mirror of
git://git.gnupg.org/gnupg.git
synced 2025-01-25 15:27:03 +01:00
559efd23e9
* dirmngr/ks-engine-ldap.c (keyspec_to_ldap_filter): Change the new support for KEYDB_SEARCH_MODE_MAIL. (ks_ldap_get): Add a debug. * g10/options.h (AKL_NTDS): New. * g10/keyserver.c (keyserver_import_ntds): New. (keyserver_get_chunk): Allow KEYDB_SEARCH_MODE_MAIL. * g10/getkey.c (parse_auto_key_locate): Support "ntds". (get_pubkey_byname): Ditto.
4374 lines
125 KiB
C
4374 lines
125 KiB
C
/* getkey.c - Get a key from the database
|
||
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
|
||
* 2007, 2008, 2010 Free Software Foundation, Inc.
|
||
* Copyright (C) 2015, 2016 g10 Code GmbH
|
||
*
|
||
* This file is part of GnuPG.
|
||
*
|
||
* GnuPG is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* GnuPG is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; if not, see <https://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include <config.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <ctype.h>
|
||
|
||
#include "gpg.h"
|
||
#include "../common/util.h"
|
||
#include "packet.h"
|
||
#include "../common/iobuf.h"
|
||
#include "keydb.h"
|
||
#include "options.h"
|
||
#include "main.h"
|
||
#include "trustdb.h"
|
||
#include "../common/i18n.h"
|
||
#include "keyserver-internal.h"
|
||
#include "call-agent.h"
|
||
#include "../common/host2net.h"
|
||
#include "../common/mbox-util.h"
|
||
#include "../common/status.h"
|
||
|
||
#define MAX_PK_CACHE_ENTRIES PK_UID_CACHE_SIZE
|
||
#define MAX_UID_CACHE_ENTRIES PK_UID_CACHE_SIZE
|
||
|
||
#if MAX_PK_CACHE_ENTRIES < 2
|
||
#error We need the cache for key creation
|
||
#endif
|
||
|
||
/* Flags values returned by the lookup code. Note that the values are
|
||
* directly used by the KEY_CONSIDERED status line. */
|
||
#define LOOKUP_NOT_SELECTED (1<<0)
|
||
#define LOOKUP_ALL_SUBKEYS_EXPIRED (1<<1) /* or revoked */
|
||
|
||
|
||
/* A context object used by the lookup functions. */
|
||
struct getkey_ctx_s
|
||
{
|
||
/* Part of the search criteria: whether the search is an exact
|
||
search or not. A search that is exact requires that a key or
|
||
subkey meet all of the specified criteria. A search that is not
|
||
exact allows selecting a different key or subkey from the
|
||
keyblock that matched the critera. Further, an exact search
|
||
returns the key or subkey that matched whereas a non-exact search
|
||
typically returns the primary key. See finish_lookup for
|
||
details. */
|
||
int exact;
|
||
|
||
/* Part of the search criteria: Whether the caller only wants keys
|
||
with an available secret key. This is used by getkey_next to get
|
||
the next result with the same initial criteria. */
|
||
int want_secret;
|
||
|
||
/* Part of the search criteria: The type of the requested key. A
|
||
mask of PUBKEY_USAGE_SIG, PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT.
|
||
If non-zero, then for a key to match, it must implement one of
|
||
the required uses. */
|
||
int req_usage;
|
||
|
||
/* The database handle. */
|
||
KEYDB_HANDLE kr_handle;
|
||
|
||
/* Whether we should call xfree() on the context when the context is
|
||
released using getkey_end()). */
|
||
int not_allocated;
|
||
|
||
/* This variable is used as backing store for strings which have
|
||
their address used in ITEMS. */
|
||
strlist_t extra_list;
|
||
|
||
/* Hack to return the mechanism (AKL_foo) used to find the key. */
|
||
int found_via_akl;
|
||
|
||
/* Part of the search criteria: The low-level search specification
|
||
as passed to keydb_search. */
|
||
int nitems;
|
||
/* This must be the last element in the structure. When we allocate
|
||
the structure, we allocate it so that ITEMS can hold NITEMS. */
|
||
KEYDB_SEARCH_DESC items[1];
|
||
};
|
||
|
||
#if 0
|
||
static struct
|
||
{
|
||
int any;
|
||
int okay_count;
|
||
int nokey_count;
|
||
int error_count;
|
||
} lkup_stats[21];
|
||
#endif
|
||
|
||
typedef struct keyid_list
|
||
{
|
||
struct keyid_list *next;
|
||
char fpr[MAX_FINGERPRINT_LEN];
|
||
u32 keyid[2];
|
||
} *keyid_list_t;
|
||
|
||
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
typedef struct pk_cache_entry
|
||
{
|
||
struct pk_cache_entry *next;
|
||
u32 keyid[2];
|
||
PKT_public_key *pk;
|
||
} *pk_cache_entry_t;
|
||
static pk_cache_entry_t pk_cache;
|
||
static int pk_cache_entries; /* Number of entries in pk cache. */
|
||
static int pk_cache_disabled;
|
||
#endif
|
||
|
||
#if MAX_UID_CACHE_ENTRIES < 5
|
||
#error we really need the userid cache
|
||
#endif
|
||
typedef struct user_id_db
|
||
{
|
||
struct user_id_db *next;
|
||
keyid_list_t keyids;
|
||
int len;
|
||
char name[1];
|
||
} *user_id_db_t;
|
||
static user_id_db_t user_id_db;
|
||
static int uid_cache_entries; /* Number of entries in uid cache. */
|
||
|
||
static void merge_selfsigs (ctrl_t ctrl, kbnode_t keyblock);
|
||
static int lookup (ctrl_t ctrl, getkey_ctx_t ctx, int want_secret,
|
||
kbnode_t *ret_keyblock, kbnode_t *ret_found_key);
|
||
static kbnode_t finish_lookup (kbnode_t keyblock,
|
||
unsigned int req_usage, int want_exact,
|
||
int want_secret, unsigned int *r_flags);
|
||
static void print_status_key_considered (kbnode_t keyblock, unsigned int flags);
|
||
|
||
|
||
#if 0
|
||
static void
|
||
print_stats ()
|
||
{
|
||
int i;
|
||
for (i = 0; i < DIM (lkup_stats); i++)
|
||
{
|
||
if (lkup_stats[i].any)
|
||
es_fprintf (es_stderr,
|
||
"lookup stats: mode=%-2d ok=%-6d nokey=%-6d err=%-6d\n",
|
||
i,
|
||
lkup_stats[i].okay_count,
|
||
lkup_stats[i].nokey_count, lkup_stats[i].error_count);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
/* Cache a copy of a public key in the public key cache. PK is not
|
||
* cached if caching is disabled (via getkey_disable_caches), if
|
||
* PK->FLAGS.DONT_CACHE is set, we don't know how to derive a key id
|
||
* from the public key (e.g., unsupported algorithm), or a key with
|
||
* the key id is already in the cache.
|
||
*
|
||
* The public key packet is copied into the cache using
|
||
* copy_public_key. Thus, any secret parts are not copied, for
|
||
* instance.
|
||
*
|
||
* This cache is filled by get_pubkey and is read by get_pubkey and
|
||
* get_pubkey_fast. */
|
||
void
|
||
cache_public_key (PKT_public_key * pk)
|
||
{
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
pk_cache_entry_t ce, ce2;
|
||
u32 keyid[2];
|
||
|
||
if (pk_cache_disabled)
|
||
return;
|
||
|
||
if (pk->flags.dont_cache)
|
||
return;
|
||
|
||
if (is_ELGAMAL (pk->pubkey_algo)
|
||
|| pk->pubkey_algo == PUBKEY_ALGO_DSA
|
||
|| pk->pubkey_algo == PUBKEY_ALGO_ECDSA
|
||
|| pk->pubkey_algo == PUBKEY_ALGO_EDDSA
|
||
|| pk->pubkey_algo == PUBKEY_ALGO_ECDH
|
||
|| is_RSA (pk->pubkey_algo))
|
||
{
|
||
keyid_from_pk (pk, keyid);
|
||
}
|
||
else
|
||
return; /* Don't know how to get the keyid. */
|
||
|
||
for (ce = pk_cache; ce; ce = ce->next)
|
||
if (ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1])
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("cache_public_key: already in cache\n");
|
||
return;
|
||
}
|
||
|
||
if (pk_cache_entries >= MAX_PK_CACHE_ENTRIES)
|
||
{
|
||
int n;
|
||
|
||
/* Remove the last 50% of the entries. */
|
||
for (ce = pk_cache, n = 0; ce && n < pk_cache_entries/2; n++)
|
||
ce = ce->next;
|
||
if (ce && ce != pk_cache && ce->next)
|
||
{
|
||
ce2 = ce->next;
|
||
ce->next = NULL;
|
||
ce = ce2;
|
||
for (; ce; ce = ce2)
|
||
{
|
||
ce2 = ce->next;
|
||
free_public_key (ce->pk);
|
||
xfree (ce);
|
||
pk_cache_entries--;
|
||
}
|
||
}
|
||
log_assert (pk_cache_entries < MAX_PK_CACHE_ENTRIES);
|
||
}
|
||
pk_cache_entries++;
|
||
ce = xmalloc (sizeof *ce);
|
||
ce->next = pk_cache;
|
||
pk_cache = ce;
|
||
ce->pk = copy_public_key (NULL, pk);
|
||
ce->keyid[0] = keyid[0];
|
||
ce->keyid[1] = keyid[1];
|
||
#endif
|
||
}
|
||
|
||
|
||
/* Return a const utf-8 string with the text "[User ID not found]".
|
||
This function is required so that we don't need to switch gettext's
|
||
encoding temporary. */
|
||
static const char *
|
||
user_id_not_found_utf8 (void)
|
||
{
|
||
static char *text;
|
||
|
||
if (!text)
|
||
text = native_to_utf8 (_("[User ID not found]"));
|
||
return text;
|
||
}
|
||
|
||
|
||
|
||
/* Return the user ID from the given keyblock.
|
||
* We use the primary uid flag which has been set by the merge_selfsigs
|
||
* function. The returned value is only valid as long as the given
|
||
* keyblock is not changed. */
|
||
static const char *
|
||
get_primary_uid (KBNODE keyblock, size_t * uidlen)
|
||
{
|
||
KBNODE k;
|
||
const char *s;
|
||
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID
|
||
&& !k->pkt->pkt.user_id->attrib_data
|
||
&& k->pkt->pkt.user_id->flags.primary)
|
||
{
|
||
*uidlen = k->pkt->pkt.user_id->len;
|
||
return k->pkt->pkt.user_id->name;
|
||
}
|
||
}
|
||
s = user_id_not_found_utf8 ();
|
||
*uidlen = strlen (s);
|
||
return s;
|
||
}
|
||
|
||
|
||
static void
|
||
release_keyid_list (keyid_list_t k)
|
||
{
|
||
while (k)
|
||
{
|
||
keyid_list_t k2 = k->next;
|
||
xfree (k);
|
||
k = k2;
|
||
}
|
||
}
|
||
|
||
/****************
|
||
* Store the association of keyid and userid
|
||
* Feed only public keys to this function.
|
||
*/
|
||
static void
|
||
cache_user_id (KBNODE keyblock)
|
||
{
|
||
user_id_db_t r;
|
||
const char *uid;
|
||
size_t uidlen;
|
||
keyid_list_t keyids = NULL;
|
||
KBNODE k;
|
||
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
keyid_list_t a = xmalloc_clear (sizeof *a);
|
||
/* Hmmm: For a long list of keyids it might be an advantage
|
||
* to append the keys. */
|
||
fingerprint_from_pk (k->pkt->pkt.public_key, a->fpr, NULL);
|
||
keyid_from_pk (k->pkt->pkt.public_key, a->keyid);
|
||
/* First check for duplicates. */
|
||
for (r = user_id_db; r; r = r->next)
|
||
{
|
||
keyid_list_t b;
|
||
|
||
for (b = r->keyids; b; b = b->next)
|
||
{
|
||
if (!memcmp (b->fpr, a->fpr, MAX_FINGERPRINT_LEN))
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("cache_user_id: already in cache\n");
|
||
release_keyid_list (keyids);
|
||
xfree (a);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
/* Now put it into the cache. */
|
||
a->next = keyids;
|
||
keyids = a;
|
||
}
|
||
}
|
||
if (!keyids)
|
||
BUG (); /* No key no fun. */
|
||
|
||
|
||
uid = get_primary_uid (keyblock, &uidlen);
|
||
|
||
if (uid_cache_entries >= MAX_UID_CACHE_ENTRIES)
|
||
{
|
||
/* fixme: use another algorithm to free some cache slots */
|
||
r = user_id_db;
|
||
user_id_db = r->next;
|
||
release_keyid_list (r->keyids);
|
||
xfree (r);
|
||
uid_cache_entries--;
|
||
}
|
||
r = xmalloc (sizeof *r + uidlen - 1);
|
||
r->keyids = keyids;
|
||
r->len = uidlen;
|
||
memcpy (r->name, uid, r->len);
|
||
r->next = user_id_db;
|
||
user_id_db = r;
|
||
uid_cache_entries++;
|
||
}
|
||
|
||
|
||
/* Disable and drop the public key cache (which is filled by
|
||
cache_public_key and get_pubkey). Note: there is currently no way
|
||
to re-enable this cache. */
|
||
void
|
||
getkey_disable_caches ()
|
||
{
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
{
|
||
pk_cache_entry_t ce, ce2;
|
||
|
||
for (ce = pk_cache; ce; ce = ce2)
|
||
{
|
||
ce2 = ce->next;
|
||
free_public_key (ce->pk);
|
||
xfree (ce);
|
||
}
|
||
pk_cache_disabled = 1;
|
||
pk_cache_entries = 0;
|
||
pk_cache = NULL;
|
||
}
|
||
#endif
|
||
/* fixme: disable user id cache ? */
|
||
}
|
||
|
||
|
||
/* Free a list of pubkey_t objects. */
|
||
void
|
||
pubkeys_free (pubkey_t keys)
|
||
{
|
||
while (keys)
|
||
{
|
||
pubkey_t next = keys->next;
|
||
xfree (keys->pk);
|
||
release_kbnode (keys->keyblock);
|
||
xfree (keys);
|
||
keys = next;
|
||
}
|
||
}
|
||
|
||
|
||
static void
|
||
pk_from_block (PKT_public_key *pk, kbnode_t keyblock, kbnode_t found_key)
|
||
{
|
||
kbnode_t a = found_key ? found_key : keyblock;
|
||
|
||
log_assert (a->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| a->pkt->pkttype == PKT_PUBLIC_SUBKEY);
|
||
|
||
copy_public_key (pk, a->pkt->pkt.public_key);
|
||
}
|
||
|
||
|
||
/* Specialized version of get_pubkey which retrieves the key based on
|
||
* information in SIG. In contrast to get_pubkey PK is required. IF
|
||
* FORCED_PK is not NULL, this public key is used and copied to PK. */
|
||
gpg_error_t
|
||
get_pubkey_for_sig (ctrl_t ctrl, PKT_public_key *pk, PKT_signature *sig,
|
||
PKT_public_key *forced_pk)
|
||
{
|
||
const byte *fpr;
|
||
size_t fprlen;
|
||
|
||
if (forced_pk)
|
||
{
|
||
copy_public_key (pk, forced_pk);
|
||
return 0;
|
||
}
|
||
|
||
/* First try the new ISSUER_FPR info. */
|
||
fpr = issuer_fpr_raw (sig, &fprlen);
|
||
if (fpr && !get_pubkey_byfprint (ctrl, pk, NULL, fpr, fprlen))
|
||
return 0;
|
||
|
||
/* Fallback to use the ISSUER_KEYID. */
|
||
return get_pubkey (ctrl, pk, sig->keyid);
|
||
}
|
||
|
||
|
||
/* Return the public key with the key id KEYID and store it at PK.
|
||
* The resources in *PK should be released using
|
||
* release_public_key_parts(). This function also stores a copy of
|
||
* the public key in the user id cache (see cache_public_key).
|
||
*
|
||
* If PK is NULL, this function just stores the public key in the
|
||
* cache and returns the usual return code.
|
||
*
|
||
* PK->REQ_USAGE (which is a mask of PUBKEY_USAGE_SIG,
|
||
* PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT) is passed through to the
|
||
* lookup function. If this is non-zero, only keys with the specified
|
||
* usage will be returned. As such, it is essential that
|
||
* PK->REQ_USAGE be correctly initialized!
|
||
*
|
||
* Returns 0 on success, GPG_ERR_NO_PUBKEY if there is no public key
|
||
* with the specified key id, or another error code if an error
|
||
* occurs.
|
||
*
|
||
* If the data was not read from the cache, then the self-signed data
|
||
* has definitely been merged into the public key using
|
||
* merge_selfsigs. */
|
||
int
|
||
get_pubkey (ctrl_t ctrl, PKT_public_key * pk, u32 * keyid)
|
||
{
|
||
int internal = 0;
|
||
int rc = 0;
|
||
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
if (pk)
|
||
{
|
||
/* Try to get it from the cache. We don't do this when pk is
|
||
NULL as it does not guarantee that the user IDs are
|
||
cached. */
|
||
pk_cache_entry_t ce;
|
||
for (ce = pk_cache; ce; ce = ce->next)
|
||
{
|
||
if (ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1])
|
||
/* XXX: We don't check PK->REQ_USAGE here, but if we don't
|
||
read from the cache, we do check it! */
|
||
{
|
||
copy_public_key (pk, ce->pk);
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
/* More init stuff. */
|
||
if (!pk)
|
||
{
|
||
internal++;
|
||
pk = xtrycalloc (1, sizeof *pk);
|
||
if (!pk)
|
||
{
|
||
rc = gpg_error_from_syserror ();
|
||
goto leave;
|
||
}
|
||
}
|
||
|
||
|
||
/* Do a lookup. */
|
||
{
|
||
struct getkey_ctx_s ctx;
|
||
kbnode_t kb = NULL;
|
||
kbnode_t found_key = NULL;
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
ctx.exact = 1; /* Use the key ID exactly as given. */
|
||
ctx.not_allocated = 1;
|
||
|
||
if (ctrl && ctrl->cached_getkey_kdb)
|
||
{
|
||
ctx.kr_handle = ctrl->cached_getkey_kdb;
|
||
ctrl->cached_getkey_kdb = NULL;
|
||
keydb_search_reset (ctx.kr_handle);
|
||
}
|
||
else
|
||
{
|
||
ctx.kr_handle = keydb_new ();
|
||
if (!ctx.kr_handle)
|
||
{
|
||
rc = gpg_error_from_syserror ();
|
||
goto leave;
|
||
}
|
||
}
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
ctx.items[0].u.kid[0] = keyid[0];
|
||
ctx.items[0].u.kid[1] = keyid[1];
|
||
ctx.req_usage = pk->req_usage;
|
||
rc = lookup (ctrl, &ctx, 0, &kb, &found_key);
|
||
if (!rc)
|
||
{
|
||
pk_from_block (pk, kb, found_key);
|
||
}
|
||
getkey_end (ctrl, &ctx);
|
||
release_kbnode (kb);
|
||
}
|
||
if (!rc)
|
||
goto leave;
|
||
|
||
rc = GPG_ERR_NO_PUBKEY;
|
||
|
||
leave:
|
||
if (!rc)
|
||
cache_public_key (pk);
|
||
if (internal)
|
||
free_public_key (pk);
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* Similar to get_pubkey, but it does not take PK->REQ_USAGE into
|
||
* account nor does it merge in the self-signed data. This function
|
||
* also only considers primary keys. It is intended to be used as a
|
||
* quick check of the key to avoid recursion. It should only be used
|
||
* in very certain cases. Like get_pubkey and unlike any of the other
|
||
* lookup functions, this function also consults the user id cache
|
||
* (see cache_public_key).
