mirror of
git://git.gnupg.org/gnupg.git
synced 2024-10-31 20:08:43 +01:00
271 lines
6.3 KiB
C
271 lines
6.3 KiB
C
/* mpi-inv.c - MPI functions
|
|
* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include "mpi-internal.h"
|
|
|
|
|
|
/****************
|
|
* Calculate the multiplicative inverse X of A mod N
|
|
* That is: Find the solution x for
|
|
* 1 = (a*x) mod n
|
|
*/
|
|
void
|
|
mpi_invm( MPI x, MPI a, MPI n )
|
|
{
|
|
#if 0
|
|
MPI u, v, u1, u2, u3, v1, v2, v3, q, t1, t2, t3;
|
|
MPI ta, tb, tc;
|
|
|
|
u = mpi_copy(a);
|
|
v = mpi_copy(n);
|
|
u1 = mpi_alloc_set_ui(1);
|
|
u2 = mpi_alloc_set_ui(0);
|
|
u3 = mpi_copy(u);
|
|
v1 = mpi_alloc_set_ui(0);
|
|
v2 = mpi_alloc_set_ui(1);
|
|
v3 = mpi_copy(v);
|
|
q = mpi_alloc( mpi_get_nlimbs(u)+1 );
|
|
t1 = mpi_alloc( mpi_get_nlimbs(u)+1 );
|
|
t2 = mpi_alloc( mpi_get_nlimbs(u)+1 );
|
|
t3 = mpi_alloc( mpi_get_nlimbs(u)+1 );
|
|
while( mpi_cmp_ui( v3, 0 ) ) {
|
|
mpi_fdiv_q( q, u3, v3 );
|
|
mpi_mul(t1, v1, q); mpi_mul(t2, v2, q); mpi_mul(t3, v3, q);
|
|
mpi_sub(t1, u1, t1); mpi_sub(t2, u2, t2); mpi_sub(t3, u3, t3);
|
|
mpi_set(u1, v1); mpi_set(u2, v2); mpi_set(u3, v3);
|
|
mpi_set(v1, t1); mpi_set(v2, t2); mpi_set(v3, t3);
|
|
}
|
|
/* log_debug("result:\n");
|
|
log_mpidump("q =", q );
|
|
log_mpidump("u1=", u1);
|
|
log_mpidump("u2=", u2);
|
|
log_mpidump("u3=", u3);
|
|
log_mpidump("v1=", v1);
|
|
log_mpidump("v2=", v2); */
|
|
mpi_set(x, u1);
|
|
|
|
mpi_free(u1);
|
|
mpi_free(u2);
|
|
mpi_free(u3);
|
|
mpi_free(v1);
|
|
mpi_free(v2);
|
|
mpi_free(v3);
|
|
mpi_free(q);
|
|
mpi_free(t1);
|
|
mpi_free(t2);
|
|
mpi_free(t3);
|
|
mpi_free(u);
|
|
mpi_free(v);
|
|
#elif 0
|
|
/* Extended Euclid's algorithm (See TAOPC Vol II, 4.5.2, Alg X)
|
|
* modified according to Michael Penk's solution for Exercice 35 */
|
|
|
|
/* FIXME: we can simplify this in most cases (see Knuth) */
|
|
MPI u, v, u1, u2, u3, v1, v2, v3, t1, t2, t3;
|
|
unsigned k;
|
|
int sign;
|
|
|
|
u = mpi_copy(a);
|
|
v = mpi_copy(n);
|
|
for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) {
|
|
mpi_rshift(u, u, 1);
|
|
mpi_rshift(v, v, 1);
|
|
}
|
|
|
|
|
|
u1 = mpi_alloc_set_ui(1);
|
|
u2 = mpi_alloc_set_ui(0);
|
|
u3 = mpi_copy(u);
|
|
v1 = mpi_copy(v); /* !-- used as const 1 */
|
|
v2 = mpi_alloc( mpi_get_nlimbs(u) ); mpi_sub( v2, u1, u );
|
|
v3 = mpi_copy(v);
|
|
if( mpi_test_bit(u, 0) ) { /* u is odd */
|
|
t1 = mpi_alloc_set_ui(0);
|
|
t2 = mpi_alloc_set_ui(1); t2->sign = 1;
|
|
t3 = mpi_copy(v); t3->sign = !t3->sign;
|
|
goto Y4;
|
|
}
|
|
else {
|
|
t1 = mpi_alloc_set_ui(1);
|
|
t2 = mpi_alloc_set_ui(0);
|
|
t3 = mpi_copy(u);
|
|
}
|
|
do {
|
|
do {
|
|
if( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */
|
|
mpi_add(t1, t1, v);
|
|
mpi_sub(t2, t2, u);
|
|
}
|
|
mpi_rshift(t1, t1, 1);
|
|
mpi_rshift(t2, t2, 1);
|
|
mpi_rshift(t3, t3, 1);
|
|
Y4:
|
|
;
|
|
} while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */
|
|
|
|
if( !t3->sign ) {
|
|
mpi_set(u1, t1);
|
|
mpi_set(u2, t2);
|
|
mpi_set(u3, t3);
|
|
}
|
|
else {
|
|
