1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-06-18 00:49:50 +02:00
gnupg/g10/keyid.c
Werner Koch c0c2c58054 Finished the bulk of changes for gnupg 1.9. This included switching
to libgcrypt functions, using shared error codes from libgpg-error,
replacing the old functions we used to have in ../util by those in
../jnlib and ../common, renaming the malloc functions and a couple of
types.  Note, that not all changes are listed below becuause they are
too similar and done at far too many places.  As of today the code
builds using the current libgcrypt from CVS but it is very unlikely
that it actually works.
2003-06-18 19:56:13 +00:00

581 lines
14 KiB
C

/* keyid.c - key ID and fingerprint handling
* Copyright (C) 1998, 1999, 2000, 2001, 2003 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <time.h>
#include <assert.h>
#include "gpg.h"
#include "util.h"
#include "main.h"
#include "packet.h"
#include "options.h"
#include "mpi.h"
#include "keydb.h"
#include "i18n.h"
int
pubkey_letter( int algo )
{
switch( algo ) {
case PUBKEY_ALGO_RSA: return 'R' ;
case PUBKEY_ALGO_RSA_E: return 'r' ;
case PUBKEY_ALGO_RSA_S: return 's' ;
case PUBKEY_ALGO_ELGAMAL_E: return 'g';
case PUBKEY_ALGO_ELGAMAL: return 'G' ;
case PUBKEY_ALGO_DSA: return 'D' ;
default: return '?';
}
}
static gcry_md_hd_t
do_fingerprint_md( PKT_public_key *pk )
{
gcry_md_hd_t md;
unsigned n;
unsigned nb[PUBKEY_MAX_NPKEY];
unsigned nn[PUBKEY_MAX_NPKEY];
byte *pp[PUBKEY_MAX_NPKEY];
int i;
int npkey = pubkey_get_npkey( pk->pubkey_algo );
gcry_md_open (&md, pk->version < 4 ? DIGEST_ALGO_RMD160
: DIGEST_ALGO_SHA1, 0);
n = pk->version < 4 ? 8 : 6;
for(i=0; i < npkey; i++ ) {
size_t nbytes;
if (gcry_mpi_print( GCRYMPI_FMT_PGP, NULL, &nbytes, pk->pkey[i] ))
BUG ();
/* fixme: we should try to allocate a buffer on the stack */
pp[i] = xmalloc(nbytes);
if (gcry_mpi_print ( GCRYMPI_FMT_PGP, pp[i], &nbytes, pk->pkey[i] ))
BUG ();
nn[i] = nbytes;
n += 2 + nn[i];
}
gcry_md_putc ( md, 0x99 ); /* ctb */
gcry_md_putc ( md, n >> 8 ); /* 2 byte length header */
gcry_md_putc ( md, n );
if( pk->version < 4 )
gcry_md_putc ( md, 3 );
else
gcry_md_putc ( md, 4 );
{ u32 a = pk->timestamp;
gcry_md_putc ( md, a >> 24 );
gcry_md_putc ( md, a >> 16 );
gcry_md_putc ( md, a >> 8 );
gcry_md_putc ( md, a );
}
if( pk->version < 4 ) {
u16 a;
if( pk->expiredate )
a = (u16)((pk->expiredate - pk->timestamp) / 86400L);
else
a = 0;
gcry_md_putc ( md, a >> 8 );
gcry_md_putc ( md, a );
}
gcry_md_putc ( md, pk->pubkey_algo );
for(i=0; i < npkey; i++ ) {
gcry_md_putc ( md, nb[i]>>8);
gcry_md_putc ( md, nb[i] );
gcry_md_write( md, pp[i], nn[i] );
xfree (pp[i]);
}
gcry_md_final ( md );
return md;
}
static gcry_md_hd_t
do_fingerprint_md_sk( PKT_secret_key *sk )
{
PKT_public_key pk;
int npkey = pubkey_get_npkey( sk->pubkey_algo ); /* npkey is correct! */
int i;
pk.pubkey_algo = sk->pubkey_algo;
pk.version = sk->version;
pk.timestamp = sk->timestamp;
pk.expiredate = sk->expiredate;
pk.pubkey_algo = sk->pubkey_algo;
for( i=0; i < npkey; i++ )
pk.pkey[i] = sk->skey[i];
return do_fingerprint_md( &pk );
}
u32
v3_keyid (gcry_mpi_t a, u32 *ki)
{
byte *buffer;
size_t nbytes;
if (gcry_mpi_print (GCRYMPI_FMT_USG, NULL, &nbytes, a ))
BUG ();
/* fixme: allocate it on the stack */
buffer = xmalloc (nbytes);
if (gcry_mpi_print( GCRYMPI_FMT_USG, buffer, &nbytes, a ))
BUG ();
if (nbytes < 8) /* oops */
ki[0] = ki[1] = 0;
else
{
memcpy (ki+0, buffer+nbytes-8, 4);
memcpy (ki+1, buffer+nbytes-4, 4);
}
xfree (buffer);
return ki[1];
}
/****************
* Get the keyid from the secret key and put it into keyid
* if this is not NULL. Return the 32 low bits of the keyid.