|
||
*
|
||
* Return the public key in *PK. The resources in *PK should be
|
||
* released using release_public_key_parts(). */
|
||
int
|
||
get_pubkey_fast (PKT_public_key * pk, u32 * keyid)
|
||
{
|
||
int rc = 0;
|
||
KEYDB_HANDLE hd;
|
||
KBNODE keyblock;
|
||
u32 pkid[2];
|
||
|
||
log_assert (pk);
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
{
|
||
/* Try to get it from the cache */
|
||
pk_cache_entry_t ce;
|
||
|
||
for (ce = pk_cache; ce; ce = ce->next)
|
||
{
|
||
if (ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1]
|
||
/* Only consider primary keys. */
|
||
&& ce->pk->keyid[0] == ce->pk->main_keyid[0]
|
||
&& ce->pk->keyid[1] == ce->pk->main_keyid[1])
|
||
{
|
||
if (pk)
|
||
copy_public_key (pk, ce->pk);
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
hd = keydb_new ();
|
||
if (!hd)
|
||
return gpg_error_from_syserror ();
|
||
rc = keydb_search_kid (hd, keyid);
|
||
if (gpg_err_code (rc) == GPG_ERR_NOT_FOUND)
|
||
{
|
||
keydb_release (hd);
|
||
return GPG_ERR_NO_PUBKEY;
|
||
}
|
||
rc = keydb_get_keyblock (hd, &keyblock);
|
||
keydb_release (hd);
|
||
if (rc)
|
||
{
|
||
log_error ("keydb_get_keyblock failed: %s\n", gpg_strerror (rc));
|
||
return GPG_ERR_NO_PUBKEY;
|
||
}
|
||
|
||
log_assert (keyblock && keyblock->pkt
|
||
&& keyblock->pkt->pkttype == PKT_PUBLIC_KEY);
|
||
|
||
/* We return the primary key. If KEYID matched a subkey, then we
|
||
return an error. */
|
||
keyid_from_pk (keyblock->pkt->pkt.public_key, pkid);
|
||
if (keyid[0] == pkid[0] && keyid[1] == pkid[1])
|
||
copy_public_key (pk, keyblock->pkt->pkt.public_key);
|
||
else
|
||
rc = GPG_ERR_NO_PUBKEY;
|
||
|
||
release_kbnode (keyblock);
|
||
|
||
/* Not caching key here since it won't have all of the fields
|
||
properly set. */
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* Return the entire keyblock used to create SIG. This is a
|
||
* specialized version of get_pubkeyblock.
|
||
*
|
||
* FIXME: This is a hack because get_pubkey_for_sig was already called
|
||
* and it could have used a cache to hold the key. */
|
||
kbnode_t
|
||
get_pubkeyblock_for_sig (ctrl_t ctrl, PKT_signature *sig)
|
||
{
|
||
const byte *fpr;
|
||
size_t fprlen;
|
||
kbnode_t keyblock;
|
||
|
||
/* First try the new ISSUER_FPR info. */
|
||
fpr = issuer_fpr_raw (sig, &fprlen);
|
||
if (fpr && !get_pubkey_byfprint (ctrl, NULL, &keyblock, fpr, fprlen))
|
||
return keyblock;
|
||
|
||
/* Fallback to use the ISSUER_KEYID. */
|
||
return get_pubkeyblock (ctrl, sig->keyid);
|
||
}
|
||
|
||
|
||
/* Return the key block for the key with key id KEYID or NULL, if an
|
||
* error occurs. Use release_kbnode() to release the key block.
|
||
*
|
||
* The self-signed data has already been merged into the public key
|
||
* using merge_selfsigs. */
|
||
kbnode_t
|
||
get_pubkeyblock (ctrl_t ctrl, u32 * keyid)
|
||
{
|
||
struct getkey_ctx_s ctx;
|
||
int rc = 0;
|
||
KBNODE keyblock = NULL;
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
/* No need to set exact here because we want the entire block. */
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new ();
|
||
if (!ctx.kr_handle)
|
||
return NULL;
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
ctx.items[0].u.kid[0] = keyid[0];
|
||
ctx.items[0].u.kid[1] = keyid[1];
|
||
rc = lookup (ctrl, &ctx, 0, &keyblock, NULL);
|
||
getkey_end (ctrl, &ctx);
|
||
|
||
return rc ? NULL : keyblock;
|
||
}
|
||
|
||
|
||
/* Return the public key with the key id KEYID iff the secret key is
|
||
* available and store it at PK. The resources should be released
|
||
* using release_public_key_parts().
|
||
*
|
||
* Unlike other lookup functions, PK may not be NULL. PK->REQ_USAGE
|
||
* is passed through to the lookup function and is a mask of
|
||
* PUBKEY_USAGE_SIG, PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT. Thus, it
|
||
* must be valid! If this is non-zero, only keys with the specified
|
||
* usage will be returned.
|
||
*
|
||
* Returns 0 on success. If a public key with the specified key id is
|
||
* not found or a secret key is not available for that public key, an
|
||
* error code is returned. Note: this function ignores legacy keys.
|
||
* An error code is also return if an error occurs.
|
||
*
|
||
* The self-signed data has already been merged into the public key
|
||
* using merge_selfsigs. */
|
||
gpg_error_t
|
||
get_seckey (ctrl_t ctrl, PKT_public_key *pk, u32 *keyid)
|
||
{
|
||
gpg_error_t err;
|
||
struct getkey_ctx_s ctx;
|
||
kbnode_t keyblock = NULL;
|
||
kbnode_t found_key = NULL;
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
ctx.exact = 1; /* Use the key ID exactly as given. */
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new ();
|
||
if (!ctx.kr_handle)
|
||
return gpg_error_from_syserror ();
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
ctx.items[0].u.kid[0] = keyid[0];
|
||
ctx.items[0].u.kid[1] = keyid[1];
|
||
ctx.req_usage = pk->req_usage;
|
||
err = lookup (ctrl, &ctx, 1, &keyblock, &found_key);
|
||
if (!err)
|
||
{
|
||
pk_from_block (pk, keyblock, found_key);
|
||
}
|
||
getkey_end (ctrl, &ctx);
|
||
release_kbnode (keyblock);
|
||
|
||
if (!err)
|
||
{
|
||
err = agent_probe_secret_key (/*ctrl*/NULL, pk);
|
||
if (err)
|
||
release_public_key_parts (pk);
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Skip unusable keys. A key is unusable if it is revoked, expired or
|
||
disabled or if the selected user id is revoked or expired. */
|
||
static int
|
||
skip_unusable (void *opaque, u32 * keyid, int uid_no)
|
||
{
|
||
ctrl_t ctrl = opaque;
|
||
int unusable = 0;
|
||
KBNODE keyblock;
|
||
PKT_public_key *pk;
|
||
|
||
keyblock = get_pubkeyblock (ctrl, keyid);
|
||
if (!keyblock)
|
||
{
|
||
log_error ("error checking usability status of %s\n", keystr (keyid));
|
||
goto leave;
|
||
}
|
||
|
||
pk = keyblock->pkt->pkt.public_key;
|
||
|
||
/* Is the key revoked or expired? */
|
||
if (pk->flags.revoked || pk->has_expired)
|
||
unusable = 1;
|
||
|
||
/* Is the user ID in question revoked or expired? */
|
||
if (!unusable && uid_no)
|
||
{
|
||
KBNODE node;
|
||
int uids_seen = 0;
|
||
|
||
for (node = keyblock; node; node = node->next)
|
||
{
|
||
if (node->pkt->pkttype == PKT_USER_ID)
|
||
{
|
||
PKT_user_id *user_id = node->pkt->pkt.user_id;
|
||
|
||
uids_seen ++;
|
||
if (uids_seen != uid_no)
|
||
continue;
|
||
|
||
if (user_id->flags.revoked || user_id->flags.expired)
|
||
unusable = 1;
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If UID_NO is non-zero, then the keyblock better have at least
|
||
that many UIDs. */
|
||
log_assert (uids_seen == uid_no);
|
||
}
|
||
|
||
if (!unusable)
|
||
unusable = pk_is_disabled (pk);
|
||
|
||
leave:
|
||
release_kbnode (keyblock);
|
||
return unusable;
|
||
}
|
||
|
||
|
||
/* Search for keys matching some criteria.
|
||
|
||
If RETCTX is not NULL, then the constructed context is returned in
|
||
*RETCTX so that getpubkey_next can be used to get subsequent
|
||
results. In this case, getkey_end() must be used to free the
|
||
search context. If RETCTX is not NULL, then RET_KDBHD must be
|
||
NULL.
|
||
|
||
If NAMELIST is not NULL, then a search query is constructed using
|
||
classify_user_id on each of the strings in the list. (Recall: the
|
||
database does an OR of the terms, not an AND.) If NAMELIST is
|
||
NULL, then all results are returned.
|
||
|
||
If PK is not NULL, the public key of the first result is returned
|
||
in *PK. Note: PK->REQ_USAGE must be valid!!! If PK->REQ_USAGE is
|
||
set, it is used to filter the search results. See the
|
||
documentation for finish_lookup to understand exactly how this is
|
||
used. Note: The self-signed data has already been merged into the
|
||
public key using merge_selfsigs. Free *PK by calling
|
||
release_public_key_parts (or, if PK was allocated using xfree, you
|
||
can use free_public_key, which calls release_public_key_parts(PK)
|
||
and then xfree(PK)).
|
||
|
||
If WANT_SECRET is set, then only keys with an available secret key
|
||
(either locally or via key registered on a smartcard) are returned.
|
||
|
||
If INCLUDE_UNUSABLE is set, then unusable keys (see the
|
||
documentation for skip_unusable for an exact definition) are
|
||
skipped unless they are looked up by key id or by fingerprint.
|
||
|
||
If RET_KB is not NULL, the keyblock is returned in *RET_KB. This
|
||
should be freed using release_kbnode().
|
||
|
||
If RET_KDBHD is not NULL, then the new database handle used to
|
||
conduct the search is returned in *RET_KDBHD. This can be used to
|
||
get subsequent results using keydb_search_next. Note: in this
|
||
case, no advanced filtering is done for subsequent results (e.g.,
|
||
WANT_SECRET and PK->REQ_USAGE are not respected).
|
||
|
||
This function returns 0 on success. Otherwise, an error code is
|
||
returned. In particular, GPG_ERR_NO_PUBKEY or GPG_ERR_NO_SECKEY
|
||
(if want_secret is set) is returned if the key is not found. */
|
||
static int
|
||
key_byname (ctrl_t ctrl, GETKEY_CTX *retctx, strlist_t namelist,
|
||
PKT_public_key *pk,
|
||
int want_secret, int include_unusable,
|
||
KBNODE * ret_kb, KEYDB_HANDLE * ret_kdbhd)
|
||
{
|
||
int rc = 0;
|
||
int n;
|
||
strlist_t r;
|
||
GETKEY_CTX ctx;
|
||
KBNODE help_kb = NULL;
|
||
KBNODE found_key = NULL;
|
||
|
||
if (retctx)
|
||
{
|
||
/* Reset the returned context in case of error. */
|
||
log_assert (!ret_kdbhd); /* Not allowed because the handle is stored
|
||
in the context. */
|
||
*retctx = NULL;
|
||
}
|
||
if (ret_kdbhd)
|
||
*ret_kdbhd = NULL;
|
||
|
||
if (!namelist)
|
||
/* No search terms: iterate over the whole DB. */
|
||
{
|
||
ctx = xmalloc_clear (sizeof *ctx);
|
||
ctx->nitems = 1;
|
||
ctx->items[0].mode = KEYDB_SEARCH_MODE_FIRST;
|
||
if (!include_unusable)
|
||
{
|
||
ctx->items[0].skipfnc = skip_unusable;
|
||
ctx->items[0].skipfncvalue = ctrl;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Build the search context. */
|
||
for (n = 0, r = namelist; r; r = r->next)
|
||
n++;
|
||
|
||
/* CTX has space for a single search term at the end. Thus, we
|
||
need to allocate sizeof *CTX plus (n - 1) sizeof
|
||
CTX->ITEMS. */
|
||
ctx = xmalloc_clear (sizeof *ctx + (n - 1) * sizeof ctx->items);
|
||
ctx->nitems = n;
|
||
|
||
for (n = 0, r = namelist; r; r = r->next, n++)
|
||
{
|
||
gpg_error_t err;
|
||
|
||
err = classify_user_id (r->d, &ctx->items[n], 1);
|
||
|
||
if (ctx->items[n].exact)
|
||
ctx->exact = 1;
|
||
if (err)
|
||
{
|
||
xfree (ctx);
|
||
return gpg_err_code (err); /* FIXME: remove gpg_err_code. */
|
||
}
|
||
if (!include_unusable
|
||
&& ctx->items[n].mode != KEYDB_SEARCH_MODE_SHORT_KID
|
||
&& ctx->items[n].mode != KEYDB_SEARCH_MODE_LONG_KID
|
||
&& ctx->items[n].mode != KEYDB_SEARCH_MODE_FPR16
|
||
&& ctx->items[n].mode != KEYDB_SEARCH_MODE_FPR20
|
||
&& ctx->items[n].mode != KEYDB_SEARCH_MODE_FPR)
|
||
{
|
||
ctx->items[n].skipfnc = skip_unusable;
|
||
ctx->items[n].skipfncvalue = ctrl;
|
||
}
|
||
}
|
||
}
|
||
|
||
ctx->want_secret = want_secret;
|
||
ctx->kr_handle = keydb_new ();
|
||
if (!ctx->kr_handle)
|
||
{
|
||
rc = gpg_error_from_syserror ();
|
||
getkey_end (ctrl, ctx);
|
||
return rc;
|
||
}
|
||
|
||
if (!ret_kb)
|
||
ret_kb = &help_kb;
|
||
|
||
if (pk)
|
||
{
|
||
ctx->req_usage = pk->req_usage;
|
||
}
|
||
|
||
rc = lookup (ctrl, ctx, want_secret, ret_kb, &found_key);
|
||
if (!rc && pk)
|
||
{
|
||
pk_from_block (pk, *ret_kb, found_key);
|
||
}
|
||
|
||
release_kbnode (help_kb);
|
||
|
||
if (retctx) /* Caller wants the context. */
|
||
*retctx = ctx;
|
||
else
|
||
{
|
||
if (ret_kdbhd)
|
||
{
|
||
*ret_kdbhd = ctx->kr_handle;
|
||
ctx->kr_handle = NULL;
|
||
}
|
||
getkey_end (ctrl, ctx);
|
||
}
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* Find a public key identified by NAME.
|
||
*
|
||
* If name appears to be a valid RFC822 mailbox (i.e., email address)
|
||
* and auto key lookup is enabled (mode != GET_PUBKEY_NO_AKL), then
|
||
* the specified auto key lookup methods (--auto-key-lookup) are used
|
||
* to import the key into the local keyring. Otherwise, just the
|
||
* local keyring is consulted.
|
||
*
|
||
* MODE can be one of:
|
||
* GET_PUBKEY_NORMAL - The standard mode
|
||
* GET_PUBKEY_NO_AKL - The auto key locate functionality is
|
||
* disabled and only the local key ring is
|
||
* considered. Note: the local key ring is
|
||
* consulted even if local is not in the
|
||
* auto-key-locate option list!
|
||
* GET_PUBKEY_NO_LOCAL - Only the auto key locate functionaly is
|
||
* used and no local search is done.
|
||
*
|
||
* If RETCTX is not NULL, then the constructed context is returned in
|
||
* *RETCTX so that getpubkey_next can be used to get subsequent
|
||
* results. In this case, getkey_end() must be used to free the
|
||
* search context. If RETCTX is not NULL, then RET_KDBHD must be
|
||
* NULL.
|
||
*
|
||
* If PK is not NULL, the public key of the first result is returned
|
||
* in *PK. Note: PK->REQ_USAGE must be valid!!! PK->REQ_USAGE is
|
||
* passed through to the lookup function and is a mask of
|
||
* PUBKEY_USAGE_SIG, PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT. If this
|
||
* is non-zero, only keys with the specified usage will be returned.
|
||
* Note: The self-signed data has already been merged into the public
|
||
* key using merge_selfsigs. Free *PK by calling
|
||
* release_public_key_parts (or, if PK was allocated using xfree, you
|
||
* can use free_public_key, which calls release_public_key_parts(PK)
|
||
* and then xfree(PK)).
|
||
*
|
||
* NAME is a string, which is turned into a search query using
|
||
* classify_user_id.
|
||
*
|
||
* If RET_KEYBLOCK is not NULL, the keyblock is returned in
|
||
* *RET_KEYBLOCK. This should be freed using release_kbnode().
|
||
*
|
||
* If RET_KDBHD is not NULL, then the new database handle used to
|
||
* conduct the search is returned in *RET_KDBHD. This can be used to
|
||
* get subsequent results using keydb_search_next or to modify the
|
||
* returned record. Note: in this case, no advanced filtering is done
|
||
* for subsequent results (e.g., PK->REQ_USAGE is not respected).
|
||
* Unlike RETCTX, this is always returned.
|
||
*
|
||
* If INCLUDE_UNUSABLE is set, then unusable keys (see the
|
||
* documentation for skip_unusable for an exact definition) are
|
||
* skipped unless they are looked up by key id or by fingerprint.
|
||
*
|
||
* This function returns 0 on success. Otherwise, an error code is
|
||
* returned. In particular, GPG_ERR_NO_PUBKEY or GPG_ERR_NO_SECKEY
|
||
* (if want_secret is set) is returned if the key is not found. */
|
||
int
|
||
get_pubkey_byname (ctrl_t ctrl, enum get_pubkey_modes mode,
|
||
GETKEY_CTX * retctx, PKT_public_key * pk,
|
||
const char *name, KBNODE * ret_keyblock,
|
||
KEYDB_HANDLE * ret_kdbhd, int include_unusable)
|
||
{
|
||
int rc;
|
||
strlist_t namelist = NULL;
|
||
struct akl *akl;
|
||
int is_mbox;
|
||
int nodefault = 0;
|
||
int anylocalfirst = 0;
|
||
int mechanism_type = AKL_NODEFAULT;
|
||
|
||
/* If RETCTX is not NULL, then RET_KDBHD must be NULL. */
|
||
log_assert (retctx == NULL || ret_kdbhd == NULL);
|
||
|
||
if (retctx)
|
||
*retctx = NULL;
|
||
|
||
/* Does NAME appear to be a mailbox (mail address)? */
|
||
is_mbox = is_valid_mailbox (name);
|
||
if (!is_mbox && *name == '<' && name[1] && name[strlen(name)-1]=='>'
|
||
&& name[1] != '>'
|
||
&& is_valid_mailbox_mem (name+1, strlen (name)-2))
|
||
{
|
||
/* The mailbox is in the form "<foo@example.org>" which is not
|
||
* detected by is_valid_mailbox. Set the flag but keep name as
|
||
* it is because the bracketed name is actual the better
|
||
* specification for a local search and the other methods
|
||
* extract the mail address anyway. */
|
||
is_mbox = 1;
|
||
}
|
||
|
||
/* The auto-key-locate feature works as follows: there are a number
|
||
* of methods to look up keys. By default, the local keyring is
|
||
* tried first. Then, each method listed in the --auto-key-locate is
|
||
* tried in the order it appears.
|
||
*
|
||
* This can be changed as follows:
|
||
*
|
||
* - if nodefault appears anywhere in the list of options, then
|
||
* the local keyring is not tried first, or,
|
||
*
|
||
* - if local appears anywhere in the list of options, then the
|
||
* local keyring is not tried first, but in the order in which
|
||
* it was listed in the --auto-key-locate option.
