->items;
|
||
for(n=0; n < ctx->nitems; n++, item++ ) {
|
||
KBNODE k = NULL;
|
||
int found = 0;
|
||
PKT_user_id *found_uid = NULL;
|
||
|
||
if( item->mode < 10 ) {
|
||
found_uid = find_by_name( ctx->keyblock,
|
||
item->name, item->mode );
|
||
found = !!found_uid;
|
||
}
|
||
else if( item->mode >= 10 && item->mode <= 12 ) {
|
||
k = find_by_keyid( ctx->keyblock,
|
||
item->keyid, item->mode );
|
||
found = !!k;
|
||
}
|
||
else if( item->mode == 15 ) {
|
||
found = 1;
|
||
}
|
||
else if( item->mode == 16 || item->mode == 20
|
||
|| item->mode == 21 ) {
|
||
k = find_by_fpr( ctx->keyblock,
|
||
item->fprint, item->mode );
|
||
found = !!k;
|
||
}
|
||
else
|
||
BUG();
|
||
if( found ) {
|
||
/* this keyblock looks fine - do further investigation */
|
||
merge_selfsigs ( ctx->keyblock );
|
||
if ( finish_lookup( ctx, k, found_uid ) ) {
|
||
no_suitable_key = 0;
|
||
if ( secmode ) {
|
||
merge_public_with_secret ( ctx->keyblock,
|
||
secblock);
|
||
release_kbnode (secblock);
|
||
secblock = NULL;
|
||
}
|
||
goto found;
|
||
}
|
||
else
|
||
no_suitable_key = 1;
|
||
}
|
||
}
|
||
skip:
|
||
/* release resources and try the next keyblock */
|
||
if ( secmode ) {
|
||
release_kbnode( secblock );
|
||
secblock = NULL;
|
||
}
|
||
release_kbnode( ctx->keyblock );
|
||
ctx->keyblock = NULL;
|
||
}
|
||
found:
|
||
;
|
||
}
|
||
if( rc && rc != -1 )
|
||
log_error("enum_keyblocks failed: %s\n", g10_errstr(rc));
|
||
|
||
if( !rc ) {
|
||
*ret_keyblock = ctx->keyblock; /* return the keyblock */
|
||
ctx->keyblock = NULL;
|
||
}
|
||
else if (rc == -1 && no_suitable_key)
|
||
rc = secmode ? G10ERR_UNU_SECKEY : G10ERR_UNU_PUBKEY;
|
||
else if( rc == -1 )
|
||
rc = secmode ? G10ERR_NO_SECKEY : G10ERR_NO_PUBKEY;
|
||
|
||
if ( secmode ) {
|
||
release_kbnode( secblock );
|
||
secblock = NULL;
|
||
}
|
||
release_kbnode( ctx->keyblock );
|
||
ctx->keyblock = NULL;
|
||
set_packet_list_mode(oldmode);
|
||
#if 0
|
||
if( opt.debug & DBG_MEMSTAT_VALUE ) {
|
||
static int initialized;
|
||
|
||
if( !initialized ) {
|
||
initialized = 1;
|
||
atexit( print_stats );
|
||
}
|
||
|
||
assert( ctx->mode < DIM(lkup_stats) );
|
||
lkup_stats[ctx->mode].any = 1;
|
||
if( !rc )
|
||
lkup_stats[ctx->mode].okay_count++;
|
||
else if ( rc == G10ERR_NO_PUBKEY || rc == G10ERR_NO_SECKEY )
|
||
lkup_stats[ctx->mode].nokey_count++;
|
||
else
|
||
lkup_stats[ctx->mode].error_count++;
|
||
}
|
||
#endif
|
||
|
||
ctx->last_rc = rc;
|
||
ctx->count++;
|
||
return rc;
|
||
}
|
||
|
||
|
||
|
||
|
||
/****************
|
||
* FIXME: Replace by the generic function
|
||
* It does not work as it is right now - it is used at
|
||
* 2 places: a) to get the key for an anonyous recipient
|
||
* b) to get the ultimately trusted keys.
|
||
* The a) usage might have some problems.
|
||
*
|
||
* Enumerate all primary secret keys. Caller must use these procedure:
|
||
* 1) create a void pointer and initialize it to NULL
|
||
* 2) pass this void pointer by reference to this function
|
||
* and provide space for the secret key (pass a buffer for sk)
|
||
* 3) call this function as long as it does not return -1
|
||
* to indicate EOF.
|
||
* 4) Always call this function a last time with SK set to NULL,
|
||
* so that can free it's context.