*/
u32
keyid_from_sk( PKT_secret_key *sk, u32 *keyid )
{
u32 lowbits;
u32 dummy_keyid[2];
if( !keyid )
keyid = dummy_keyid;
if( sk->version < 4 && is_RSA(sk->pubkey_algo) ) {
keyid[0] = keyid[1] = 0;
lowbits = pubkey_get_npkey(sk->pubkey_algo) ?
v3_keyid (sk->skey[0], keyid) : 0;
}
else {
const byte *dp;
gcry_md_hd_t md;
md = do_fingerprint_md_sk(sk);
dp = gcry_md_read ( md, 0 );
keyid[0] = dp[12] << 24 | dp[13] << 16 | dp[14] << 8 | dp[15] ;
keyid[1] = dp[16] << 24 | dp[17] << 16 | dp[18] << 8 | dp[19] ;
lowbits = keyid[1];
gcry_md_close (md);
}
return lowbits;
}
/****************
* Get the keyid from the public key and put it into keyid
* if this is not NULL. Return the 32 low bits of the keyid.
*/
u32
keyid_from_pk( PKT_public_key *pk, u32 *keyid )
{
u32 lowbits;
u32 dummy_keyid[2];
if( !keyid )
keyid = dummy_keyid;
if( pk->keyid[0] || pk->keyid[1] ) {
keyid[0] = pk->keyid[0];
keyid[1] = pk->keyid[1];
lowbits = keyid[1];
}
else if( pk->version < 4 && is_RSA(pk->pubkey_algo) ) {
keyid[0] = keyid[1] = 0;
lowbits = pubkey_get_npkey(pk->pubkey_algo) ?
v3_keyid (pk->pkey[0], keyid) : 0 ;
pk->keyid[0] = keyid[0];
pk->keyid[1] = keyid[1];
}
else {
const byte *dp;
gcry_md_hd_t md;
md = do_fingerprint_md(pk);
dp = gcry_md_read ( md, 0 );
keyid[0] = dp[12] << 24 | dp[13] << 16 | dp[14] << 8 | dp[15] ;
keyid[1] = dp[16] << 24 | dp[17] << 16 | dp[18] << 8 | dp[19] ;
lowbits = keyid[1];
gcry_md_close (md);
pk->keyid[0] = keyid[0];
pk->keyid[1] = keyid[1];
}
return lowbits;
}
/****************
* Get the keyid from the fingerprint. This function is simple for most
* keys, but has to do a keylookup for old stayle keys.