|
||
*
|
||
* Note: we only save the search context in RETCTX if the local
|
||
* method is the first method tried (either explicitly or
|
||
* implicitly). */
|
||
if (mode == GET_PUBKEY_NO_LOCAL)
|
||
nodefault = 1; /* Auto-key-locate but ignore "local". */
|
||
else if (mode != GET_PUBKEY_NO_AKL)
|
||
{
|
||
/* auto-key-locate is enabled. */
|
||
|
||
/* nodefault is true if "nodefault" or "local" appear. */
|
||
for (akl = opt.auto_key_locate; akl; akl = akl->next)
|
||
if (akl->type == AKL_NODEFAULT || akl->type == AKL_LOCAL)
|
||
{
|
||
nodefault = 1;
|
||
break;
|
||
}
|
||
/* anylocalfirst is true if "local" appears before any other
|
||
search methods (except "nodefault"). */
|
||
for (akl = opt.auto_key_locate; akl; akl = akl->next)
|
||
if (akl->type != AKL_NODEFAULT)
|
||
{
|
||
if (akl->type == AKL_LOCAL)
|
||
anylocalfirst = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!nodefault)
|
||
{
|
||
/* "nodefault" didn't occur. Thus, "local" is implicitly the
|
||
* first method to try. */
|
||
anylocalfirst = 1;
|
||
}
|
||
|
||
if (mode == GET_PUBKEY_NO_LOCAL)
|
||
{
|
||
/* Force using the AKL. If IS_MBOX is not set this is the final
|
||
* error code. */
|
||
rc = GPG_ERR_NO_PUBKEY;
|
||
}
|
||
else if (nodefault && is_mbox)
|
||
{
|
||
/* Either "nodefault" or "local" (explicitly) appeared in the
|
||
* auto key locate list and NAME appears to be an email address.
|
||
* Don't try the local keyring. */
|
||
rc = GPG_ERR_NO_PUBKEY;
|
||
}
|
||
else
|
||
{
|
||
/* Either "nodefault" and "local" don't appear in the auto key
|
||
* locate list (in which case we try the local keyring first) or
|
||
* NAME does not appear to be an email address (in which case we
|
||
* only try the local keyring). In this case, lookup NAME in
|
||
* the local keyring. */
|
||
add_to_strlist (&namelist, name);
|
||
rc = key_byname (ctrl, retctx, namelist, pk, 0,
|
||
include_unusable, ret_keyblock, ret_kdbhd);
|
||
}
|
||
|
||
/* If the requested name resembles a valid mailbox and automatic
|
||
retrieval has been enabled, we try to import the key. */
|
||
if (gpg_err_code (rc) == GPG_ERR_NO_PUBKEY
|
||
&& mode != GET_PUBKEY_NO_AKL
|
||
&& is_mbox)
|
||
{
|
||
/* NAME wasn't present in the local keyring (or we didn't try
|
||
* the local keyring). Since the auto key locate feature is
|
||
* enabled and NAME appears to be an email address, try the auto
|
||
* locate feature. */
|
||
for (akl = opt.auto_key_locate; akl; akl = akl->next)
|
||
{
|
||
unsigned char *fpr = NULL;
|
||
size_t fpr_len;
|
||
int did_akl_local = 0;
|
||
int no_fingerprint = 0;
|
||
const char *mechanism_string = "?";
|
||
|
||
mechanism_type = akl->type;
|
||
switch (mechanism_type)
|
||
{
|
||
case AKL_NODEFAULT:
|
||
/* This is a dummy mechanism. */
|
||
mechanism_string = "";
|
||
rc = GPG_ERR_NO_PUBKEY;
|
||
break;
|
||
|
||
case AKL_LOCAL:
|
||
if (mode == GET_PUBKEY_NO_LOCAL)
|
||
{
|
||
mechanism_string = "";
|
||
rc = GPG_ERR_NO_PUBKEY;
|
||
}
|
||
else
|
||
{
|
||
mechanism_string = "Local";
|
||
did_akl_local = 1;
|
||
if (retctx)
|
||
{
|
||
getkey_end (ctrl, *retctx);
|
||
*retctx = NULL;
|
||
}
|
||
add_to_strlist (&namelist, name);
|
||
rc = key_byname (ctrl, anylocalfirst ? retctx : NULL,
|
||
namelist, pk, 0,
|
||
include_unusable, ret_keyblock, ret_kdbhd);
|
||
}
|
||
break;
|
||
|
||
case AKL_CERT:
|
||
mechanism_string = "DNS CERT";
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_cert (ctrl, name, 0, &fpr, &fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
break;
|
||
|
||
case AKL_PKA:
|
||
mechanism_string = "PKA";
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_pka (ctrl, name, &fpr, &fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
break;
|
||
|
||
case AKL_DANE:
|
||
mechanism_string = "DANE";
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_cert (ctrl, name, 1, &fpr, &fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
break;
|
||
|
||
case AKL_WKD:
|
||
mechanism_string = "WKD";
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_wkd (ctrl, name, 0, &fpr, &fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
break;
|
||
|
||
case AKL_LDAP:
|
||
mechanism_string = "LDAP";
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_ldap (ctrl, name, &fpr, &fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
break;
|
||
|
||
case AKL_NTDS:
|
||
mechanism_string = "NTDS";
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_ntds (ctrl, name, &fpr, &fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
break;
|
||
|
||
case AKL_KEYSERVER:
|
||
/* Strictly speaking, we don't need to only use a valid
|
||
* mailbox for the getname search, but it helps cut down
|
||
* on the problem of searching for something like "john"
|
||
* and getting a whole lot of keys back. */
|
||
if (keyserver_any_configured (ctrl))
|
||
{
|
||
mechanism_string = "keyserver";
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_name (ctrl, name, &fpr, &fpr_len,
|
||
opt.keyserver);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
}
|
||
else
|
||
{
|
||
mechanism_string = "Unconfigured keyserver";
|
||
rc = GPG_ERR_NO_PUBKEY;
|
||
}
|
||
break;
|
||
|
||
case AKL_SPEC:
|
||
{
|
||
struct keyserver_spec *keyserver;
|
||
|
||
mechanism_string = akl->spec->uri;
|
||
keyserver = keyserver_match (akl->spec);
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_name (ctrl,
|
||
name, &fpr, &fpr_len, keyserver);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Use the fingerprint of the key that we actually fetched.
|
||
* This helps prevent problems where the key that we fetched
|
||
* doesn't have the same name that we used to fetch it. In
|
||
* the case of CERT and PKA, this is an actual security
|
||
* requirement as the URL might point to a key put in by an
|
||
* attacker. By forcing the use of the fingerprint, we
|
||
* won't use the attacker's key here. */
|
||
if (!rc && fpr)
|
||
{
|
||
char fpr_string[MAX_FINGERPRINT_LEN * 2 + 1];
|
||
|
||
log_assert (fpr_len <= MAX_FINGERPRINT_LEN);
|
||
|
||
free_strlist (namelist);
|
||
namelist = NULL;
|
||
|
||
bin2hex (fpr, fpr_len, fpr_string);
|
||
|
||
if (opt.verbose)
|
||
log_info ("auto-key-locate found fingerprint %s\n",
|
||
fpr_string);
|
||
|
||
add_to_strlist (&namelist, fpr_string);
|
||
}
|
||
else if (!rc && !fpr && !did_akl_local)
|
||
{ /* The acquisition method said no failure occurred, but
|
||
* it didn't return a fingerprint. That's a failure. */
|
||
no_fingerprint = 1;
|
||
rc = GPG_ERR_NO_PUBKEY;
|
||
}
|
||
xfree (fpr);
|
||
fpr = NULL;
|
||
|
||
if (!rc && !did_akl_local)
|
||
{ /* There was no error and we didn't do a local lookup.
|
||
* This means that we imported a key into the local
|
||
* keyring. Try to read the imported key from the
|
||
* keyring. */
|
||
if (retctx)
|
||
{
|
||
getkey_end (ctrl, *retctx);
|
||
*retctx = NULL;
|
||
}
|
||
rc = key_byname (ctrl, anylocalfirst ? retctx : NULL,
|
||
namelist, pk, 0,
|
||
include_unusable, ret_keyblock, ret_kdbhd);
|
||
}
|
||
if (!rc)
|
||
{
|
||
/* Key found. */
|
||
if (opt.verbose)
|
||
log_info (_("automatically retrieved '%s' via %s\n"),
|
||
name, mechanism_string);
|
||
break;
|
||
}
|
||
if ((gpg_err_code (rc) != GPG_ERR_NO_PUBKEY
|
||
|| opt.verbose || no_fingerprint) && *mechanism_string)
|
||
log_info (_("error retrieving '%s' via %s: %s\n"),
|
||
name, mechanism_string,
|
||
no_fingerprint ? _("No fingerprint") : gpg_strerror (rc));
|
||
}
|
||
}
|
||
|
||
if (rc && retctx)
|
||
{
|
||
getkey_end (ctrl, *retctx);
|
||
*retctx = NULL;
|
||
}
|
||
|
||
if (retctx && *retctx)
|
||
{
|
||
log_assert (!(*retctx)->extra_list);
|
||
(*retctx)->extra_list = namelist;
|
||
(*retctx)->found_via_akl = mechanism_type;
|
||
}
|
||
else
|
||
free_strlist (namelist);
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Comparison machinery for get_best_pubkey_byname. */
|
||
|
||
/* First we have a struct to cache computed information about the key
|
||
* in question. */
|
||
struct pubkey_cmp_cookie
|
||
{
|
||
int valid; /* Is this cookie valid? */
|
||
PKT_public_key key; /* The key. */
|
||
PKT_user_id *uid; /* The matching UID packet. */
|
||
unsigned int validity; /* Computed validity of (KEY, UID). */
|
||
u32 creation_time; /* Creation time of the newest subkey
|
||
capable of encryption. */
|
||
};
|
||
|
||
|
||
/* Then we have a series of helper functions. */
|
||
static int
|
||
key_is_ok (const PKT_public_key *key)
|
||
{
|
||
return (! key->has_expired && ! key->flags.revoked
|
||
&& key->flags.valid && ! key->flags.disabled);
|
||
}
|
||
|
||
|
||
static int
|
||
uid_is_ok (const PKT_public_key *key, const PKT_user_id *uid)
|
||
{
|
||
return key_is_ok (key) && ! uid->flags.revoked;
|
||
}
|
||
|
||
|
||
static int
|
||
subkey_is_ok (const PKT_public_key *sub)
|
||
{
|
||
return ! sub->flags.revoked && sub->flags.valid && ! sub->flags.disabled;
|
||
}
|
||
|
||
/* Return true if KEYBLOCK has only expired encryption subkyes. Note
|
||
* that the function returns false if the key has no encryption
|
||
* subkeys at all or the subkeys are revoked. */
|
||
static int
|
||
only_expired_enc_subkeys (kbnode_t keyblock)
|
||
{
|
||
kbnode_t node;
|
||
PKT_public_key *sub;
|
||
int any = 0;
|
||
|
||
for (node = find_next_kbnode (keyblock, PKT_PUBLIC_SUBKEY);
|
||
node; node = find_next_kbnode (node, PKT_PUBLIC_SUBKEY))
|
||
{
|
||
sub = node->pkt->pkt.public_key;
|
||
|
||
if (!(sub->pubkey_usage & PUBKEY_USAGE_ENC))
|
||
continue;
|
||
|
||
if (!subkey_is_ok (sub))
|
||
continue;
|
||
|
||
any = 1;
|
||
if (!sub->has_expired)
|
||
return 0;
|
||
}
|
||
|
||
return any? 1 : 0;
|
||
}
|
||
|
||
/* Finally this function compares a NEW key to the former candidate
|
||
* OLD. Returns < 0 if the old key is worse, > 0 if the old key is
|
||
* better, == 0 if it is a tie. */
|
||
static int
|
||
pubkey_cmp (ctrl_t ctrl, const char *name, struct pubkey_cmp_cookie *old,
|
||
struct pubkey_cmp_cookie *new, KBNODE new_keyblock)
|
||
{
|
||
kbnode_t n;
|
||
|
||
new->creation_time = 0;
|
||
for (n = find_next_kbnode (new_keyblock, PKT_PUBLIC_SUBKEY);
|
||
n; n = find_next_kbnode (n, PKT_PUBLIC_SUBKEY))
|
||
{
|
||
PKT_public_key *sub = n->pkt->pkt.public_key;
|
||
|
||
if ((sub->pubkey_usage & PUBKEY_USAGE_ENC) == 0)
|
||
continue;
|
||
|
||
if (! subkey_is_ok (sub))
|
||
continue;
|
||
|
||
if (sub->timestamp > new->creation_time)
|
||
new->creation_time = sub->timestamp;
|
||
}
|
||
|
||
for (n = find_next_kbnode (new_keyblock, PKT_USER_ID);
|
||
n; n = find_next_kbnode (n, PKT_USER_ID))
|
||
{
|
||
PKT_user_id *uid = n->pkt->pkt.user_id;
|
||
char *mbox = mailbox_from_userid (uid->name);
|
||
int match = mbox ? strcasecmp (name, mbox) == 0 : 0;
|
||
|
||
xfree (mbox);
|
||
if (! match)
|
||
continue;
|
||
|
||
new->uid = scopy_user_id (uid);
|
||
new->validity =
|
||
get_validity (ctrl, new_keyblock, &new->key, uid, NULL, 0) & TRUST_MASK;
|
||
new->valid = 1;
|
||
|
||
if (! old->valid)
|
||
return -1; /* No OLD key. */
|
||
|
||
if (! uid_is_ok (&old->key, old->uid) && uid_is_ok (&new->key, uid))
|
||
return -1; /* Validity of the NEW key is better. */
|
||
|
||
if (old->validity < new->validity)
|
||
return -1; /* Validity of the NEW key is better. */
|
||
|
||
if (old->validity == new->validity && uid_is_ok (&new->key, uid)
|
||
&& old->creation_time < new->creation_time)
|
||
return -1; /* Both keys are of the same validity, but the
|
||
NEW key is newer. */
|
||
}
|
||
|
||
/* Stick with the OLD key. */
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* This function works like get_pubkey_byname, but if the name
|
||
* resembles a mail address, the results are ranked and only the best
|
||
* result is returned. */
|
||
gpg_error_t
|
||
get_best_pubkey_byname (ctrl_t ctrl, enum get_pubkey_modes mode,
|
||
GETKEY_CTX *retctx, PKT_public_key *pk,
|
||
const char *name, KBNODE *ret_keyblock,
|
||
int include_unusable)
|
||
{
|
||
gpg_error_t err;
|
||
struct getkey_ctx_s *ctx = NULL;
|
||
int is_mbox;
|
||
int wkd_tried = 0;
|
||
|
||
if (retctx)
|
||
*retctx = NULL;
|
||
|
||
is_mbox = is_valid_mailbox (name);
|
||
if (!is_mbox && *name == '<' && name[1] && name[strlen(name)-1]=='>'
|
||
&& name[1] != '>'
|
||
&& is_valid_mailbox_mem (name+1, strlen (name)-2))
|
||
{
|
||
/* The mailbox is in the form "<foo@example.org>" which is not
|
||
* detected by is_valid_mailbox. Set the flag but keep name as
|
||
* it is because get_pubkey_byname does an is_valid_mailbox_mem
|
||
* itself. */
|
||
is_mbox = 1;
|
||
}
|
||
|
||
start_over:
|
||
if (ctx) /* Clear in case of a start over. */
|
||
{
|
||
if (ret_keyblock)
|
||
{
|
||
release_kbnode (*ret_keyblock);
|
||
*ret_keyblock = NULL;
|
||
}
|
||
getkey_end (ctrl, ctx);
|
||
ctx = NULL;
|
||
}
|
||
err = get_pubkey_byname (ctrl, mode,
|
||
&ctx, pk, name, ret_keyblock,
|
||
NULL, include_unusable);
|
||
if (err)
|
||
{
|
||
goto leave;
|
||
}
|
||
|
||
/* If the keyblock was retrieved from the local database and the key
|
||
* has expired, do further checks. However, we can do this only if
|
||
* the caller requested a keyblock. */
|
||
if (is_mbox && ctx && ctx->found_via_akl == AKL_LOCAL && ret_keyblock)
|
||
{
|
||
u32 now = make_timestamp ();
|
||
PKT_public_key *pk2 = (*ret_keyblock)->pkt->pkt.public_key;
|
||
int found;
|
||
|
||
/* If the key has expired and its origin was the WKD then try to
|
||
* get a fresh key from the WKD. We also try this if the key
|
||
* has any only expired encryption subkeys. In case we checked
|
||
* for a fresh copy in the last 3 hours we won't do that again.
|
||
* Unfortunately that does not yet work because KEYUPDATE is
|
||
* only updated during import iff the key has actually changed
|
||
* (see import.c:import_one). */
|
||
if (!wkd_tried && pk2->keyorg == KEYORG_WKD
|
||
&& (pk2->keyupdate + 3*3600) < now
|
||
&& (pk2->has_expired || only_expired_enc_subkeys (*ret_keyblock)))
|
||
{
|
||
if (opt.verbose)
|
||
log_info (_("checking for a fresh copy of an expired key via %s\n"),
|
||
"WKD");
|
||
wkd_tried = 1;
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
found = !keyserver_import_wkd (ctrl, name, 0, NULL, NULL);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
if (found)
|
||
goto start_over;
|
||
}
|
||
}
|
||
|
||
if (is_mbox && ctx)
|
||
{
|
||
/* Rank results and return only the most relevant key. */
|
||
struct pubkey_cmp_cookie best = { 0 };
|
||
struct pubkey_cmp_cookie new = { 0 };
|
||
kbnode_t new_keyblock;
|
||
|
||
while (getkey_next (ctrl, ctx, &new.key, &new_keyblock) == 0)
|
||
{
|
||
int diff = pubkey_cmp (ctrl, name, &best, &new, new_keyblock);
|
||
release_kbnode (new_keyblock);
|
||
if (diff < 0)
|
||
{
|
||
/* New key is better. */
|
||
release_public_key_parts (&best.key);
|
||
free_user_id (best.uid);
|
||
best = new;
|
||
}
|
||
else if (diff > 0)
|
||
{
|
||
/* Old key is better. */
|
||
release_public_key_parts (&new.key);
|
||
free_user_id (new.uid);
|
||
}
|
||
else
|
||
{
|
||
/* A tie. Keep the old key. */
|
||
release_public_key_parts (&new.key);
|
||
free_user_id (new.uid);
|
||
}
|
||
new.uid = NULL;
|
||
}
|
||
getkey_end (ctrl, ctx);
|
||
ctx = NULL;
|
||
free_user_id (best.uid);
|
||
best.uid = NULL;
|
||
|
||
if (best.valid)
|
||
{
|
||
if (retctx || ret_keyblock)
|
||
{
|
||
ctx = xtrycalloc (1, sizeof **retctx);
|
||
if (! ctx)
|
||
err = gpg_error_from_syserror ();
|
||
else
|
||
{
|
||
ctx->kr_handle = keydb_new ();
|
||
if (! ctx->kr_handle)
|
||
{
|
||
err = gpg_error_from_syserror ();
|
||
xfree (ctx);
|
||
ctx = NULL;
|
||
if (retctx)
|
||
*retctx = NULL;
|
||
}
|
||
else
|
||
{
|
||
u32 *keyid = pk_keyid (&best.key);
|
||
ctx->exact = 1;
|
||
ctx->nitems = 1;
|
||
ctx->items[0].mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
ctx->items[0].u.kid[0] = keyid[0];
|
||
ctx->items[0].u.kid[1] = keyid[1];
|
||
|
||
if (ret_keyblock)
|
||
{
|
||
release_kbnode (*ret_keyblock);
|
||
*ret_keyblock = NULL;
|
||
err = getkey_next (ctrl, ctx, NULL, ret_keyblock);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (pk)
|
||
{
|
||
release_public_key_parts (pk);
|
||
*pk = best.key;
|
||
}
|
||
else
|
||
release_public_key_parts (&best.key);
|
||
}
|
||
}
|
||
|
||
if (err && ctx)
|
||
{
|
||
getkey_end (ctrl, ctx);
|
||
ctx = NULL;
|
||
}
|
||
|
||
if (retctx && ctx)
|
||
{
|
||
*retctx = ctx;
|
||
ctx = NULL;
|
||
}
|
||
|
||
leave:
|
||
getkey_end (ctrl, ctx);
|
||
return err;
|
||
}
|
||
|
||
|
||
|
||
/* Get a public key from a file.