|
||
*
|
||
*
|
||
*/
|
||
int
|
||
enum_secret_keys( void **context, PKT_secret_key *sk, int with_subkeys )
|
||
{
|
||
int rc=0;
|
||
PACKET pkt;
|
||
int save_mode;
|
||
struct {
|
||
int eof;
|
||
int sequence;
|
||
const char *name;
|
||
IOBUF iobuf;
|
||
} *c = *context;
|
||
|
||
|
||
if( !c ) { /* make a new context */
|
||
c = m_alloc_clear( sizeof *c );
|
||
*context = c;
|
||
c->sequence = 0;
|
||
c->name = enum_keyblock_resources( &c->sequence, 1 );
|
||
}
|
||
|
||
if( !sk ) { /* free the context */
|
||
if( c->iobuf )
|
||
iobuf_close(c->iobuf);
|
||
m_free( c );
|
||
*context = NULL;
|
||
return 0;
|
||
}
|
||
|
||
if( c->eof )
|
||
return -1;
|
||
|
||
/* FIXME: This assumes a plain keyring file */
|
||
for( ; c->name; c->name = enum_keyblock_resources( &c->sequence, 1 ) ) {
|
||
if( !c->iobuf ) {
|
||
if( !(c->iobuf = iobuf_open( c->name ) ) ) {
|
||
log_error("enum_secret_keys: can't open `%s'\n", c->name );
|
||
continue; /* try next file */
|
||
}
|
||
}
|
||
|
||
save_mode = set_packet_list_mode(0);
|
||
init_packet(&pkt);
|
||
while( (rc=parse_packet(c->iobuf, &pkt)) != -1 ) {
|
||
if( rc )
|
||
; /* e.g. unknown packet */
|
||
else if( pkt.pkttype == PKT_SECRET_KEY
|
||
|| ( with_subkeys && pkt.pkttype == PKT_SECRET_SUBKEY ) ) {
|
||
copy_secret_key( sk, pkt.pkt.secret_key );
|
||
set_packet_list_mode(save_mode);
|
||
return 0; /* found */
|
||
}
|
||
free_packet(&pkt);
|
||
}
|
||
set_packet_list_mode(save_mode);
|
||
iobuf_close(c->iobuf); c->iobuf = NULL;
|
||
}
|
||
c->eof = 1;
|
||
return -1;
|
||
}
|
||
|
||
|
||
|
||
/*********************************************
|
||
*********** user ID printing helpers *******
|
||
*********************************************/
|
||
|
||
/****************
|
||
* Return a string with a printable representation of the user_id.
|
||
* this string must be freed by m_free.
|
||
*/
|
||
char*
|
||
get_user_id_string( u32 *keyid )
|
||
{
|
||
user_id_db_t r;
|
||
char *p;
|
||
int pass=0;
|
||
/* try it two times; second pass reads from key resources */
|
||
do {
|
||
for(r=user_id_db; r; r = r->next ) {
|
||
keyid_list_t a;
|
||
for (a=r->keyids; a; a= a->next ) {
|
||
if( a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1] ) {
|
||
p = m_alloc( r->len + 10 );
|
||
sprintf(p, "%08lX %.*s",
|
||
(ulong)keyid[1], r->len, r->name );
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
} while( ++pass < 2 && !get_pubkey( NULL, keyid ) );
|
||
p = m_alloc( 15 );
|
||
sprintf(p, "%08lX [?]", (ulong)keyid[1] );
|
||
return p;
|
||
}
|
||
|
||
|
||
char*
|
||
get_user_id_string_native( u32 *keyid )
|
||
{
|
||
char *p = get_user_id_string( keyid );
|
||
char *p2 = utf8_to_native( p, strlen(p) );
|
||
|
||
m_free(p);
|
||
return p2;
|
||
}
|
||
|
||
|
||
char*
|
||
get_long_user_id_string( u32 *keyid )
|
||
{
|
||
user_id_db_t r;
|
||
char *p;
|
||
int pass=0;
|
||
/* try it two times; second pass reads from key resources */
|
||
do {
|
||
for(r=user_id_db; r; r = r->next ) {
|
||
keyid_list_t a;
|
||
for (a=r->keyids; a; a= a->next ) {
|
||
if( a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1] ) {
|
||
p = m_alloc( r->len + 20 );
|
||
sprintf(p, "%08lX%08lX %.*s",
|
||
(ulong)keyid[0], (ulong)keyid[1],
|
||
r->len, r->name );
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
} while( ++pass < 2 && !get_pubkey( NULL, keyid ) );
|
||
p = m_alloc( 25 );
|
||
sprintf(p, "%08lX%08lX [?]", (ulong)keyid[0], (ulong)keyid[1] );
|
||
return p;
|
||
}
|
||
|
||
char*
|
||
get_user_id( u32 *keyid, size_t *rn )
|
||
{
|
||
user_id_db_t r;
|
||
char *p;
|
||
int pass=0;
|
||
|
||
/* try it two times; second pass reads from key resources */
|
||
do {
|
||
for(r=user_id_db; r; r = r->next ) {
|
||
keyid_list_t a;
|
||
for (a=r->keyids; a; a= a->next ) {
|
||
if( a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1] ) {
|
||
p = m_alloc( r->len );
|
||
memcpy(p, r->name, r->len );
|
||
*rn = r->len;
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
} while( ++pass < 2 && !get_pubkey( NULL, keyid ) );
|
||
p = m_strdup( _("[User id not found]") );
|
||
*rn = strlen(p);
|
||
return p;
|
||
}
|
||
|
||
|