1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-09 12:54:23 +01:00
2004-07-20 11:48:09 +00:00

386 lines
15 KiB
C

/*
---------------------------------------------------------------------------
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue 30/06/2004
*/
#if defined(__cplusplus)
extern "C"
{
#endif
#define DO_TABLES
#include "aesopt.h"
#if defined(FIXED_TABLES)
#define sb_data(w) {\
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
#define isb_data(w) {\
w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
#define mm_data(w) {\
w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
#define rc_data(w) {\
w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\
w(0x1b), w(0x36) }
#define h0(x) (x)
#define w0(p) bytes2word(p, 0, 0, 0)
#define w1(p) bytes2word(0, p, 0, 0)
#define w2(p) bytes2word(0, 0, p, 0)
#define w3(p) bytes2word(0, 0, 0, p)
#define u0(p) bytes2word(f2(p), p, p, f3(p))
#define u1(p) bytes2word(f3(p), f2(p), p, p)
#define u2(p) bytes2word(p, f3(p), f2(p), p)
#define u3(p) bytes2word(p, p, f3(p), f2(p))
#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
#endif
#if defined(FIXED_TABLES) || !defined(FF_TABLES)
#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
^ (((x>>5) & 4) * WPOLY))
#define f3(x) (f2(x) ^ x)
#define f9(x) (f8(x) ^ x)
#define fb(x) (f8(x) ^ f2(x) ^ x)
#define fd(x) (f8(x) ^ f4(x) ^ x)
#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
#else
#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
#define fi(x) ((x) ? pow[ 255 - log[x]] : 0)
#endif
#include "aestab.h"
#if defined(FIXED_TABLES)
/* implemented in case of wrong call for fixed tables */
aes_rval gen_tabs(void)
{
return aes_good;
}
#else /* dynamic table generation */
#if !defined(FF_TABLES)
/* Generate the tables for the dynamic table option
It will generally be sensible to use tables to compute finite
field multiplies and inverses but where memory is scarse this
code might sometimes be better. But it only has effect during
initialisation so its pretty unimportant in overall terms.
*/
/* return 2 ^ (n - 1) where n is the bit number of the highest bit
set in x with x in the range 1 < x < 0x00000200. This form is
used so that locals within fi can be bytes rather than words
*/
static aes_08t hibit(const aes_32t x)
{ aes_08t r = (aes_08t)((x >> 1) | (x >> 2));
r |= (r >> 2);
r |= (r >> 4);
return (r + 1) >> 1;
}
/* return the inverse of the finite field element x */
static aes_08t fi(const aes_08t x)
{ aes_08t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
if(x < 2) return x;
for(;;)
{
if(!n1) return v1;
while(n2 >= n1)
{
n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2);
}
if(!n2) return v2;
while(n1 >= n2)
{
n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1);
}
}
}
#endif
/* The forward and inverse affine transformations used in the S-box */
#define fwd_affine(x) \
(w = (aes_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(aes_08t)(w^(w>>8)))
#define inv_affine(x) \
(w = (aes_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(aes_08t)(w^(w>>8)))
static int init = 0;
aes_rval gen_tabs(void)
{ aes_32t i, w;
#if defined(FF_TABLES)
aes_08t pow[512], log[256];
if(init) return;
/* log and power tables for GF(2^8) finite field with
WPOLY as modular polynomial - the simplest primitive
root is 0x03, used here to generate the tables
*/
i = 0; w = 1;
do
{
pow[i] = (aes_08t)w;
pow[i + 255] = (aes_08t)w;
log[w] = (aes_08t)i++;
w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
}
while (w != 1);
#else
if(init) return;
#endif
for(i = 0, w = 1; i < RC_LENGTH; ++i)
{
t_set(r,c)[i] = bytes2word(w, 0, 0, 0);
w = f2(w);
}
for(i = 0; i < 256; ++i)
{ aes_08t b;
b = fwd_affine(fi((aes_08t)i));
w = bytes2word(f2(b), b, b, f3(b));
#if defined( SBX_SET )
t_set(s,box)[i] = b;
#endif
#if defined( FT1_SET ) /* tables for a normal encryption round */
t_set(f,n)[i] = w;
#endif
#if defined( FT4_SET )
t_set(f,n)[0][i] = w;
t_set(f,n)[1][i] = upr(w,1);
t_set(f,n)[2][i] = upr(w,2);
t_set(f,n)[3][i] = upr(w,3);
#endif
w = bytes2word(b, 0, 0, 0);
#if defined( FL1_SET ) /* tables for last encryption round (may also */
t_set(f,l)[i] = w; /* be used in the key schedule) */
#endif
#if defined( FL4_SET )
t_set(f,l)[0][i] = w;
t_set(f,l)[1][i] = upr(w,1);
t_set(f,l)[2][i] = upr(w,2);
t_set(f,l)[3][i] = upr(w,3);
#endif
#if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is */
t_set(l,s)[i] = w; /* not of the required form */
#endif
#if defined( LS4_SET )
t_set(l,s)[0][i] = w;
t_set(l,s)[1][i] = upr(w,1);
t_set(l,s)[2][i] = upr(w,2);
t_set(l,s)[3][i] = upr(w,3);
#endif
b = fi(inv_affine((aes_08t)i));
w = bytes2word(fe(b), f9(b), fd(b), fb(b));
#if defined( IM1_SET ) /* tables for the inverse mix column operation */
t_set(i,m)[b] = w;
#endif
#if defined( IM4_SET )
t_set(i,m)[0][b] = w;
t_set(i,m)[1][b] = upr(w,1);
t_set(i,m)[2][b] = upr(w,2);
t_set(i,m)[3][b] = upr(w,3);
#endif
#if defined( ISB_SET )
t_set(i,box)[i] = b;
#endif
#if defined( IT1_SET ) /* tables for a normal decryption round */
t_set(i,n)[i] = w;
#endif
#if defined( IT4_SET )
t_set(i,n)[0][i] = w;
t_set(i,n)[1][i] = upr(w,1);
t_set(i,n)[2][i] = upr(w,2);
t_set(i,n)[3][i] = upr(w,3);
#endif
w = bytes2word(b, 0, 0, 0);
#if defined( IL1_SET ) /* tables for last decryption round */
t_set(i,l)[i] = w;
#endif
#if defined( IL4_SET )
t_set(i,l)[0][i] = w;
t_set(i,l)[1][i] = upr(w,1);
t_set(i,l)[2][i] = upr(w,2);
t_set(i,l)[3][i] = upr(w,3);
#endif
}
init = 1;
return aes_good;
}
#endif
#if defined(__cplusplus)
}
#endif