|
||
*
|
||
* PK is the buffer to store the key. The caller needs to make sure
|
||
* that PK->REQ_USAGE is valid. PK->REQ_USAGE is passed through to
|
||
* the lookup function and is a mask of PUBKEY_USAGE_SIG,
|
||
* PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT. If this is non-zero, only
|
||
* keys with the specified usage will be returned.
|
||
*
|
||
* FNAME is the file name. That file should contain exactly one
|
||
* keyblock.
|
||
*
|
||
* This function returns 0 on success. Otherwise, an error code is
|
||
* returned. In particular, GPG_ERR_NO_PUBKEY is returned if the key
|
||
* is not found.
|
||
*
|
||
* The self-signed data has already been merged into the public key
|
||
* using merge_selfsigs. The caller must release the content of PK by
|
||
* calling release_public_key_parts (or, if PK was malloced, using
|
||
* free_public_key).
|
||
*/
|
||
gpg_error_t
|
||
get_pubkey_fromfile (ctrl_t ctrl, PKT_public_key *pk, const char *fname)
|
||
{
|
||
gpg_error_t err;
|
||
kbnode_t keyblock;
|
||
kbnode_t found_key;
|
||
unsigned int infoflags;
|
||
|
||
err = read_key_from_file_or_buffer (ctrl, fname, NULL, 0, &keyblock);
|
||
if (!err)
|
||
{
|
||
/* Warning: node flag bits 0 and 1 should be preserved by
|
||
* merge_selfsigs. FIXME: Check whether this still holds. */
|
||
merge_selfsigs (ctrl, keyblock);
|
||
found_key = finish_lookup (keyblock, pk->req_usage, 0, 0, &infoflags);
|
||
print_status_key_considered (keyblock, infoflags);
|
||
if (found_key)
|
||
pk_from_block (pk, keyblock, found_key);
|
||
else
|
||
err = gpg_error (GPG_ERR_UNUSABLE_PUBKEY);
|
||
}
|
||
|
||
release_kbnode (keyblock);
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Return a public key from the buffer (BUFFER, BUFLEN). The key is
|
||
* onlyretruned if it matches the keyid given in WANT_KEYID. On
|
||
* success the key is stored at the caller provided PKBUF structure.
|
||
* The caller must release the content of PK by calling
|
||
* release_public_key_parts (or, if PKBUF was malloced, using
|
||
* free_public_key). If R_KEYBLOCK is not NULL the full keyblock is
|
||
* also stored there. */
|
||
gpg_error_t
|
||
get_pubkey_from_buffer (ctrl_t ctrl, PKT_public_key *pkbuf,
|
||
const void *buffer, size_t buflen, u32 *want_keyid,
|
||
kbnode_t *r_keyblock)
|
||
{
|
||
gpg_error_t err;
|
||
kbnode_t keyblock;
|
||
kbnode_t node;
|
||
PKT_public_key *pk;
|
||
|
||
if (r_keyblock)
|
||
*r_keyblock = NULL;
|
||
|
||
err = read_key_from_file_or_buffer (ctrl, NULL, buffer, buflen, &keyblock);
|
||
if (!err)
|
||
{
|
||
merge_selfsigs (ctrl, keyblock);
|
||
for (node = keyblock; node; node = node->next)
|
||
{
|
||
if (node->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| node->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
pk = node->pkt->pkt.public_key;
|
||
keyid_from_pk (pk, NULL);
|
||
if (pk->keyid[0] == want_keyid[0]
|
||
&& pk->keyid[1] == want_keyid[1])
|
||
break;
|
||
}
|
||
}
|
||
if (node)
|
||
copy_public_key (pkbuf, pk);
|
||
else
|
||
err = gpg_error (GPG_ERR_NO_PUBKEY);
|
||
}
|
||
|
||
if (!err && r_keyblock)
|
||
*r_keyblock = keyblock;
|
||
else
|
||
release_kbnode (keyblock);
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Lookup a key with the specified fingerprint.
|
||
*
|
||
* If PK is not NULL, the public key of the first result is returned
|
||
* in *PK. Note: this function does an exact search and thus the
|
||
* returned public key may be a subkey rather than the primary key.
|
||
* Note: The self-signed data has already been merged into the public
|
||
* key using merge_selfsigs. Free *PK by calling
|
||
* release_public_key_parts (or, if PK was allocated using xfree, you
|
||
* can use free_public_key, which calls release_public_key_parts(PK)
|
||
* and then xfree(PK)).
|
||
*
|
||
* If PK->REQ_USAGE is set, it is used to filter the search results.
|
||
* (Thus, if PK is not NULL, PK->REQ_USAGE must be valid!!!) See the
|
||
* documentation for finish_lookup to understand exactly how this is
|
||
* used.
|
||
*
|
||
* If R_KEYBLOCK is not NULL, then the first result's keyblock is
|
||
* returned in *R_KEYBLOCK. This should be freed using
|
||
* release_kbnode().
|
||
*
|
||
* FPRINT is a byte array whose contents is the fingerprint to use as
|
||
* the search term. FPRINT_LEN specifies the length of the
|
||
* fingerprint (in bytes). Currently, only 16 and 20-byte
|
||
* fingerprints are supported.
|
||
*
|
||
* FIXME: We should replace this with the _byname function. This can
|
||
* be done by creating a userID conforming to the unified fingerprint
|
||
* style. */
|
||
int
|
||
get_pubkey_byfprint (ctrl_t ctrl, PKT_public_key *pk, kbnode_t *r_keyblock,
|
||
const byte * fprint, size_t fprint_len)
|
||
{
|
||
int rc;
|
||
|
||
if (r_keyblock)
|
||
*r_keyblock = NULL;
|
||
|
||
if (fprint_len == 20 || fprint_len == 16)
|
||
{
|
||
struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
KBNODE found_key = NULL;
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
ctx.exact = 1;
|
||
ctx.not_allocated = 1;
|
||
/* FIXME: We should get the handle from the cache like we do in
|
||
* get_pubkey. */
|
||
ctx.kr_handle = keydb_new ();
|
||
if (!ctx.kr_handle)
|
||
return gpg_error_from_syserror ();
|
||
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = fprint_len == 16 ? KEYDB_SEARCH_MODE_FPR16
|
||
: KEYDB_SEARCH_MODE_FPR20;
|
||
memcpy (ctx.items[0].u.fpr, fprint, fprint_len);
|
||
if (pk)
|
||
ctx.req_usage = pk->req_usage;
|
||
rc = lookup (ctrl, &ctx, 0, &kb, &found_key);
|
||
if (!rc && pk)
|
||
pk_from_block (pk, kb, found_key);
|
||
if (!rc && r_keyblock)
|
||
{
|
||
*r_keyblock = kb;
|
||
kb = NULL;
|
||
}
|
||
release_kbnode (kb);
|
||
getkey_end (ctrl, &ctx);
|
||
}
|
||
else
|
||
rc = GPG_ERR_GENERAL; /* Oops */
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* This function is similar to get_pubkey_byfprint, but it doesn't
|
||
* merge the self-signed data into the public key and subkeys or into
|
||
* the user ids. It also doesn't add the key to the user id cache.
|
||
* Further, this function ignores PK->REQ_USAGE.
|
||
*
|
||
* This function is intended to avoid recursion and, as such, should
|
||
* only be used in very specific situations.
|
||
*
|
||
* Like get_pubkey_byfprint, PK may be NULL. In that case, this
|
||
* function effectively just checks for the existence of the key. */
|
||
gpg_error_t
|
||
get_pubkey_byfprint_fast (PKT_public_key * pk,
|
||
const byte * fprint, size_t fprint_len)
|
||
{
|
||
gpg_error_t err;
|
||
KBNODE keyblock;
|
||
|
||
err = get_keyblock_byfprint_fast (&keyblock, NULL, fprint, fprint_len, 0);
|
||
if (!err)
|
||
{
|
||
if (pk)
|
||
copy_public_key (pk, keyblock->pkt->pkt.public_key);
|
||
release_kbnode (keyblock);
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* This function is similar to get_pubkey_byfprint_fast but returns a
|
||
* keydb handle at R_HD and the keyblock at R_KEYBLOCK. R_KEYBLOCK or
|
||
* R_HD may be NULL. If LOCK is set the handle has been opend in
|
||
* locked mode and keydb_disable_caching () has been called. On error
|
||
* R_KEYBLOCK is set to NULL but R_HD must be released by the caller;
|
||
* it may have a value of NULL, though. This allows to do an insert
|
||
* operation on a locked keydb handle. */
|
||
gpg_error_t
|
||
get_keyblock_byfprint_fast (kbnode_t *r_keyblock, KEYDB_HANDLE *r_hd,
|
||
const byte *fprint, size_t fprint_len, int lock)
|
||
{
|
||
gpg_error_t err;
|
||
KEYDB_HANDLE hd;
|
||
kbnode_t keyblock;
|
||
byte fprbuf[MAX_FINGERPRINT_LEN];
|
||
int i;
|
||
|
||
if (r_keyblock)
|
||
*r_keyblock = NULL;
|
||
if (r_hd)
|
||
*r_hd = NULL;
|
||
|
||
for (i = 0; i < MAX_FINGERPRINT_LEN && i < fprint_len; i++)
|
||
fprbuf[i] = fprint[i];
|
||
while (i < MAX_FINGERPRINT_LEN)
|
||
fprbuf[i++] = 0;
|
||
|
||
hd = keydb_new ();
|
||
if (!hd)
|
||
return gpg_error_from_syserror ();
|
||
|
||
if (lock)
|
||
{
|
||
err = keydb_lock (hd);
|
||
if (err)
|
||
{
|
||
/* If locking did not work, we better don't return a handle
|
||
* at all - there was a reason that locking has been
|
||
* requested. */
|
||
keydb_release (hd);
|
||
return err;
|
||
}
|
||
keydb_disable_caching (hd);
|
||
}
|
||
|
||
/* Fo all other errors we return the handle. */
|
||
if (r_hd)
|
||
*r_hd = hd;
|
||
|
||
err = keydb_search_fpr (hd, fprbuf);
|
||
if (gpg_err_code (err) == GPG_ERR_NOT_FOUND)
|
||
{
|
||
if (!r_hd)
|
||
keydb_release (hd);
|
||
return gpg_error (GPG_ERR_NO_PUBKEY);
|
||
}
|
||
err = keydb_get_keyblock (hd, &keyblock);
|
||
if (err)
|
||
{
|
||
log_error ("keydb_get_keyblock failed: %s\n", gpg_strerror (err));
|
||
if (!r_hd)
|
||
keydb_release (hd);
|
||
return gpg_error (GPG_ERR_NO_PUBKEY);
|
||
}
|
||
|
||
log_assert (keyblock->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| keyblock->pkt->pkttype == PKT_PUBLIC_SUBKEY);
|
||
|
||
/* Not caching key here since it won't have all of the fields
|
||
properly set. */
|
||
|
||
if (r_keyblock)
|
||
*r_keyblock = keyblock;
|
||
else
|
||
release_kbnode (keyblock);
|
||
|
||
if (!r_hd)
|
||
keydb_release (hd);
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
const char *
|
||
parse_def_secret_key (ctrl_t ctrl)
|
||
{
|
||
KEYDB_HANDLE hd = NULL;
|
||
strlist_t t;
|
||
static int warned;
|
||
|
||
for (t = opt.def_secret_key; t; t = t->next)
|
||
{
|
||
gpg_error_t err;
|
||
KEYDB_SEARCH_DESC desc;
|
||
KBNODE kb;
|
||
KBNODE node;
|
||
|
||
err = classify_user_id (t->d, &desc, 1);
|
||
if (err)
|
||
{
|
||
log_error (_("secret key \"%s\" not found: %s\n"),
|
||
t->d, gpg_strerror (err));
|
||
if (!opt.quiet)
|
||
log_info (_("(check argument of option '%s')\n"), "--default-key");
|
||
continue;
|
||
}
|
||
|
||
if (! hd)
|
||
{
|
||
hd = keydb_new ();
|
||
if (!hd)
|
||
return NULL;
|
||
}
|
||
else
|
||
keydb_search_reset (hd);
|
||
|
||
|
||
err = keydb_search (hd, &desc, 1, NULL);
|
||
if (gpg_err_code (err) == GPG_ERR_NOT_FOUND)
|
||
continue;
|
||
|
||
if (err)
|
||
{
|
||
log_error (_("key \"%s\" not found: %s\n"), t->d, gpg_strerror (err));
|
||
t = NULL;
|
||
break;
|
||
}
|
||
|
||
err = keydb_get_keyblock (hd, &kb);
|
||
if (err)
|
||
{
|
||
log_error (_("error reading keyblock: %s\n"),
|
||
gpg_strerror (err));
|
||
continue;
|
||
}
|
||
|
||
merge_selfsigs (ctrl, kb);
|
||
|
||
err = gpg_error (GPG_ERR_NO_SECKEY);
|
||
node = kb;
|
||
do
|
||
{
|
||
PKT_public_key *pk = node->pkt->pkt.public_key;
|
||
|
||
/* Check if the key is valid. */
|
||
if (pk->flags.revoked)
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("not using %s as default key, %s",
|
||
keystr_from_pk (pk), "revoked");
|
||
continue;
|
||
}
|
||
if (pk->has_expired)
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("not using %s as default key, %s",
|
||
keystr_from_pk (pk), "expired");
|
||
continue;
|
||
}
|
||
if (pk_is_disabled (pk))
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("not using %s as default key, %s",
|
||
keystr_from_pk (pk), "disabled");
|
||
continue;
|
||
}
|
||
|
||
err = agent_probe_secret_key (ctrl, pk);
|
||
if (! err)
|
||
/* This is a valid key. */
|
||
break;
|
||
}
|
||
while ((node = find_next_kbnode (node, PKT_PUBLIC_SUBKEY)));
|
||
|
||
release_kbnode (kb);
|
||
if (err)
|
||
{
|
||
if (! warned && ! opt.quiet)
|
||
{
|
||
log_info (_("Warning: not using '%s' as default key: %s\n"),
|
||
t->d, gpg_strerror (GPG_ERR_NO_SECKEY));
|
||
print_reported_error (err, GPG_ERR_NO_SECKEY);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (! warned && ! opt.quiet)
|
||
log_info (_("using \"%s\" as default secret key for signing\n"),
|
||
t->d);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (! warned && opt.def_secret_key && ! t)
|
||
log_info (_("all values passed to '%s' ignored\n"),
|
||
"--default-key");
|
||
|
||
warned = 1;
|
||
|
||
if (hd)
|
||
keydb_release (hd);
|
||
|
||
if (t)
|
||
return t->d;
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Look up a secret key.
|
||
*
|
||
* If PK is not NULL, the public key of the first result is returned
|
||
* in *PK. Note: PK->REQ_USAGE must be valid!!! If PK->REQ_USAGE is
|
||
* set, it is used to filter the search results. See the
|
||
* documentation for finish_lookup to understand exactly how this is
|
||
* used. Note: The self-signed data has already been merged into the
|
||
* public key using merge_selfsigs. Free *PK by calling
|
||
* release_public_key_parts (or, if PK was allocated using xfree, you
|
||
* can use free_public_key, which calls release_public_key_parts(PK)
|
||
* and then xfree(PK)).
|
||
*
|
||
* If --default-key was set, then the specified key is looked up. (In
|
||
* this case, the default key is returned even if it is considered
|
||
* unusable. See the documentation for skip_unusable for exactly what
|
||
* this means.)
|
||
*
|
||
* Otherwise, this initiates a DB scan that returns all keys that are
|
||
* usable (see previous paragraph for exactly what usable means) and
|
||
* for which a secret key is available.
|
||
*
|
||
* This function returns the first match. Additional results can be
|
||
* returned using getkey_next. */
|
||
gpg_error_t
|
||
get_seckey_default (ctrl_t ctrl, PKT_public_key *pk)
|
||
{
|
||
gpg_error_t err;
|
||
strlist_t namelist = NULL;
|
||
int include_unusable = 1;
|
||
|
||
|
||
const char *def_secret_key = parse_def_secret_key (ctrl);
|
||
if (def_secret_key)
|
||
add_to_strlist (&namelist, def_secret_key);
|
||
else
|
||
include_unusable = 0;
|
||
|
||
err = key_byname (ctrl, NULL, namelist, pk, 1, include_unusable, NULL, NULL);
|
||
|
||
free_strlist (namelist);
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
|
||
/* Search for keys matching some criteria.
|
||
*
|
||
* If RETCTX is not NULL, then the constructed context is returned in
|
||
* *RETCTX so that getpubkey_next can be used to get subsequent
|
||
* results. In this case, getkey_end() must be used to free the
|
||
* search context. If RETCTX is not NULL, then RET_KDBHD must be
|
||
* NULL.
|
||
*
|
||
* If PK is not NULL, the public key of the first result is returned
|
||
* in *PK. Note: PK->REQ_USAGE must be valid!!! If PK->REQ_USAGE is
|
||
* set, it is used to filter the search results. See the
|
||
* documentation for finish_lookup to understand exactly how this is
|
||
* used. Note: The self-signed data has already been merged into the
|
||
* public key using merge_selfsigs. Free *PK by calling
|
||
* release_public_key_parts (or, if PK was allocated using xfree, you
|
||
* can use free_public_key, which calls release_public_key_parts(PK)
|
||
* and then xfree(PK)).
|
||
*
|
||
* If NAMES is not NULL, then a search query is constructed using
|
||
* classify_user_id on each of the strings in the list. (Recall: the
|
||
* database does an OR of the terms, not an AND.) If NAMES is
|
||
* NULL, then all results are returned.
|
||
*
|
||
* If WANT_SECRET is set, then only keys with an available secret key
|
||
* (either locally or via key registered on a smartcard) are returned.
|
||
*
|
||
* This function does not skip unusable keys (see the documentation
|
||
* for skip_unusable for an exact definition).
|
||
*
|
||
* If RET_KEYBLOCK is not NULL, the keyblock is returned in
|
||
* *RET_KEYBLOCK. This should be freed using release_kbnode().
|
||
*
|
||
* This function returns 0 on success. Otherwise, an error code is
|
||
* returned. In particular, GPG_ERR_NO_PUBKEY or GPG_ERR_NO_SECKEY
|
||
* (if want_secret is set) is returned if the key is not found. */
|
||
gpg_error_t
|
||
getkey_bynames (ctrl_t ctrl, getkey_ctx_t *retctx, PKT_public_key *pk,
|
||
strlist_t names, int want_secret, kbnode_t *ret_keyblock)
|
||
{
|
||
return key_byname (ctrl, retctx, names, pk, want_secret, 1,
|
||
ret_keyblock, NULL);
|
||
}
|
||
|
||
|
||
/* Search for one key matching some criteria.
|
||
*
|
||
* If RETCTX is not NULL, then the constructed context is returned in
|
||
* *RETCTX so that getpubkey_next can be used to get subsequent
|
||
* results. In this case, getkey_end() must be used to free the
|
||
* search context. If RETCTX is not NULL, then RET_KDBHD must be
|
||
* NULL.
|
||
*
|
||
* If PK is not NULL, the public key of the first result is returned
|
||
* in *PK. Note: PK->REQ_USAGE must be valid!!! If PK->REQ_USAGE is
|
||
* set, it is used to filter the search results. See the
|
||
* documentation for finish_lookup to understand exactly how this is
|
||
* used. Note: The self-signed data has already been merged into the
|
||
* public key using merge_selfsigs. Free *PK by calling
|
||
* release_public_key_parts (or, if PK was allocated using xfree, you
|
||
* can use free_public_key, which calls release_public_key_parts(PK)
|
||
* and then xfree(PK)).