*/
u32
keyid_from_fingerprint( const byte *fprint, size_t fprint_len, u32 *keyid )
{
u32 dummy_keyid[2];
if( !keyid )
keyid = dummy_keyid;
if( fprint_len != 20 ) {
/* This is special as we have to lookup the key first */
PKT_public_key pk;
int rc;
memset( &pk, 0, sizeof pk );
rc = get_pubkey_byfprint( &pk, fprint, fprint_len );
if( rc ) {
log_error("Oops: keyid_from_fingerprint: no pubkey\n");
keyid[0] = 0;
keyid[1] = 0;
}
else
keyid_from_pk( &pk, keyid );
}
else {
const byte *dp = fprint;
keyid[0] = dp[12] << 24 | dp[13] << 16 | dp[14] << 8 | dp[15] ;
keyid[1] = dp[16] << 24 | dp[17] << 16 | dp[18] << 8 | dp[19] ;
}
return keyid[1];
}
u32
keyid_from_sig( PKT_signature *sig, u32 *keyid )
{
if( keyid ) {
keyid[0] = sig->keyid[0];
keyid[1] = sig->keyid[1];
}
return sig->keyid[1];
}
byte *
namehash_from_uid(PKT_user_id *uid)
{
if(uid->namehash==NULL)
{
uid->namehash=xmalloc (20);
if(uid->attrib_data)
gcry_md_hash_buffer (GCRY_MD_RMD160, uid->namehash,
uid->attrib_data,uid->attrib_len);
else
gcry_md_hash_buffer (GCRY_MD_RMD160, uid->namehash,
uid->name,uid->len);
}
return uid->namehash;
}
/****************
* return the number of bits used in the pk
*/
unsigned
nbits_from_pk( PKT_public_key *pk )
{
return pubkey_nbits( pk->pubkey_algo, pk->pkey );
}
/****************
* return the number of bits used in the sk
*/
unsigned
nbits_from_sk( PKT_secret_key *sk )
{
return pubkey_nbits( sk->pubkey_algo, sk->skey );
}
static const char *
mk_datestr (char *buffer, time_t atime)
{
struct tm *tp;
if ( atime < 0 ) /* 32 bit time_t and after 2038-01-19 */
strcpy (buffer, "????" "-??" "-??"); /* mark this as invalid */
else {
tp = gmtime (&atime);
sprintf (buffer,"%04d-%02d-%02d",
1900+tp->tm_year, tp->tm_mon+1, tp->tm_mday );
}
return buffer;
}
/****************
* return a string with the creation date of the pk
* Note: this is alloced in a static buffer.
* Format is: yyyy-mm-dd
*/
const char *
datestr_from_pk( PKT_public_key *pk )
{
static char buffer[11+5];
time_t atime = pk->timestamp;
return mk_datestr (buffer, atime);
}
const char *
datestr_from_sk( PKT_secret_key *sk )
{
static char buffer[11+5];
time_t atime = sk->timestamp;
return mk_datestr (buffer, atime);
}
const char *
datestr_from_sig( PKT_signature *sig )
{
static char buffer[11+5];
time_t atime = sig->timestamp;
return mk_datestr (buffer, atime);
}
const char *
expirestr_from_pk( PKT_public_key *pk )
{
static char buffer[11+5];
time_t atime;
if( !pk->expiredate )
return _("never ");
atime = pk->expiredate;
return mk_datestr (buffer, atime);
}
const char *
expirestr_from_sk( PKT_secret_key *sk )
{
static char buffer[11+5];
time_t atime;
if( !sk->expiredate )
return _("never ");
atime = sk->expiredate;
return mk_datestr (buffer, atime);
}
const char *
expirestr_from_sig( PKT_signature *sig )
{
static char buffer[11+5];
time_t atime;
if(!sig->expiredate)
return _("never ");
atime=sig->expiredate;
return mk_datestr (buffer, atime);
}
const char *
colon_strtime (u32 t)
{
if (!t)
return "";
if (opt.fixed_list_mode) {
static char buf[15];
sprintf (buf, "%lu", (ulong)t);
return buf;
}
return strtimestamp(t);
}
const char *
colon_datestr_from_pk (PKT_public_key *pk)
{
if (opt.fixed_list_mode) {
static char buf[15];
sprintf (buf, "%lu", (ulong)pk->timestamp);
return buf;
}
return datestr_from_pk (pk);
}
const char *
colon_datestr_from_sk (PKT_secret_key *sk)
{
if (opt.fixed_list_mode) {
static char buf[15];
sprintf (buf, "%lu", (ulong)sk->timestamp);
return buf;
}
return datestr_from_sk (sk);
}
const char *
colon_datestr_from_sig (PKT_signature *sig)
{
if (opt.fixed_list_mode) {
static char buf[15];
sprintf (buf, "%lu", (ulong)sig->timestamp);
return buf;
}
return datestr_from_sig (sig);
}
const char *
colon_expirestr_from_sig (PKT_signature *sig)
{
if(!sig->expiredate)
return "";
if (opt.fixed_list_mode) {
static char buf[15];
sprintf (buf, "%lu", (ulong)sig->expiredate);
return buf;
}
return expirestr_from_sig (sig);
}
/**************** .