mpi_sub(v1, v, t1);
|
|
sign = u->sign; u->sign = !u->sign;
|
|
mpi_sub(v2, u, t2);
|
|
u->sign = sign;
|
|
sign = t3->sign; t3->sign = !t3->sign;
|
|
mpi_set(v3, t3);
|
|
t3->sign = sign;
|
|
}
|
|
mpi_sub(t1, u1, v1);
|
|
mpi_sub(t2, u2, v2);
|
|
mpi_sub(t3, u3, v3);
|
|
if( t1->sign ) {
|
|
mpi_add(t1, t1, v);
|
|
mpi_sub(t2, t2, u);
|
|
}
|
|
} while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */
|
|
/* mpi_lshift( u3, k ); */
|
|
mpi_set(x, u1);
|
|
|
|
mpi_free(u1);
|
|
mpi_free(u2);
|
|
mpi_free(u3);
|
|
mpi_free(v1);
|
|
mpi_free(v2);
|
|
mpi_free(v3);
|
|
mpi_free(t1);
|
|
mpi_free(t2);
|
|
mpi_free(t3);
|
|
#else
|
|
/* Extended Euclid's algorithm (See TAOPC Vol II, 4.5.2, Alg X)
|
|
* modified according to Michael Penk's solution for Exercice 35
|
|
* with further enhancement */
|
|
MPI u, v, u1, u2=NULL, u3, v1, v2=NULL, v3, t1, t2=NULL, t3;
|
|
unsigned k;
|
|
int sign;
|
|
int odd ;
|
|
|
|
u = mpi_copy(a);
|
|
v = mpi_copy(n);
|
|
|
|
for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) {
|
|
mpi_rshift(u, u, 1);
|
|
mpi_rshift(v, v, 1);
|
|
}
|
|
odd = mpi_test_bit(v,0);
|
|
|
|
u1 = mpi_alloc_set_ui(1);
|
|
if( !odd )
|
|
u2 = mpi_alloc_set_ui(0);
|
|
u3 = mpi_copy(u);
|
|
v1 = mpi_copy(v);
|
|
if( !odd ) {
|
|
v2 = mpi_alloc( mpi_get_nlimbs(u) );
|
|
mpi_sub( v2, u1, u ); /* U is used as const 1 */
|
|
}
|
|
v3 = mpi_copy(v);
|
|
if( mpi_test_bit(u, 0) ) { /* u is odd */
|
|
t1 = mpi_alloc_set_ui(0);
|
|
if( !odd ) {
|
|
t2 = mpi_alloc_set_ui(1); t2->sign = 1;
|
|
}
|
|
t3 = mpi_copy(v); t3->sign = !t3->sign;
|
|
goto Y4;
|
|
}
|
|
else {
|
|
t1 = mpi_alloc_set_ui(1);
|
|
if( !odd )
|
|
t2 = mpi_alloc_set_ui(0);
|
|
t3 = mpi_copy(u);
|
|
}
|
|
do {
|
|
do {
|
|
if( !odd ) {
|
|
if( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */
|
|
mpi_add(t1, t1, v);
|
|
mpi_sub(t2, t2, u);
|
|
}
|
|
mpi_rshift(t1, t1, 1);
|
|
mpi_rshift(t2, t2, 1);
|
|
mpi_rshift(t3, t3, 1);
|
|
}
|
|
else {
|
|
if( mpi_test_bit(t1, 0) )
|
|
mpi_add(t1, t1, v);
|
|
mpi_rshift(t1, t1, 1);
|
|
mpi_rshift(t3, t3, 1);
|
|
}
|
|
Y4:
|
|
;
|
|
} while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */
|
|
|
|
if( !t3->sign ) {
|
|
mpi_set(u1, t1);
|
|
if( !odd )
|
|
mpi_set(u2, t2);
|
|
mpi_set(u3, t3);
|
|
}
|
|
else {
|
|
mpi_sub(v1, v, t1);
|
|
sign = u->sign; u->sign = !u->sign;
|
|
if( !odd )
|
|
mpi_sub(v2, u, t2);
|
|
u->sign = sign;
|
|
sign = t3->sign; t3->sign = !t3->sign;
|
|
mpi_set(v3, t3);
|
|
t3->sign = sign;
|
|
}
|
|
mpi_sub(t1, u1, v1);
|
|
if( !odd )
|
|
mpi_sub(t2, u2, v2);
|
|
mpi_sub(t3, u3, v3);
|
|
if( t1->sign ) {
|
|
mpi_add(t1, t1, v);
|
|
if( !odd )
|
|
mpi_sub(t2, t2, u);
|
|
}
|
|
} while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */
|
|
/* mpi_lshift( u3, k ); */
|
|
mpi_set(x, u1);
|
|
|
|
mpi_free(u1);
|
|
mpi_free(v1);
|
|
mpi_free(t1);
|
|
if( !odd ) {
|
|
mpi_free(u2);
|
|
mpi_free(v2);
|
|
mpi_free(t2);
|
|
}
|
|
mpi_free(u3);
|
|
mpi_free(v3);
|
|
mpi_free(t3);
|
|
|
|
mpi_free(u);
|
|
mpi_free(v);
|
|
#endif
|
|
}
|
|
|
|
|
|
|