|
||
*
|
||
* If NAME is not NULL, then a search query is constructed using
|
||
* classify_user_id on the string. In this case, even unusable keys
|
||
* (see the documentation for skip_unusable for an exact definition of
|
||
* unusable) are returned. Otherwise, if --default-key was set, then
|
||
* that key is returned (even if it is unusable). If neither of these
|
||
* conditions holds, then the first usable key is returned.
|
||
*
|
||
* If WANT_SECRET is set, then only keys with an available secret key
|
||
* (either locally or via key registered on a smartcard) are returned.
|
||
*
|
||
* This function does not skip unusable keys (see the documentation
|
||
* for skip_unusable for an exact definition).
|
||
*
|
||
* If RET_KEYBLOCK is not NULL, the keyblock is returned in
|
||
* *RET_KEYBLOCK. This should be freed using release_kbnode().
|
||
*
|
||
* This function returns 0 on success. Otherwise, an error code is
|
||
* returned. In particular, GPG_ERR_NO_PUBKEY or GPG_ERR_NO_SECKEY
|
||
* (if want_secret is set) is returned if the key is not found.
|
||
*
|
||
* FIXME: We also have the get_pubkey_byname function which has a
|
||
* different semantic. Should be merged with this one. */
|
||
gpg_error_t
|
||
getkey_byname (ctrl_t ctrl, getkey_ctx_t *retctx, PKT_public_key *pk,
|
||
const char *name, int want_secret, kbnode_t *ret_keyblock)
|
||
{
|
||
gpg_error_t err;
|
||
strlist_t namelist = NULL;
|
||
int with_unusable = 1;
|
||
const char *def_secret_key = NULL;
|
||
|
||
if (want_secret && !name)
|
||
def_secret_key = parse_def_secret_key (ctrl);
|
||
|
||
if (want_secret && !name && def_secret_key)
|
||
add_to_strlist (&namelist, def_secret_key);
|
||
else if (name)
|
||
add_to_strlist (&namelist, name);
|
||
else
|
||
with_unusable = 0;
|
||
|
||
err = key_byname (ctrl, retctx, namelist, pk, want_secret, with_unusable,
|
||
ret_keyblock, NULL);
|
||
|
||
/* FIXME: Check that we really return GPG_ERR_NO_SECKEY if
|
||
WANT_SECRET has been used. */
|
||
|
||
free_strlist (namelist);
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Return the next search result.
|
||
*
|
||
* If PK is not NULL, the public key of the next result is returned in
|
||
* *PK. Note: The self-signed data has already been merged into the
|
||
* public key using merge_selfsigs. Free *PK by calling
|
||
* release_public_key_parts (or, if PK was allocated using xmalloc, you
|
||
* can use free_public_key, which calls release_public_key_parts(PK)
|
||
* and then xfree(PK)).
|
||
*
|
||
* RET_KEYBLOCK can be given as NULL; if it is not NULL it the entire
|
||
* found keyblock is returned which must be released with
|
||
* release_kbnode. If the function returns an error NULL is stored at
|
||
* RET_KEYBLOCK.
|
||
*
|
||
* The self-signed data has already been merged into the public key
|
||
* using merge_selfsigs. */
|
||
gpg_error_t
|
||
getkey_next (ctrl_t ctrl, getkey_ctx_t ctx,
|
||
PKT_public_key *pk, kbnode_t *ret_keyblock)
|
||
{
|
||
int rc; /* Fixme: Make sure this is proper gpg_error */
|
||
KBNODE keyblock = NULL;
|
||
KBNODE found_key = NULL;
|
||
|
||
/* We need to disable the caching so that for an exact key search we
|
||
won't get the result back from the cache and thus end up in an
|
||
endless loop. The endless loop can occur, because the cache is
|
||
used without respecting the current file pointer! */
|
||
keydb_disable_caching (ctx->kr_handle);
|
||
|
||
/* FOUND_KEY is only valid as long as RET_KEYBLOCK is. If the
|
||
* caller wants PK, but not RET_KEYBLOCK, we need hand in our own
|
||
* keyblock. */
|
||
if (pk && ret_keyblock == NULL)
|
||
ret_keyblock = &keyblock;
|
||
|
||
rc = lookup (ctrl, ctx, ctx->want_secret,
|
||
ret_keyblock, pk ? &found_key : NULL);
|
||
if (!rc && pk)
|
||
{
|
||
log_assert (found_key);
|
||
pk_from_block (pk, NULL, found_key);
|
||
release_kbnode (keyblock);
|
||
}
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* Release any resources used by a key listing context. This must be
|
||
* called on the context returned by, e.g., getkey_byname. */
|
||
void
|
||
getkey_end (ctrl_t ctrl, getkey_ctx_t ctx)
|
||
{
|
||
if (ctx)
|
||
{
|
||
#ifdef HAVE_W32_SYSTEM
|
||
|
||
/* FIXME: This creates a big regression for Windows because the
|
||
* keyring is only released after the global ctrl is released.
|
||
* So if an operation does a getkey and then tries to modify the
|
||
* keyring it will fail on Windows with a sharing violation. We
|
||
* need to modify all keyring write operations to also take the
|
||
* ctrl and close the cached_getkey_kdb handle to make writing
|
||
* work. See: GnuPG-bug-id: 3097 */
|
||
(void)ctrl;
|
||
keydb_release (ctx->kr_handle);
|
||
|
||
#else /*!HAVE_W32_SYSTEM*/
|
||
|
||
if (ctrl && !ctrl->cached_getkey_kdb)
|
||
ctrl->cached_getkey_kdb = ctx->kr_handle;
|
||
else
|
||
keydb_release (ctx->kr_handle);
|
||
|
||
#endif /*!HAVE_W32_SYSTEM*/
|
||
|
||
free_strlist (ctx->extra_list);
|
||
if (!ctx->not_allocated)
|
||
xfree (ctx);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/************************************************
|
||
************* Merging stuff ********************
|
||
************************************************/
|
||
|
||
/* Set the mainkey_id fields for all keys in KEYBLOCK. This is
|
||
* usually done by merge_selfsigs but at some places we only need the
|
||
* main_kid not a full merge. The function also guarantees that all
|
||
* pk->keyids are computed. */
|
||
void
|
||
setup_main_keyids (kbnode_t keyblock)
|
||
{
|
||
u32 kid[2], mainkid[2];
|
||
kbnode_t kbctx, node;
|
||
PKT_public_key *pk;
|
||
|
||
if (keyblock->pkt->pkttype != PKT_PUBLIC_KEY)
|
||
BUG ();
|
||
pk = keyblock->pkt->pkt.public_key;
|
||
|
||
keyid_from_pk (pk, mainkid);
|
||
for (kbctx=NULL; (node = walk_kbnode (keyblock, &kbctx, 0)); )
|
||
{
|
||
if (!(node->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| node->pkt->pkttype == PKT_PUBLIC_SUBKEY))
|
||
continue;
|
||
pk = node->pkt->pkt.public_key;
|
||
keyid_from_pk (pk, kid); /* Make sure pk->keyid is set. */
|
||
if (!pk->main_keyid[0] && !pk->main_keyid[1])
|
||
{
|
||
pk->main_keyid[0] = mainkid[0];
|
||
pk->main_keyid[1] = mainkid[1];
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* KEYBLOCK corresponds to a public key block. This function merges
|
||
* much of the information from the self-signed data into the public
|
||
* key, public subkey and user id data structures. If you use the
|
||
* high-level search API (e.g., get_pubkey) for looking up key blocks,
|
||
* then you don't need to call this function. This function is
|
||
* useful, however, if you change the keyblock, e.g., by adding or
|
||
* removing a self-signed data packet. */
|
||
void
|
||
merge_keys_and_selfsig (ctrl_t ctrl, kbnode_t keyblock)
|
||
{
|
||
if (!keyblock)
|
||
;
|
||
else if (keyblock->pkt->pkttype == PKT_PUBLIC_KEY)
|
||
merge_selfsigs (ctrl, keyblock);
|
||
else
|
||
log_debug ("FIXME: merging secret key blocks is not anymore available\n");
|
||
}
|
||
|
||
|
||
static int
|
||
parse_key_usage (PKT_signature * sig)
|
||
{
|
||
int key_usage = 0;
|
||
const byte *p;
|
||
size_t n;
|
||
byte flags;
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_FLAGS, &n);
|
||
if (p && n)
|
||
{
|
||
/* First octet of the keyflags. */
|
||
flags = *p;
|
||
|
||
if (flags & 1)
|
||
{
|
||
key_usage |= PUBKEY_USAGE_CERT;
|
||
flags &= ~1;
|
||
}
|
||
|
||
if (flags & 2)
|
||
{
|
||
key_usage |= PUBKEY_USAGE_SIG;
|
||
flags &= ~2;
|
||
}
|
||
|
||
/* We do not distinguish between encrypting communications and
|
||
encrypting storage. */
|
||
if (flags & (0x04 | 0x08))
|
||
{
|
||
key_usage |= PUBKEY_USAGE_ENC;
|
||
flags &= ~(0x04 | 0x08);
|
||
}
|
||
|
||
if (flags & 0x20)
|
||
{
|
||
key_usage |= PUBKEY_USAGE_AUTH;
|
||
flags &= ~0x20;
|
||
}
|
||
|
||
if (flags)
|
||
key_usage |= PUBKEY_USAGE_UNKNOWN;
|
||
|
||
if (!key_usage)
|
||
key_usage |= PUBKEY_USAGE_NONE;
|
||
}
|
||
else if (p) /* Key flags of length zero. */
|
||
key_usage |= PUBKEY_USAGE_NONE;
|
||
|
||
/* We set PUBKEY_USAGE_UNKNOWN to indicate that this key has a
|
||
capability that we do not handle. This serves to distinguish
|
||
between a zero key usage which we handle as the default
|
||
capabilities for that algorithm, and a usage that we do not
|
||
handle. Likewise we use PUBKEY_USAGE_NONE to indicate that
|
||
key_flags have been given but they do not specify any usage. */
|
||
|
||
return key_usage;
|
||
}
|
||
|
||
|
||
/* Apply information from SIGNODE (which is the valid self-signature
|
||
* associated with that UID) to the UIDNODE:
|
||
* - wether the UID has been revoked
|
||
* - assumed creation date of the UID
|
||
* - temporary store the keyflags here
|
||
* - temporary store the key expiration time here
|
||
* - mark whether the primary user ID flag hat been set.
|
||
* - store the preferences
|
||
*/
|
||
static void
|
||
fixup_uidnode (KBNODE uidnode, KBNODE signode, u32 keycreated)
|
||
{
|
||
PKT_user_id *uid = uidnode->pkt->pkt.user_id;
|
||
PKT_signature *sig = signode->pkt->pkt.signature;
|
||
const byte *p, *sym, *aead, *hash, *zip;
|
||
size_t n, nsym, naead, nhash, nzip;
|
||
|
||
sig->flags.chosen_selfsig = 1;/* We chose this one. */
|
||
uid->created = 0; /* Not created == invalid. */
|
||
if (IS_UID_REV (sig))
|
||
{
|
||
uid->flags.revoked = 1;
|
||
return; /* Has been revoked. */
|
||
}
|
||
else
|
||
uid->flags.revoked = 0;
|
||
|
||
uid->expiredate = sig->expiredate;
|
||
|
||
if (sig->flags.expired)
|
||
{
|
||
uid->flags.expired = 1;
|
||
return; /* Has expired. */
|
||
}
|
||
else
|
||
uid->flags.expired = 0;
|
||
|
||
uid->created = sig->timestamp; /* This one is okay. */
|
||
uid->selfsigversion = sig->version;
|
||
/* If we got this far, it's not expired :) */
|
||
uid->flags.expired = 0;
|
||
|
||
/* Store the key flags in the helper variable for later processing. */
|
||
uid->help_key_usage = parse_key_usage (sig);
|
||
|
||
/* Ditto for the key expiration. */
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if (p && buf32_to_u32 (p))
|
||
uid->help_key_expire = keycreated + buf32_to_u32 (p);
|
||
else
|
||
uid->help_key_expire = 0;
|
||
|
||
/* Set the primary user ID flag - we will later wipe out some
|
||
* of them to only have one in our keyblock. */
|
||
uid->flags.primary = 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PRIMARY_UID, NULL);
|
||
if (p && *p)
|
||
uid->flags.primary = 2;
|
||
|
||
/* We could also query this from the unhashed area if it is not in
|
||
* the hased area and then later try to decide which is the better
|
||
* there should be no security problem with this.
|
||
* For now we only look at the hashed one. */
|
||
|
||
/* Now build the preferences list. These must come from the
|
||
hashed section so nobody can modify the ciphers a key is
|
||
willing to accept. */
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_SYM, &n);
|
||
sym = p;
|
||
nsym = p ? n : 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_AEAD, &n);
|
||
aead = p;
|
||
naead = p ? n : 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_HASH, &n);
|
||
hash = p;
|
||
nhash = p ? n : 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_COMPR, &n);
|
||
zip = p;
|
||
nzip = p ? n : 0;
|
||
if (uid->prefs)
|
||
xfree (uid->prefs);
|
||
n = nsym + naead + nhash + nzip;
|
||
if (!n)
|
||
uid->prefs = NULL;
|
||
else
|
||
{
|
||
uid->prefs = xmalloc (sizeof (*uid->prefs) * (n + 1));
|
||
n = 0;
|
||
for (; nsym; nsym--, n++)
|
||
{
|
||
uid->prefs[n].type = PREFTYPE_SYM;
|
||
uid->prefs[n].value = *sym++;
|
||
}
|
||
for (; naead; naead--, n++)
|
||
{
|
||
uid->prefs[n].type = PREFTYPE_AEAD;
|
||
uid->prefs[n].value = *aead++;
|
||
}
|
||
for (; nhash; nhash--, n++)
|
||
{
|
||
uid->prefs[n].type = PREFTYPE_HASH;
|
||
uid->prefs[n].value = *hash++;
|
||
}
|
||
for (; nzip; nzip--, n++)
|
||
{
|
||
uid->prefs[n].type = PREFTYPE_ZIP;
|
||
uid->prefs[n].value = *zip++;
|
||
}
|
||
uid->prefs[n].type = PREFTYPE_NONE; /* End of list marker */
|
||
uid->prefs[n].value = 0;
|
||
}
|
||
|
||
/* See whether we have the MDC feature. */
|
||
uid->flags.mdc = 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES, &n);
|
||
if (p && n && (p[0] & 0x01))
|
||
uid->flags.mdc = 1;
|
||
|
||
/* See whether we have the AEAD feature. */
|
||
uid->flags.aead = 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES, &n);
|
||
if (p && n && (p[0] & 0x02))
|
||
uid->flags.aead = 1;
|
||
|
||
/* And the keyserver modify flag. */
|
||
uid->flags.ks_modify = 1;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KS_FLAGS, &n);
|
||
if (p && n && (p[0] & 0x80))
|
||
uid->flags.ks_modify = 0;
|
||
}
|
||
|
||
static void
|
||
sig_to_revoke_info (PKT_signature * sig, struct revoke_info *rinfo)
|
||
{
|
||
rinfo->date = sig->timestamp;
|
||
rinfo->algo = sig->pubkey_algo;
|
||
rinfo->keyid[0] = sig->keyid[0];
|
||
rinfo->keyid[1] = sig->keyid[1];
|
||
}
|
||
|
||
|
||
/* Given a keyblock, parse the key block and extract various pieces of
|
||
* information and save them with the primary key packet and the user
|
||
* id packets. For instance, some information is stored in signature
|
||
* packets. We find the latest such valid packet (since the user can
|
||
* change that information) and copy its contents into the
|
||
* PKT_public_key.
|
||
*
|
||
* Note that R_REVOKED may be set to 0, 1 or 2.
|
||
*
|
||
* This function fills in the following fields in the primary key's
|
||
* keyblock:
|
||
*
|
||
* main_keyid (computed)
|
||
* revkey / numrevkeys (derived from self signed key data)
|
||
* flags.valid (whether we have at least 1 self-sig)
|
||
* flags.maybe_revoked (whether a designed revoked the key, but
|
||
* we are missing the key to check the sig)
|
||
* selfsigversion (highest version of any valid self-sig)
|
||
* pubkey_usage (derived from most recent self-sig or most
|
||
* recent user id)
|
||
* has_expired (various sources)
|
||
* expiredate (various sources)
|
||
*
|
||
* See the documentation for fixup_uidnode for how the user id packets
|
||
* are modified. In addition to that the primary user id's is_primary
|
||
* field is set to 1 and the other user id's is_primary are set to 0.
|
||
*/
|
||
static void
|
||
merge_selfsigs_main (ctrl_t ctrl, kbnode_t keyblock, int *r_revoked,
|
||
struct revoke_info *rinfo)
|
||
{
|
||
PKT_public_key *pk = NULL;
|
||
KBNODE k;
|
||
u32 kid[2];
|
||
u32 sigdate, uiddate, uiddate2;
|
||
KBNODE signode, uidnode, uidnode2;
|
||
u32 curtime = make_timestamp ();
|
||
unsigned int key_usage = 0;
|
||
u32 keytimestamp = 0; /* Creation time of the key. */
|
||
u32 key_expire = 0;
|
||
int key_expire_seen = 0;
|
||
byte sigversion = 0;
|
||
|
||
*r_revoked = 0;
|
||
memset (rinfo, 0, sizeof (*rinfo));
|
||
|
||
/* Section 11.1 of RFC 4880 determines the order of packets within a
|
||
* message. There are three sections, which must occur in the
|
||
* following order: the public key, the user ids and user attributes
|
||
* and the subkeys. Within each section, each primary packet (e.g.,
|
||
* a user id packet) is followed by one or more signature packets,
|
||
* which modify that packet. */
|
||
|
||
/* According to Section 11.1 of RFC 4880, the public key must be the
|
||
first packet. Note that parse_keyblock_image ensures that the
|
||
first packet is the public key. */
|
||
if (keyblock->pkt->pkttype != PKT_PUBLIC_KEY)
|
||
BUG ();
|
||
pk = keyblock->pkt->pkt.public_key;
|
||
keytimestamp = pk->timestamp;
|
||
|
||
keyid_from_pk (pk, kid);
|
||
pk->main_keyid[0] = kid[0];
|
||
pk->main_keyid[1] = kid[1];
|
||
|
||
if (pk->version < 4)
|
||
{
|
||
/* Before v4 the key packet itself contains the expiration date
|
||
* and there was no way to change it, so we start with the one
|
||
* from the key packet. We do not support v3 keys anymore but
|
||
* we keep the code in case a future key versions introduces a
|
||
* hadr expire time again. */
|
||
key_expire = pk->max_expiredate;
|
||
key_expire_seen = 1;
|
||
}
|
||
|
||
/* First pass:
|
||
*
|
||
* - Find the latest direct key self-signature. We assume that the
|
||
* newest one overrides all others.
|
||
*
|
||
* - Determine whether the key has been revoked.
|
||
*
|
||
* - Gather all revocation keys (unlike other data, we don't just
|
||
* take them from the latest self-signed packet).
|
||
*
|
||
* - Determine max (sig[...]->version).
|
||
*/
|
||
|
||
/* Reset this in case this key was already merged. */
|
||
xfree (pk->revkey);
|
||
pk->revkey = NULL;
|
||
pk->numrevkeys = 0;
|
||
|
||
signode = NULL;
|
||
sigdate = 0; /* Helper variable to find the latest signature. */
|
||
|
||
/* According to Section 11.1 of RFC 4880, the public key comes first
|
||
* and is immediately followed by any signature packets that modify
|
||
* it. */
|
||
for (k = keyblock;
|
||
k && k->pkt->pkttype != PKT_USER_ID
|
||
&& k->pkt->pkttype != PKT_ATTRIBUTE
|
||
&& k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_SIGNATURE)
|
||
{
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
if (sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1])
|
||
{ /* Self sig. */
|
||
|
||
if (check_key_signature (ctrl, keyblock, k, NULL))
|
||
; /* Signature did not verify. */
|
||
else if (IS_KEY_REV (sig))
|
||
{
|
||
/* Key has been revoked - there is no way to
|
||
* override such a revocation, so we theoretically
|
||
* can stop now. We should not cope with expiration
|
||
* times for revocations here because we have to
|
||
* assume that an attacker can generate all kinds of
|
||
* signatures. However due to the fact that the key
|
||
* has been revoked it does not harm either and by
|
||
* continuing we gather some more info on that
|
||
* key. */
|
||
*r_revoked = 1;
|
||
sig_to_revoke_info (sig, rinfo);
|
||
}
|
||
else if (IS_KEY_SIG (sig))
|
||
{
|
||
/* Add the indicated revocations keys from all
|
||
* signatures not just the latest. We do this
|
||
* because you need multiple 1F sigs to properly
|
||
* handle revocation keys (PGP does it this way, and
|
||
* a revocation key could be sensitive and hence in
|
||
* a different signature). */
|
||
if (sig->revkey)
|
||
{
|
||
int i;
|
||
|
||
pk->revkey =
|
||
xrealloc (pk->revkey, sizeof (struct revocation_key) *
|
||
(pk->numrevkeys + sig->numrevkeys));
|
||
|
||
for (i = 0; i < sig->numrevkeys; i++)
|
||
memcpy (&pk->revkey[pk->numrevkeys++],
|
||
&sig->revkey[i],
|
||
sizeof (struct revocation_key));
|
||
}
|
||
|
||
if (sig->timestamp >= sigdate)
|
||
{ /* This is the latest signature so far. */
|
||
|
||
if (sig->flags.expired)
|
||
; /* Signature has expired - ignore it. */
|
||
else
|
||
{
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
if (sig->version > sigversion)
|
||
sigversion = sig->version;
|
||
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove dupes from the revocation keys. */
|
||
if (pk->revkey)
|
||
{
|
||
int i, j, x, changed = 0;
|
||
|
||
for (i = 0; i < pk->numrevkeys; i++)
|
||
{
|
||
for (j = i + 1; j < pk->numrevkeys; j++)
|
||
{
|
||
if (memcmp (&pk->revkey[i], &pk->revkey[j],
|
||
sizeof (struct revocation_key)) == 0)
|
||
{
|
||
/* remove j */
|
||
|
||
for (x = j; x < pk->numrevkeys - 1; x++)
|
||
pk->revkey[x] = pk->revkey[x + 1];
|
||
|
||
pk->numrevkeys--;
|
||
j--;
|
||
changed = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (changed)
|
||
pk->revkey = xrealloc (pk->revkey,
|
||
pk->numrevkeys *
|
||
sizeof (struct revocation_key));
|
||
}
|
||
|
||
/* SIGNODE is the direct key signature packet (sigclass 0x1f) with
|
||
* the latest creation time. Extract some information from it. */
|
||
if (signode)
|
||
{
|
||
/* Some information from a direct key signature take precedence
|
||
* over the same information given in UID sigs. */
|
||
PKT_signature *sig = signode->pkt->pkt.signature;
|
||
const byte *p;
|
||
|
||
key_usage = parse_key_usage (sig);
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if (p && buf32_to_u32 (p))
|
||
{
|
||
key_expire = keytimestamp + buf32_to_u32 (p);
|
||
key_expire_seen = 1;
|
||
}
|
||
|
||
/* Mark that key as valid: One direct key signature should
|
||
* render a key as valid. */
|
||
pk->flags.valid = 1;
|
||
}
|
||
|
||
/* Pass 1.5: Look for key revocation signatures that were not made
|
||
* by the key (i.e. did a revocation key issue a revocation for
|
||
* us?). Only bother to do this if there is a revocation key in the
|
||
* first place and we're not revoked already. */
|
||
|
||
if (!*r_revoked && pk->revkey)
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_USER_ID; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_SIGNATURE)
|
||
{
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
|
||
if (IS_KEY_REV (sig) &&
|
||
(sig->keyid[0] != kid[0] || sig->keyid[1] != kid[1]))
|
||
{
|
||
int rc = check_revocation_keys (ctrl, pk, sig);
|
||
if (rc == 0)
|
||
{
|
||
*r_revoked = 2;
|
||
sig_to_revoke_info (sig, rinfo);
|
||
/* Don't continue checking since we can't be any
|
||
* more revoked than this. */
|
||
break;
|
||
}
|
||
else if (gpg_err_code (rc) == GPG_ERR_NO_PUBKEY)
|
||
pk->flags.maybe_revoked = 1;
|
||
|
||
/* A failure here means the sig did not verify, was
|
||
* not issued by a revocation key, or a revocation
|
||
* key loop was broken. If a revocation key isn't
|
||
* findable, however, the key might be revoked and
|
||
* we don't know it. */
|
||
|
||
/* Fixme: In the future handle subkey and cert
|
||
* revocations? PGP doesn't, but it's in 2440. */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Second pass: Look at the self-signature of all user IDs. */
|
||
|
||
/* According to RFC 4880 section 11.1, user id and attribute packets
|
||
* are in the second section, after the public key packet and before
|
||
* the subkey packets. */
|
||
signode = uidnode = NULL;
|
||
sigdate = 0; /* Helper variable to find the latest signature in one UID. */
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID || k->pkt->pkttype == PKT_ATTRIBUTE)
|
||
{ /* New user id packet. */
|
||
|
||
/* Apply the data from the most recent self-signed packet to
|
||
* the preceding user id packet. */
|
||
if (uidnode && signode)
|
||
{
|
||
fixup_uidnode (uidnode, signode, keytimestamp);
|
||
pk->flags.valid = 1;
|
||
}
|
||
|
||
/* Clear SIGNODE. The only relevant self-signed data for
|
||
* UIDNODE follows it. */
|
||
if (k->pkt->pkttype == PKT_USER_ID)
|
||
uidnode = k;
|
||
else
|
||
uidnode = NULL;
|
||
|
||
signode = NULL;
|
||
sigdate = 0;
|
||
}
|
||
else if (k->pkt->pkttype == PKT_SIGNATURE && uidnode)
|
||
{
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
if (sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1])
|
||
{
|
||
if (check_key_signature (ctrl, keyblock, k, NULL))
|
||
; /* signature did not verify */
|
||
else if ((IS_UID_SIG (sig) || IS_UID_REV (sig))
|
||
&& sig->timestamp >= sigdate)
|
||
{
|
||
/* Note: we allow invalidation of cert revocations
|
||
* by a newer signature. An attacker can't use this
|
||
* because a key should be revoked with a key revocation.
|
||
* The reason why we have to allow for that is that at
|
||
* one time an email address may become invalid but later
|
||
* the same email address may become valid again (hired,
|
||
* fired, hired again). */
|
||
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
signode->pkt->pkt.signature->flags.chosen_selfsig = 0;
|
||
if (sig->version > sigversion)
|
||
sigversion = sig->version;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (uidnode && signode)
|
||
{
|
||
fixup_uidnode (uidnode, signode, keytimestamp);
|
||
pk->flags.valid = 1;
|
||
}
|
||
|
||
/* If the key isn't valid yet, and we have
|
||
* --allow-non-selfsigned-uid set, then force it valid. */
|
||
if (!pk->flags.valid && opt.allow_non_selfsigned_uid)
|
||
{
|
||
if (opt.verbose)
|
||
log_info (_("Invalid key %s made valid by"
|
||
" --allow-non-selfsigned-uid\n"), keystr_from_pk (pk));
|
||
pk->flags.valid = 1;
|
||
}
|
||
|
||
/* The key STILL isn't valid, so try and find an ultimately
|
||
* trusted signature. */
|
||
if (!pk->flags.valid)
|
||
{
|
||
uidnode = NULL;
|
||
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID)
|
||
uidnode = k;
|
||
else if (k->pkt->pkttype == PKT_SIGNATURE && uidnode)
|
||
{
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
|
||
if (sig->keyid[0] != kid[0] || sig->keyid[1] != kid[1])
|
||
{
|
||
PKT_public_key *ultimate_pk;
|
||
|
||
ultimate_pk = xmalloc_clear (sizeof (*ultimate_pk));
|
||
|
||
/* We don't want to use the full get_pubkey to avoid
|
||
* infinite recursion in certain cases. There is no
|
||
* reason to check that an ultimately trusted key is
|
||
* still valid - if it has been revoked the user
|
||
* should also remove the ultimate trust flag. */
|
||
if (get_pubkey_fast (ultimate_pk, sig->keyid) == 0
|
||
&& check_key_signature2 (ctrl,
|
||
keyblock, k, ultimate_pk,
|
||
NULL, NULL, NULL, NULL) == 0
|
||
&& get_ownertrust (ctrl, ultimate_pk) == TRUST_ULTIMATE)
|
||
{
|
||
free_public_key (ultimate_pk);
|
||
pk->flags.valid = 1;
|
||
break;
|
||
}
|
||
|
||
free_public_key (ultimate_pk);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Record the highest selfsig version so we know if this is a v3 key
|
||
* through and through, or a v3 key with a v4 selfsig somewhere.
|
||
* This is useful in a few places to know if the key must be treated
|
||
* as PGP2-style or OpenPGP-style. Note that a selfsig revocation
|
||
* with a higher version number will also raise this value. This is
|
||
* okay since such a revocation must be issued by the user (i.e. it
|
||
* cannot be issued by someone else to modify the key behavior.) */
|
||
|
||
pk->selfsigversion = sigversion;
|
||
|
||
/* Now that we had a look at all user IDs we can now get some
|
||
* information from those user IDs. */
|
||
|
||
if (!key_usage)
|
||
{
|
||
/* Find the latest user ID with key flags set. */
|
||
uiddate = 0; /* Helper to find the latest user ID. */
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID)
|
||
{
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
|
||
if (uid->help_key_usage
|
||
&& (uid->created > uiddate || (!uid->created && !uiddate)))
|
||
{
|
||
key_usage = uid->help_key_usage;
|
||
uiddate = uid->created;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!key_usage)
|
||
{
|
||
/* No key flags at all: get it from the algo. */
|
||
key_usage = openpgp_pk_algo_usage (pk->pubkey_algo);
|
||
}
|
||
else
|
||
{
|
||
/* Check that the usage matches the usage as given by the algo. */
|
||
int x = openpgp_pk_algo_usage (pk->pubkey_algo);
|
||
if (x) /* Mask it down to the actual allowed usage. */
|
||
key_usage &= x;
|
||
}
|
||
|
||
/* Whatever happens, it's a primary key, so it can certify. */
|
||
pk->pubkey_usage = key_usage | PUBKEY_USAGE_CERT;
|
||
|
||
if (!key_expire_seen)
|
||
{
|
||
/* Find the latest valid user ID with a key expiration set.
|
||
* This may be a different one than from usage computation above
|
||
* because some user IDs may have no expiration date set. */
|
||
uiddate = 0;
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID)
|
||
{
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if (uid->help_key_expire
|
||
&& (uid->created > uiddate || (!uid->created && !uiddate)))
|
||
{
|
||
key_expire = uid->help_key_expire;
|
||
uiddate = uid->created;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Currently only the not anymore supported v3 keys have a maximum
|
||
* expiration date, but future key versions may get this feature again. */
|
||
if (key_expire == 0
|
||
|| (pk->max_expiredate && key_expire > pk->max_expiredate))
|
||
key_expire = pk->max_expiredate;
|
||
|
||
pk->has_expired = key_expire >= curtime ? 0 : key_expire;
|
||
pk->expiredate = key_expire;
|
||
|
||
/* Fixme: we should see how to get rid of the expiretime fields but
|
||
* this needs changes at other places too. */
|
||
|
||
/* And now find the real primary user ID and delete all others. */
|
||
uiddate = uiddate2 = 0;
|
||
uidnode = uidnode2 = NULL;
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID && !k->pkt->pkt.user_id->attrib_data)
|
||
{
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if (uid->flags.primary)
|
||
{
|
||
if (uid->created > uiddate)
|
||
{
|
||
uiddate = uid->created;
|
||
uidnode = k;
|
||
}
|
||
else if (uid->created == uiddate && uidnode)
|
||
{
|
||
/* The dates are equal, so we need to do a different
|
||
* (and arbitrary) comparison. This should rarely,
|
||
* if ever, happen. It's good to try and guarantee
|
||
* that two different GnuPG users with two different
|
||
* keyrings at least pick the same primary. */
|
||
if (cmp_user_ids (uid, uidnode->pkt->pkt.user_id) > 0)
|
||
uidnode = k;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (uid->created > uiddate2)
|
||
{
|
||
uiddate2 = uid->created;
|
||
uidnode2 = k;
|
||
}
|
||
else if (uid->created == uiddate2 && uidnode2)
|
||
{
|
||
if (cmp_user_ids (uid, uidnode2->pkt->pkt.user_id) > 0)
|
||
uidnode2 = k;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (uidnode)
|
||
{
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID &&
|
||
!k->pkt->pkt.user_id->attrib_data)
|
||
{
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if (k != uidnode)
|
||
uid->flags.primary = 0;
|
||
}
|
||
}
|
||
}
|
||
else if (uidnode2)
|
||
{
|
||
/* None is flagged primary - use the latest user ID we have,
|
||
* and disambiguate with the arbitrary packet comparison. */
|
||
uidnode2->pkt->pkt.user_id->flags.primary = 1;
|
||
}
|
||
else
|
||
{
|
||
/* None of our uids were self-signed, so pick the one that
|
||
* sorts first to be the primary. This is the best we can do
|
||
* here since there are no self sigs to date the uids. */
|
||
|
||
uidnode = NULL;
|
||
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID
|
||
&& !k->pkt->pkt.user_id->attrib_data)
|
||
{
|
||
if (!uidnode)
|
||
{
|
||
uidnode = k;
|
||
uidnode->pkt->pkt.user_id->flags.primary = 1;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
if (cmp_user_ids (k->pkt->pkt.user_id,
|
||
uidnode->pkt->pkt.user_id) > 0)
|
||
{
|
||
uidnode->pkt->pkt.user_id->flags.primary = 0;
|
||
uidnode = k;
|
||
uidnode->pkt->pkt.user_id->flags.primary = 1;
|
||
}
|
||
else
|
||
{
|
||
/* just to be safe: */
|
||
k->pkt->pkt.user_id->flags.primary = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Convert a buffer to a signature. Useful for 0x19 embedded sigs.
|
||
* Caller must free the signature when they are done. */
|
||
static PKT_signature *
|
||
buf_to_sig (const byte * buf, size_t len)
|
||
{
|
||
PKT_signature *sig = xmalloc_clear (sizeof (PKT_signature));
|
||
IOBUF iobuf = iobuf_temp_with_content (buf, len);
|
||
int save_mode = set_packet_list_mode (0);
|
||
|
||
if (parse_signature (iobuf, PKT_SIGNATURE, len, sig) != 0)
|
||
{
|
||
free_seckey_enc (sig);
|
||
sig = NULL;
|
||
}
|
||
|
||
set_packet_list_mode (save_mode);
|
||
iobuf_close (iobuf);
|
||
|
||
return sig;
|
||
}
|
||
|
||
|
||
/* Use the self-signed data to fill in various fields in subkeys.
|
||
*
|
||
* KEYBLOCK is the whole keyblock. SUBNODE is the subkey to fill in.
|
||
*
|
||
* Sets the following fields on the subkey:
|
||
*
|
||
* main_keyid
|
||
* flags.valid if the subkey has a valid self-sig binding
|
||
* flags.revoked
|
||
* flags.backsig
|
||
* pubkey_usage
|
||
* has_expired
|
||
* expired_date
|
||
*
|
||
* On this subkey's most revent valid self-signed packet, the
|
||
* following field is set:
|
||
*
|
||
* flags.chosen_selfsig
|
||
*/
|
||
static void
|
||
merge_selfsigs_subkey (ctrl_t ctrl, kbnode_t keyblock, kbnode_t subnode)
|
||
{
|
||
PKT_public_key *mainpk = NULL, *subpk = NULL;
|
||
PKT_signature *sig;
|
||
KBNODE k;
|
||
u32 mainkid[2];
|
||
u32 sigdate = 0;
|
||
KBNODE signode;
|
||
u32 curtime = make_timestamp ();
|
||
unsigned int key_usage = 0;
|
||
u32 keytimestamp = 0;
|
||
u32 key_expire = 0;
|
||
const byte *p;
|
||
|
||
if (subnode->pkt->pkttype != PKT_PUBLIC_SUBKEY)
|
||
BUG ();
|
||
mainpk = keyblock->pkt->pkt.public_key;
|
||
if (mainpk->version < 4)
|
||
return;/* (actually this should never happen) */
|
||
keyid_from_pk (mainpk, mainkid);
|
||
subpk = subnode->pkt->pkt.public_key;
|
||
keytimestamp = subpk->timestamp;
|
||
|
||
subpk->flags.valid = 0;
|
||
subpk->flags.exact = 0;
|
||
subpk->main_keyid[0] = mainpk->main_keyid[0];
|
||
subpk->main_keyid[1] = mainpk->main_keyid[1];
|
||
|
||
/* Find the latest key binding self-signature. */
|
||
signode = NULL;
|
||
sigdate = 0; /* Helper to find the latest signature. */
|
||
for (k = subnode->next; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_SIGNATURE)
|
||
{
|
||
sig = k->pkt->pkt.signature;
|
||
if (sig->keyid[0] == mainkid[0] && sig->keyid[1] == mainkid[1])
|
||
{
|
||
if (check_key_signature (ctrl, keyblock, k, NULL))
|
||
; /* Signature did not verify. */
|
||
else if (IS_SUBKEY_REV (sig))
|
||
{
|
||
/* Note that this means that the date on a
|
||
* revocation sig does not matter - even if the
|
||
* binding sig is dated after the revocation sig,
|
||
* the subkey is still marked as revoked. This
|
||
* seems ok, as it is just as easy to make new
|
||
* subkeys rather than re-sign old ones as the
|
||
* problem is in the distribution. Plus, PGP (7)
|
||
* does this the same way. */
|
||
subpk->flags.revoked = 1;
|
||
sig_to_revoke_info (sig, &subpk->revoked);
|
||
/* Although we could stop now, we continue to
|
||
* figure out other information like the old expiration
|
||
* time. */
|
||
}
|
||
else if (IS_SUBKEY_SIG (sig) && sig->timestamp >= sigdate)
|
||
{
|
||
if (sig->flags.expired)
|
||
; /* Signature has expired - ignore it. */
|
||
else
|
||
{
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
signode->pkt->pkt.signature->flags.chosen_selfsig = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* No valid key binding. */
|
||
if (!signode)
|
||
return;
|
||
|
||
sig = signode->pkt->pkt.signature;
|
||
sig->flags.chosen_selfsig = 1; /* So we know which selfsig we chose later. */
|
||
|
||
key_usage = parse_key_usage (sig);
|
||
if (!key_usage)
|
||
{
|
||
/* No key flags at all: get it from the algo. */
|
||
key_usage = openpgp_pk_algo_usage (subpk->pubkey_algo);
|
||
}
|
||
else
|
||
{
|
||
/* Check that the usage matches the usage as given by the algo. */
|
||
int x = openpgp_pk_algo_usage (subpk->pubkey_algo);
|
||
if (x) /* Mask it down to the actual allowed usage. */
|
||
key_usage &= x;
|
||
}
|
||
|
||
subpk->pubkey_usage = key_usage;
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if (p && buf32_to_u32 (p))
|
||
key_expire = keytimestamp + buf32_to_u32 (p);
|
||
else
|
||
key_expire = 0;
|
||
|
||
subpk->has_expired = key_expire >= curtime ? 0 : key_expire;
|
||
subpk->expiredate = key_expire;
|
||
|
||
/* Algo doesn't exist. */
|
||
if (openpgp_pk_test_algo (subpk->pubkey_algo))
|
||
return;
|
||
|
||
subpk->flags.valid = 1;
|
||
|
||
/* Find the most recent 0x19 embedded signature on our self-sig. */
|
||
if (!subpk->flags.backsig)
|
||
{
|
||
int seq = 0;
|
||
size_t n;
|
||
PKT_signature *backsig = NULL;
|
||
|
||
sigdate = 0;
|
||
|
||
/* We do this while() since there may be other embedded
|
||
* signatures in the future. We only want 0x19 here. */
|
||
|
||
while ((p = enum_sig_subpkt (sig->hashed,
|
||
SIGSUBPKT_SIGNATURE, &n, &seq, NULL)))
|
||
if (n > 3
|
||
&& ((p[0] == 3 && p[2] == 0x19) || (p[0] == 4 && p[1] == 0x19)))
|
||
{
|
||
PKT_signature *tempsig = buf_to_sig (p, n);
|
||
if (tempsig)
|
||
{
|
||
if (tempsig->timestamp > sigdate)
|
||
{
|
||
if (backsig)
|
||
free_seckey_enc (backsig);
|
||
|
||
backsig = tempsig;
|
||
sigdate = backsig->timestamp;
|
||
}
|
||
else
|
||
free_seckey_enc (tempsig);
|
||
}
|
||
}
|
||
|
||
seq = 0;
|
||
|
||
/* It is safe to have this in the unhashed area since the 0x19
|
||
* is located on the selfsig for convenience, not security. */
|
||
|
||
while ((p = enum_sig_subpkt (sig->unhashed, SIGSUBPKT_SIGNATURE,
|
||
&n, &seq, NULL)))
|
||
if (n > 3
|
||
&& ((p[0] == 3 && p[2] == 0x19) || (p[0] == 4 && p[1] == 0x19)))
|
||
{
|
||
PKT_signature *tempsig = buf_to_sig (p, n);
|
||
if (tempsig)
|
||
{
|
||
if (tempsig->timestamp > sigdate)
|
||
{
|
||
if (backsig)
|
||
free_seckey_enc (backsig);
|
||
|
||
backsig = tempsig;
|
||
sigdate = backsig->timestamp;
|
||
}
|
||
else
|
||
free_seckey_enc (tempsig);
|
||
}
|
||
}
|
||
|
||
if (backsig)
|
||
{
|
||
/* At this point, backsig contains the most recent 0x19 sig.
|
||
* Let's see if it is good. */
|
||
|
||
/* 2==valid, 1==invalid, 0==didn't check */
|
||
if (check_backsig (mainpk, subpk, backsig) == 0)
|
||
subpk->flags.backsig = 2;
|
||
else
|
||
subpk->flags.backsig = 1;
|
||
|
||
free_seckey_enc (backsig);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Merge information from the self-signatures with the public key,
|
||
* subkeys and user ids to make using them more easy.
|
||
*
|
||
* See documentation for merge_selfsigs_main, merge_selfsigs_subkey
|
||
* and fixup_uidnode for exactly which fields are updated. */
|
||
static void
|
||
merge_selfsigs (ctrl_t ctrl, kbnode_t keyblock)
|
||
{
|
||
KBNODE k;
|
||
int revoked;
|
||
struct revoke_info rinfo;
|
||
PKT_public_key *main_pk;
|
||
prefitem_t *prefs;
|
||
unsigned int mdc_feature;
|
||
unsigned int aead_feature;
|
||
|
||
if (keyblock->pkt->pkttype != PKT_PUBLIC_KEY)
|
||
{
|
||
if (keyblock->pkt->pkttype == PKT_SECRET_KEY)
|
||
{
|
||
log_error ("expected public key but found secret key "
|
||
"- must stop\n");
|
||
/* We better exit here because a public key is expected at
|
||
* other places too. FIXME: Figure this out earlier and
|
||
* don't get to here at all */
|
||
g10_exit (1);
|
||
}
|
||
BUG ();
|
||
}
|
||
|
||
merge_selfsigs_main (ctrl, keyblock, &revoked, &rinfo);
|
||
|
||
/* Now merge in the data from each of the subkeys. */
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
merge_selfsigs_subkey (ctrl, keyblock, k);
|
||
}
|
||
}
|
||
|
||
main_pk = keyblock->pkt->pkt.public_key;
|
||
if (revoked || main_pk->has_expired || !main_pk->flags.valid)
|
||
{
|
||
/* If the primary key is revoked, expired, or invalid we
|
||
* better set the appropriate flags on that key and all
|
||
* subkeys. */
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
PKT_public_key *pk = k->pkt->pkt.public_key;
|
||
if (!main_pk->flags.valid)
|
||
pk->flags.valid = 0;
|
||
if (revoked && !pk->flags.revoked)
|
||
{
|
||
pk->flags.revoked = revoked;
|
||
memcpy (&pk->revoked, &rinfo, sizeof (rinfo));
|
||
}
|
||
if (main_pk->has_expired)
|
||
pk->has_expired = main_pk->has_expired;
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Set the preference list of all keys to those of the primary real
|
||
* user ID. Note: we use these preferences when we don't know by
|
||
* which user ID the key has been selected.
|
||
* fixme: we should keep atoms of commonly used preferences or
|
||
* use reference counting to optimize the preference lists storage.
|
||
* FIXME: it might be better to use the intersection of
|
||
* all preferences.
|
||
* Do a similar thing for the MDC feature flag. */
|
||
prefs = NULL;
|
||
mdc_feature = aead_feature = 0;
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID
|
||
&& !k->pkt->pkt.user_id->attrib_data
|
||
&& k->pkt->pkt.user_id->flags.primary)
|
||
{
|
||
prefs = k->pkt->pkt.user_id->prefs;
|
||
mdc_feature = k->pkt->pkt.user_id->flags.mdc;
|
||
aead_feature = k->pkt->pkt.user_id->flags.aead;
|
||
break;
|
||
}
|
||
}
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
PKT_public_key *pk = k->pkt->pkt.public_key;
|
||
if (pk->prefs)
|
||
xfree (pk->prefs);
|
||
pk->prefs = copy_prefs (prefs);
|
||
pk->flags.mdc = mdc_feature;
|
||
pk->flags.aead = aead_feature;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* See whether the key satisfies any additional requirements specified
|
||
* in CTX. If so, return the node of an appropriate key or subkey.
|
||
* Otherwise, return NULL if there was no appropriate key.
|
||
*
|
||
* Note that we do not return a reference, i.e. the result must not be
|
||
* freed using 'release_kbnode'.
|
||
*
|
||
* In case the primary key is not required, select a suitable subkey.
|
||
* We need the primary key if PUBKEY_USAGE_CERT is set in REQ_USAGE or
|
||
* we are in PGP6 or PGP7 mode and PUBKEY_USAGE_SIG is set in
|
||
* REQ_USAGE.
|
||
*
|
||
* If any of PUBKEY_USAGE_SIG, PUBKEY_USAGE_ENC and PUBKEY_USAGE_CERT
|
||
* are set in REQ_USAGE, we filter by the key's function. Concretely,
|
||
* if PUBKEY_USAGE_SIG and PUBKEY_USAGE_CERT are set, then we only
|
||
* return a key if it is (at least) either a signing or a
|
||
* certification key.
|
||
*
|
||
* If REQ_USAGE is set, then we reject any keys that are not good
|
||
* (i.e., valid, not revoked, not expired, etc.). This allows the
|
||
* getkey functions to be used for plain key listings.
|
||
*
|
||
* Sets the matched key's user id field (pk->user_id) to the user id
|
||
* that matched the low-level search criteria or NULL.
|
||
*
|
||
* If R_FLAGS is not NULL set certain flags for more detailed error
|
||
* reporting. Used flags are:
|
||
*
|
||
* - LOOKUP_ALL_SUBKEYS_EXPIRED :: All Subkeys are expired or have
|
||
* been revoked.
|
||
* - LOOKUP_NOT_SELECTED :: No suitable key found
|
||
*
|
||
* This function needs to handle several different cases:
|
||
*
|
||
* 1. No requested usage and no primary key requested
|
||
* Examples for this case are that we have a keyID to be used
|
||
* for decrytion or verification.
|
||
* 2. No usage but primary key requested
|
||
* This is the case for all functions which work on an
|
||
* entire keyblock, e.g. for editing or listing
|
||
* 3. Usage and primary key requested
|
||
* FIXME
|
||
* 4. Usage but no primary key requested
|
||
* FIXME
|
||
*
|
||
*/
|
||
static kbnode_t
|
||
finish_lookup (kbnode_t keyblock, unsigned int req_usage, int want_exact,
|
||
int want_secret, unsigned int *r_flags)
|
||
{
|
||
kbnode_t k;
|
||
|
||
/* If WANT_EXACT is set, the key or subkey that actually matched the
|
||
low-level search criteria. */
|
||
kbnode_t foundk = NULL;
|
||
/* The user id (if any) that matched the low-level search criteria. */
|
||
PKT_user_id *foundu = NULL;
|
||
|
||
u32 latest_date;
|
||
kbnode_t latest_key;
|
||
PKT_public_key *pk;
|
||
int req_prim;
|
||
u32 curtime = make_timestamp ();
|
||
|
||
if (r_flags)
|
||
*r_flags = 0;
|
||
|
||
#define USAGE_MASK (PUBKEY_USAGE_SIG|PUBKEY_USAGE_ENC|PUBKEY_USAGE_CERT)
|
||
req_usage &= USAGE_MASK;
|
||
|
||
/* Request the primary if we're certifying another key, and also if
|
||
* signing data while --pgp6 or --pgp7 is on since pgp 6 and 7 do
|
||
* not understand signatures made by a signing subkey. PGP 8 does. */
|
||
req_prim = ((req_usage & PUBKEY_USAGE_CERT)
|
||
|| ((PGP6 || PGP7) && (req_usage & PUBKEY_USAGE_SIG)));
|
||
|
||
|
||
log_assert (keyblock->pkt->pkttype == PKT_PUBLIC_KEY);
|
||
|
||
/* For an exact match mark the primary or subkey that matched the
|
||
low-level search criteria. */
|
||
if (want_exact)
|
||
{
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if ((k->flag & 1))
|
||
{
|
||
log_assert (k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY);
|
||
foundk = k;
|
||
pk = k->pkt->pkt.public_key;
|
||
pk->flags.exact = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Get the user id that matched that low-level search criteria. */
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if ((k->flag & 2))
|
||
{
|
||
log_assert (k->pkt->pkttype == PKT_USER_ID);
|
||
foundu = k->pkt->pkt.user_id;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (DBG_LOOKUP)
|
||
log_debug ("finish_lookup: checking key %08lX (%s)(req_usage=%x)\n",
|
||
(ulong) keyid_from_pk (keyblock->pkt->pkt.public_key, NULL),
|
||
foundk ? "one" : "all", req_usage);
|
||
|
||
if (!req_usage)
|
||
{
|
||
latest_key = foundk ? foundk : keyblock;
|
||
goto found;
|
||
}
|
||
|
||
latest_date = 0;
|
||
latest_key = NULL;
|
||
/* Set LATEST_KEY to the latest (the one with the most recent
|
||
* timestamp) good (valid, not revoked, not expired, etc.) subkey.
|
||
*
|
||
* Don't bother if we are only looking for a primary key or we need
|
||
* an exact match and the exact match is not a subkey. */
|
||
if (req_prim || (foundk && foundk->pkt->pkttype != PKT_PUBLIC_SUBKEY))
|
||
;
|
||
else
|
||
{
|
||
kbnode_t nextk;
|
||
int n_subkeys = 0;
|
||
int n_revoked_or_expired = 0;
|
||
|
||
/* Either start a loop or check just this one subkey. */
|
||
for (k = foundk ? foundk : keyblock; k; k = nextk)
|
||
{
|
||
if (foundk)
|
||
{
|
||
/* If FOUNDK is not NULL, then only consider that exact
|
||
key, i.e., don't iterate. */
|
||
nextk = NULL;
|
||
}
|
||
else
|
||
nextk = k->next;
|
||
|
||
if (k->pkt->pkttype != PKT_PUBLIC_SUBKEY)
|
||
continue;
|
||
|
||
pk = k->pkt->pkt.public_key;
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tchecking subkey %08lX\n",
|
||
(ulong) keyid_from_pk (pk, NULL));
|
||
|
||
if (!pk->flags.valid)
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tsubkey not valid\n");
|
||
continue;
|
||
}
|
||
if (!((pk->pubkey_usage & USAGE_MASK) & req_usage))
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tusage does not match: want=%x have=%x\n",
|
||
req_usage, pk->pubkey_usage);
|
||
continue;
|
||
}
|
||
|
||
n_subkeys++;
|
||
if (pk->flags.revoked)
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tsubkey has been revoked\n");
|
||
n_revoked_or_expired++;
|
||
continue;
|
||
}
|
||
if (pk->has_expired)
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tsubkey has expired\n");
|
||
n_revoked_or_expired++;
|
||
continue;
|
||
}
|
||
if (pk->timestamp > curtime && !opt.ignore_valid_from)
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tsubkey not yet valid\n");
|
||
continue;
|
||
}
|
||
|
||
if (want_secret && agent_probe_secret_key (NULL, pk))
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tno secret key\n");
|
||
continue;
|
||
}
|
||
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tsubkey might be fine\n");
|
||
/* In case a key has a timestamp of 0 set, we make sure
|
||
that it is used. A better change would be to compare
|
||
">=" but that might also change the selected keys and
|
||
is as such a more intrusive change. */
|
||
if (pk->timestamp > latest_date || (!pk->timestamp && !latest_date))
|
||
{
|
||
latest_date = pk->timestamp;
|
||
latest_key = k;
|
||
}
|
||
}
|
||
if (n_subkeys == n_revoked_or_expired && r_flags)
|
||
*r_flags |= LOOKUP_ALL_SUBKEYS_EXPIRED;
|
||
}
|
||
|
||
/* Check if the primary key is ok (valid, not revoke, not expire,
|
||
* matches requested usage) if:
|
||
*
|
||
* - we didn't find an appropriate subkey and we're not doing an
|
||
* exact search,
|
||
*
|
||
* - we're doing an exact match and the exact match was the
|
||
* primary key, or,
|
||
*
|
||
* - we're just considering the primary key. */
|
||
if ((!latest_key && !want_exact) || foundk == keyblock || req_prim)
|
||
{
|
||
if (DBG_LOOKUP && !foundk && !req_prim)
|
||
log_debug ("\tno suitable subkeys found - trying primary\n");
|
||
pk = keyblock->pkt->pkt.public_key;
|
||
if (!pk->flags.valid)
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tprimary key not valid\n");
|
||
}
|
||
else if (!((pk->pubkey_usage & USAGE_MASK) & req_usage))
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tprimary key usage does not match: "
|
||
"want=%x have=%x\n", req_usage, pk->pubkey_usage);
|
||
}
|
||
else if (pk->flags.revoked)
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tprimary key has been revoked\n");
|
||
}
|
||
else if (pk->has_expired)
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tprimary key has expired\n");
|
||
}
|
||
else /* Okay. */
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tprimary key may be used\n");
|
||
latest_key = keyblock;
|
||
}
|
||
}
|
||
|
||
if (!latest_key)
|
||
{
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tno suitable key found - giving up\n");
|
||
if (r_flags)
|
||
*r_flags |= LOOKUP_NOT_SELECTED;
|
||
return NULL; /* Not found. */
|
||
}
|
||
|
||
found:
|
||
if (DBG_LOOKUP)
|
||
log_debug ("\tusing key %08lX\n",
|
||
(ulong) keyid_from_pk (latest_key->pkt->pkt.public_key, NULL));
|
||
|
||
if (latest_key)
|
||
{
|
||
pk = latest_key->pkt->pkt.public_key;
|
||
free_user_id (pk->user_id);
|
||
pk->user_id = scopy_user_id (foundu);
|
||
}
|
||
|
||
if (latest_key != keyblock && opt.verbose)
|
||
{
|
||
char *tempkeystr =
|
||
xstrdup (keystr_from_pk (latest_key->pkt->pkt.public_key));
|
||
log_info (_("using subkey %s instead of primary key %s\n"),
|
||
tempkeystr, keystr_from_pk (keyblock->pkt->pkt.public_key));
|
||
xfree (tempkeystr);
|
||
}
|
||
|
||
cache_user_id (keyblock);
|
||
|
||
return latest_key ? latest_key : keyblock; /* Found. */
|
||
}
|
||
|
||
|
||
/* Print a KEY_CONSIDERED status line. */
|
||
static void
|
||
print_status_key_considered (kbnode_t keyblock, unsigned int flags)
|
||
{
|
||
char hexfpr[2*MAX_FINGERPRINT_LEN + 1];
|
||
kbnode_t node;
|
||
char flagbuf[20];
|
||
|
||
if (!is_status_enabled ())
|
||
return;
|
||
|
||
for (node=keyblock; node; node = node->next)
|
||
if (node->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| node->pkt->pkttype == PKT_SECRET_KEY)
|
||
break;
|
||
if (!node)
|
||
{
|
||
log_error ("%s: keyblock w/o primary key\n", __func__);
|
||
return;
|
||
}
|
||
|
||
hexfingerprint (node->pkt->pkt.public_key, hexfpr, sizeof hexfpr);
|
||
snprintf (flagbuf, sizeof flagbuf, " %u", flags);
|
||
write_status_strings (STATUS_KEY_CONSIDERED, hexfpr, flagbuf, NULL);
|
||
}
|
||
|
||
|
||
|
||
/* A high-level function to lookup keys.
|
||
*
|
||
* This function builds on top of the low-level keydb API. It first
|
||
* searches the database using the description stored in CTX->ITEMS,
|
||
* then it filters the results using CTX and, finally, if WANT_SECRET
|
||
* is set, it ignores any keys for which no secret key is available.
|
||
*
|
||
* Unlike the low-level search functions, this function also merges
|
||
* all of the self-signed data into the keys, subkeys and user id
|
||
* packets (see the merge_selfsigs for details).
|
||
*
|
||
* On success the key's keyblock is stored at *RET_KEYBLOCK, and the
|
||
* specific subkey is stored at *RET_FOUND_KEY. Note that we do not
|
||
* return a reference in *RET_FOUND_KEY, i.e. the result must not be
|
||
* freed using 'release_kbnode', and it is only valid until
|
||
* *RET_KEYBLOCK is deallocated. Therefore, if RET_FOUND_KEY is not
|
||
* NULL, then RET_KEYBLOCK must not be NULL. */
|
||
static int
|
||
lookup (ctrl_t ctrl, getkey_ctx_t ctx, int want_secret,
|
||
kbnode_t *ret_keyblock, kbnode_t *ret_found_key)
|
||
{
|
||
int rc;
|
||
int no_suitable_key = 0;
|
||
KBNODE keyblock = NULL;
|
||
KBNODE found_key = NULL;
|
||
unsigned int infoflags;
|
||
|
||
log_assert (ret_found_key == NULL || ret_keyblock != NULL);
|
||
if (ret_keyblock)
|
||
*ret_keyblock = NULL;
|
||
|
||
for (;;)
|
||
{
|
||
rc = keydb_search (ctx->kr_handle, ctx->items, ctx->nitems, NULL);
|
||
if (rc)
|
||
break;
|
||
|
||
/* If we are iterating over the entire database, then we need to
|
||
* change from KEYDB_SEARCH_MODE_FIRST, which does an implicit
|
||
* reset, to KEYDB_SEARCH_MODE_NEXT, which gets the next record. */
|
||
if (ctx->nitems && ctx->items->mode == KEYDB_SEARCH_MODE_FIRST)
|
||
ctx->items->mode = KEYDB_SEARCH_MODE_NEXT;
|
||
|
||
rc = keydb_get_keyblock (ctx->kr_handle, &keyblock);
|
||
if (rc)
|
||
{
|
||
log_error ("keydb_get_keyblock failed: %s\n", gpg_strerror (rc));
|
||
goto skip;
|
||
}
|
||
|
||
if (want_secret)
|
||
{
|
||
rc = agent_probe_any_secret_key (NULL, keyblock);
|
||
if (gpg_err_code(rc) == GPG_ERR_NO_SECKEY)
|
||
goto skip; /* No secret key available. */
|
||
if (rc)
|
||
goto found; /* Unexpected error. */
|
||
}
|
||
|
||
/* Warning: node flag bits 0 and 1 should be preserved by
|
||
* merge_selfsigs. */
|
||
merge_selfsigs (ctrl, keyblock);
|
||
found_key = finish_lookup (keyblock, ctx->req_usage, ctx->exact,
|
||
want_secret, &infoflags);
|
||
print_status_key_considered (keyblock, infoflags);
|
||
if (found_key)
|
||
{
|
||
no_suitable_key = 0;
|
||
goto found;
|
||
}
|
||
else
|
||
{
|
||
no_suitable_key = 1;
|
||
}
|
||
|
||
skip:
|
||
/* Release resources and continue search. */
|
||
release_kbnode (keyblock);
|
||
keyblock = NULL;
|
||
/* The keyblock cache ignores the current "file position".
|
||
* Thus, if we request the next result and the cache matches
|
||
* (and it will since it is what we just looked for), we'll get
|
||
* the same entry back! We can avoid this infinite loop by
|
||
* disabling the cache. */
|
||
keydb_disable_caching (ctx->kr_handle);
|
||
}
|
||
|
||
found:
|
||
if (rc && gpg_err_code (rc) != GPG_ERR_NOT_FOUND)
|
||
log_error ("keydb_search failed: %s\n", gpg_strerror (rc));
|
||
|
||
if (!rc)
|
||
{
|
||
if (ret_keyblock)
|
||
{
|
||
*ret_keyblock = keyblock; /* Return the keyblock. */
|
||
keyblock = NULL;
|
||
}
|
||
}
|
||
else if (gpg_err_code (rc) == GPG_ERR_NOT_FOUND && no_suitable_key)
|
||
rc = want_secret? GPG_ERR_UNUSABLE_SECKEY : GPG_ERR_UNUSABLE_PUBKEY;
|
||
else if (gpg_err_code (rc) == GPG_ERR_NOT_FOUND)
|
||
rc = want_secret? GPG_ERR_NO_SECKEY : GPG_ERR_NO_PUBKEY;
|
||
|
||
release_kbnode (keyblock);
|
||
|
||
if (ret_found_key)
|
||
{
|
||
if (! rc)
|
||
*ret_found_key = found_key;
|
||
else
|
||
*ret_found_key = NULL;
|
||
}
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
gpg_error_t
|
||
get_seckey_default_or_card (ctrl_t ctrl, PKT_public_key *pk,
|
||
const byte *fpr_card, size_t fpr_len)
|
||
{
|
||
gpg_error_t err;
|
||
strlist_t namelist = NULL;
|
||
|
||
const char *def_secret_key = parse_def_secret_key (ctrl);
|
||
|
||
if (def_secret_key)
|
||
add_to_strlist (&namelist, def_secret_key);
|
||
else if (fpr_card)
|
||
{
|
||
int rc = get_pubkey_byfprint (ctrl, pk, NULL, fpr_card, fpr_len);
|
||
|
||
/* The key on card can be not suitable for requested usage. */
|
||
if (rc == GPG_ERR_UNUSABLE_PUBKEY)
|
||
fpr_card = NULL; /* Fallthrough as no card. */
|
||
else
|
||
return rc;
|
||
}
|
||
|
||
if (!fpr_card
|
||
|| (def_secret_key && def_secret_key[strlen (def_secret_key)-1] == '!'))
|
||
err = key_byname (ctrl, NULL, namelist, pk, 1, 0, NULL, NULL);
|
||
else
|
||
{ /* Default key is specified and card key is also available. */
|
||
kbnode_t k, keyblock = NULL;
|
||
|
||
err = key_byname (ctrl, NULL, namelist, pk, 1, 0, &keyblock, NULL);
|
||
if (!err)
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
PKT_public_key *pk_candidate;
|
||
char fpr[MAX_FINGERPRINT_LEN];
|
||
|
||
if (k->pkt->pkttype != PKT_PUBLIC_KEY
|
||
&&k->pkt->pkttype != PKT_PUBLIC_SUBKEY)
|
||
continue;
|
||
|
||
pk_candidate = k->pkt->pkt.public_key;
|
||
if (!pk_candidate->flags.valid)
|
||
continue;
|
||
if (!((pk_candidate->pubkey_usage & USAGE_MASK) & pk->req_usage))
|
||
continue;
|
||
fingerprint_from_pk (pk_candidate, fpr, NULL);
|
||
if (!memcmp (fpr_card, fpr, fpr_len))
|
||
{
|
||
release_public_key_parts (pk);
|
||
copy_public_key (pk, pk_candidate);
|
||
break;
|
||
}
|
||
}
|
||
release_kbnode (keyblock);
|
||
}
|
||
|
||
free_strlist (namelist);
|
||
|
||
return err;
|
||
}
|
||
|
||
/*********************************************
|
||
*********** User ID printing helpers *******
|
||
*********************************************/
|
||
|
||
/* Return a string with a printable representation of the user_id.
|
||
* this string must be freed by xfree. If R_NOUID is not NULL it is
|
||
* set to true if a user id was not found; otherwise to false. */
|
||
static char *
|
||
get_user_id_string (ctrl_t ctrl, u32 * keyid, int mode, size_t *r_len,
|
||
int *r_nouid)
|
||
{
|
||
user_id_db_t r;
|
||
keyid_list_t a;
|
||
int pass = 0;
|
||
char *p;
|
||
|
||
if (r_nouid)
|
||
*r_nouid = 0;
|
||
|
||
/* Try it two times; second pass reads from the database. */
|
||
do
|
||
{
|
||
for (r = user_id_db; r; r = r->next)
|
||
{
|
||
for (a = r->keyids; a; a = a->next)
|
||
{
|
||
if (a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1])
|
||
{
|
||
if (mode == 2)
|
||
{
|
||
/* An empty string as user id is possible. Make
|
||
sure that the malloc allocates one byte and
|
||
does not bail out. */
|
||
p = xmalloc (r->len? r->len : 1);
|
||
memcpy (p, r->name, r->len);
|
||
if (r_len)
|
||
*r_len = r->len;
|
||
}
|
||
else
|
||
{
|
||
if (mode)
|
||
p = xasprintf ("%08lX%08lX %.*s",
|
||
(ulong) keyid[0], (ulong) keyid[1],
|
||
r->len, r->name);
|
||
else
|
||
p = xasprintf ("%s %.*s", keystr (keyid),
|
||
r->len, r->name);
|
||
if (r_len)
|
||
*r_len = strlen (p);
|
||
}
|
||
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
while (++pass < 2 && !get_pubkey (ctrl, NULL, keyid));
|
||
|
||
if (mode == 2)
|
||
p = xstrdup (user_id_not_found_utf8 ());
|
||
else if (mode)
|
||
p = xasprintf ("%08lX%08lX [?]", (ulong) keyid[0], (ulong) keyid[1]);
|
||
else
|
||
p = xasprintf ("%s [?]", keystr (keyid));
|
||
|
||
if (r_nouid)
|
||
*r_nouid = 1;
|
||
if (r_len)
|
||
*r_len = strlen (p);
|
||
return p;
|
||
}
|
||
|
||
|
||
char *
|
||
get_user_id_string_native (ctrl_t ctrl, u32 * keyid)
|
||
{
|
||
char *p = get_user_id_string (ctrl, keyid, 0, NULL, NULL);
|
||
char *p2 = utf8_to_native (p, strlen (p), 0);
|
||
xfree (p);
|
||
return p2;
|
||
}
|
||
|
||
|
||
char *
|
||
get_long_user_id_string (ctrl_t ctrl, u32 * keyid)
|
||
{
|
||
return get_user_id_string (ctrl, keyid, 1, NULL, NULL);
|
||
}
|
||
|
||
|
||
/* Please try to use get_user_byfpr instead of this one. */
|
||
char *
|
||
get_user_id (ctrl_t ctrl, u32 *keyid, size_t *rn, int *r_nouid)
|
||
{
|
||
return get_user_id_string (ctrl, keyid, 2, rn, r_nouid);
|
||
}
|
||
|
||
|
||
/* Please try to use get_user_id_byfpr_native instead of this one. */
|
||
char *
|
||
get_user_id_native (ctrl_t ctrl, u32 *keyid)
|
||
{
|
||
size_t rn;
|
||
char *p = get_user_id (ctrl, keyid, &rn, NULL);
|
||
char *p2 = utf8_to_native (p, rn, 0);
|
||
xfree (p);
|
||
return p2;
|
||
}
|
||
|
||
|
||
/* Return the user id for a key designated by its fingerprint, FPR,
|
||
which must be MAX_FINGERPRINT_LEN bytes in size. Note: the
|
||
returned string, which must be freed using xfree, may not be NUL
|
||
terminated. To determine the length of the string, you must use
|
||
*RN. */
|
||
char *
|
||
get_user_id_byfpr (ctrl_t ctrl, const byte *fpr, size_t *rn)
|
||
{
|
||
user_id_db_t r;
|
||
char *p;
|
||
int pass = 0;
|
||
|
||
/* Try it two times; second pass reads from the database. */
|
||
do
|
||
{
|
||
for (r = user_id_db; r; r = r->next)
|
||
{
|
||
keyid_list_t a;
|
||
for (a = r->keyids; a; a = a->next)
|
||
{
|
||
if (!memcmp (a->fpr, fpr, MAX_FINGERPRINT_LEN))
|
||
{
|
||
/* An empty string as user id is possible. Make
|
||
sure that the malloc allocates one byte and does
|
||
not bail out. */
|
||
p = xmalloc (r->len? r->len : 1);
|
||
memcpy (p, r->name, r->len);
|
||
*rn = r->len;
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
while (++pass < 2
|
||
&& !get_pubkey_byfprint (ctrl, NULL, NULL, fpr, MAX_FINGERPRINT_LEN));
|
||
p = xstrdup (user_id_not_found_utf8 ());
|
||
*rn = strlen (p);
|
||
return p;
|
||
}
|
||
|
||
/* Like get_user_id_byfpr, but convert the string to the native
|
||
encoding. The returned string needs to be freed. Unlike
|
||
get_user_id_byfpr, the returned string is NUL terminated. */
|
||
char *
|
||
get_user_id_byfpr_native (ctrl_t ctrl, const byte *fpr)
|
||
{
|
||
size_t rn;
|
||
char *p = get_user_id_byfpr (ctrl, fpr, &rn);
|
||
char *p2 = utf8_to_native (p, rn, 0);
|
||
xfree (p);
|
||
return p2;
|
||
}
|
||
|
||
|
||
/* Return the database handle used by this context. The context still
|
||
owns the handle. */
|
||
KEYDB_HANDLE
|
||
get_ctx_handle (GETKEY_CTX ctx)
|
||
{
|
||
return ctx->kr_handle;
|
||
}
|
||
|
||
static void
|
||
free_akl (struct akl *akl)
|
||
{
|
||
if (! akl)
|
||
return;
|
||
|
||
if (akl->spec)
|
||
free_keyserver_spec (akl->spec);
|
||
|
||
xfree (akl);
|
||
}
|
||
|
||
void
|
||
release_akl (void)
|
||
{
|
||
while (opt.auto_key_locate)
|
||
{
|
||
struct akl *akl2 = opt.auto_key_locate;
|
||
opt.auto_key_locate = opt.auto_key_locate->next;
|
||
free_akl (akl2);
|
||
}
|
||
}
|
||
|
||
|
||
/* Returns true if the AKL is empty or has only the local method
|
||
* active. */
|
||
int
|
||
akl_empty_or_only_local (void)
|
||
{
|
||
struct akl *akl;
|
||
int any = 0;
|
||
|
||
for (akl = opt.auto_key_locate; akl; akl = akl->next)
|
||
if (akl->type != AKL_NODEFAULT && akl->type != AKL_LOCAL)
|
||
{
|
||
any = 1;
|
||
break;
|
||
}
|
||
|
||
return !any;
|
||
}
|
||
|
||
|
||
/* Returns false on error. */
|
||
int
|
||
parse_auto_key_locate (const char *options_arg)
|
||
{
|
||
char *tok;
|
||
char *options, *options_buf;
|
||
|
||
options = options_buf = xstrdup (options_arg);
|
||
while ((tok = optsep (&options)))
|
||
{
|
||
struct akl *akl, *check, *last = NULL;
|
||
int dupe = 0;
|
||
|
||
if (tok[0] == '\0')
|
||
continue;
|
||
|
||
akl = xmalloc_clear (sizeof (*akl));
|
||
|
||
if (ascii_strcasecmp (tok, "clear") == 0)
|
||
{
|
||
xfree (akl);
|
||
free_akl (opt.auto_key_locate);
|
||
opt.auto_key_locate = NULL;
|
||
continue;
|
||
}
|
||
else if (ascii_strcasecmp (tok, "nodefault") == 0)
|
||
akl->type = AKL_NODEFAULT;
|
||
else if (ascii_strcasecmp (tok, "local") == 0)
|
||
akl->type = AKL_LOCAL;
|
||
else if (ascii_strcasecmp (tok, "ldap") == 0)
|
||
akl->type = AKL_LDAP;
|
||
else if (ascii_strcasecmp (tok, "keyserver") == 0)
|
||
akl->type = AKL_KEYSERVER;
|
||
else if (ascii_strcasecmp (tok, "cert") == 0)
|
||
akl->type = AKL_CERT;
|
||
else if (ascii_strcasecmp (tok, "pka") == 0)
|
||
akl->type = AKL_PKA;
|
||
else if (ascii_strcasecmp (tok, "dane") == 0)
|
||
akl->type = AKL_DANE;
|
||
else if (ascii_strcasecmp (tok, "wkd") == 0)
|
||
akl->type = AKL_WKD;
|
||
else if (ascii_strcasecmp (tok, "ntds") == 0)
|
||
akl->type = AKL_NTDS;
|
||
else if ((akl->spec = parse_keyserver_uri (tok, 1)))
|
||
akl->type = AKL_SPEC;
|
||
else
|
||
{
|
||
free_akl (akl);
|
||
xfree (options_buf);
|
||
return 0;
|
||
}
|
||
|
||
/* We must maintain the order the user gave us */
|
||
for (check = opt.auto_key_locate; check;
|
||
last = check, check = check->next)
|
||
{
|
||
/* Check for duplicates */
|
||
if (check->type == akl->type
|
||
&& (akl->type != AKL_SPEC
|
||
|| (akl->type == AKL_SPEC
|
||
&& strcmp (check->spec->uri, akl->spec->uri) == 0)))
|
||
{
|
||
dupe = 1;
|
||
free_akl (akl);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!dupe)
|
||
{
|
||
if (last)
|
||
last->next = akl;
|
||
else
|
||
opt.auto_key_locate = akl;
|
||
}
|
||
}
|
||
|
||
xfree (options_buf);
|
||
return 1;
|
||
}
|
||
|
||
|
||
|
||
/* The list of key origins. */
|
||
static struct {
|
||
const char *name;
|
||
int origin;
|
||
} key_origin_list[] =
|
||
{
|
||
{ "self", KEYORG_SELF },
|
||
{ "file", KEYORG_FILE },
|
||
{ "url", KEYORG_URL },
|
||
{ "wkd", KEYORG_WKD },
|
||
{ "dane", KEYORG_DANE },
|
||
{ "ks-pref", KEYORG_KS_PREF },
|
||
{ "ks", KEYORG_KS },
|
||
{ "unknown", KEYORG_UNKNOWN }
|
||
};
|
||
|
||
/* Parse the argument for --key-origin. Return false on error. */
|
||
int
|
||
parse_key_origin (char *string)
|
||
{
|
||
int i;
|
||
char *comma;
|
||
|
||
comma = strchr (string, ',');
|
||
if (comma)
|
||
*comma = 0;
|
||
|
||
if (!ascii_strcasecmp (string, "help"))
|
||
{
|
||
log_info (_("valid values for option '%s':\n"), "--key-origin");
|
||
for (i=0; i < DIM (key_origin_list); i++)
|
||
log_info (" %s\n", key_origin_list[i].name);
|
||
g10_exit (1);
|
||
}
|
||
|
||
for (i=0; i < DIM (key_origin_list); i++)
|
||
if (!ascii_strcasecmp (string, key_origin_list[i].name))
|
||
{
|
||
opt.key_origin = key_origin_list[i].origin;
|
||
xfree (opt.key_origin_url);
|
||
opt.key_origin_url = NULL;
|
||
if (comma && comma[1])
|
||
{
|
||
opt.key_origin_url = xstrdup (comma+1);
|
||
trim_spaces (opt.key_origin_url);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
if (comma)
|
||
*comma = ',';
|
||
return 0;
|
||
}
|
||
|
||
/* Return a string or "?" for the key ORIGIN. */
|
||
const char *
|
||
key_origin_string (int origin)
|
||
{
|
||
int i;
|
||
|
||
for (i=0; i < DIM (key_origin_list); i++)
|
||
if (key_origin_list[i].origin == origin)
|
||
return key_origin_list[i].name;
|
||
return "?";
|
||
}
|
||
|
||
|
||
|
||
/* Returns true if a secret key is available for the public key with
|
||
key id KEYID; returns false if not. This function ignores legacy
|
||
keys. Note: this is just a fast check and does not tell us whether
|
||
the secret key is valid; this check merely indicates whether there
|
||
is some secret key with the specified key id. */
|
||
int
|
||
have_secret_key_with_kid (u32 *keyid)
|
||
{
|
||
gpg_error_t err;
|
||
KEYDB_HANDLE kdbhd;
|
||
KEYDB_SEARCH_DESC desc;
|
||
kbnode_t keyblock;
|
||
kbnode_t node;
|
||
int result = 0;
|
||
|
||
kdbhd = keydb_new ();
|
||
if (!kdbhd)
|
||
return 0;
|
||
memset (&desc, 0, sizeof desc);
|
||
desc.mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
desc.u.kid[0] = keyid[0];
|
||
desc.u.kid[1] = keyid[1];
|
||
while (!result)
|
||
{
|
||
err = keydb_search (kdbhd, &desc, 1, NULL);
|
||
if (err)
|
||
break;
|
||
|
||
err = keydb_get_keyblock (kdbhd, &keyblock);
|
||
if (err)
|
||
{
|
||
log_error (_("error reading keyblock: %s\n"), gpg_strerror (err));
|
||
break;
|
||
}
|
||
|
||
for (node = keyblock; node; node = node->next)
|
||
{
|
||
/* Bit 0 of the flags is set if the search found the key
|
||
using that key or subkey. Note: a search will only ever
|
||
match a single key or subkey. */
|
||
if ((node->flag & 1))
|
||
{
|
||
log_assert (node->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| node->pkt->pkttype == PKT_PUBLIC_SUBKEY);
|
||
|
||
if (!agent_probe_secret_key (NULL, node->pkt->pkt.public_key))
|
||
result = 1; /* Secret key available. */
|
||
else
|
||
result = 0;
|
||
|
||
break;
|
||
}
|
||
}
|
||
release_kbnode (keyblock);
|
||
}
|
||
|
||
keydb_release (kdbhd);
|
||
return result;
|
||
}
|