* Return a byte array with the fingerprint for the given PK/SK
* The length of the array is returned in ret_len. Caller must free
* the array or provide an array of length MAX_FINGERPRINT_LEN.
*/
byte *
fingerprint_from_pk( PKT_public_key *pk, byte *array, size_t *ret_len )
{
byte *buf;
const byte *dp;
size_t len;
if( pk->version < 4 && is_RSA(pk->pubkey_algo) ) {
/* RSA in version 3 packets is special */
gcry_md_hd_t md;
gcry_md_open (&md, DIGEST_ALGO_MD5, 0);
if( pubkey_get_npkey( pk->pubkey_algo ) > 1 ) {
size_t nbytes;
if (gcry_mpi_print( GCRYMPI_FMT_USG, NULL, &nbytes, pk->pkey[0]))
BUG ();
/* fixme: allocate it on the stack */
buf = xmalloc(nbytes);
if (gcry_mpi_print (GCRYMPI_FMT_USG, buf, &nbytes, pk->pkey[0]))
BUG ();
gcry_md_write (md, buf, nbytes);
xfree (buf);
if (gcry_mpi_print( GCRYMPI_FMT_USG, NULL, &nbytes, pk->pkey[1]))
BUG ();
/* fixme: allocate it on the stack */
buf = xmalloc(nbytes);
if (gcry_mpi_print( GCRYMPI_FMT_USG, buf, &nbytes, pk->pkey[1]))
BUG ();
gcry_md_write( md, buf, nbytes );
xfree(buf);
}
gcry_md_final (md);
if( !array )
array = xmalloc ( 16 );
len = 16;
memcpy(array, gcry_md_read (md, DIGEST_ALGO_MD5), 16 );
gcry_md_close (md);
}
else {
gcry_md_hd_t md;
md = do_fingerprint_md(pk);
dp = gcry_md_read ( md, 0 );
len = gcry_md_get_algo_dlen (gcry_md_get_algo (md));
assert( len <= MAX_FINGERPRINT_LEN );
if( !array )
array = xmalloc ( len );
memcpy(array, dp, len );
pk->keyid[0] = dp[12] << 24 | dp[13] << 16 | dp[14] << 8 | dp[15] ;
pk->keyid[1] = dp[16] << 24 | dp[17] << 16 | dp[18] << 8 | dp[19] ;
gcry_md_close (md);
}
*ret_len = len;
return array;
}
byte *
fingerprint_from_sk( PKT_secret_key *sk, byte *array, size_t *ret_len )
{
byte *buf;
const char *dp;
size_t len;
if( sk->version < 4 && is_RSA(sk->pubkey_algo) ) {
/* RSA in version 3 packets is special */
gcry_md_hd_t md;
gcry_md_open (&md, DIGEST_ALGO_MD5, 0);
if( pubkey_get_npkey( sk->pubkey_algo ) > 1 ) {
size_t nbytes;
if (gcry_mpi_print( GCRYMPI_FMT_USG, NULL, &nbytes, sk->skey[0]))
BUG ();
/* fixme: allocate it on the stack */
buf = xmalloc(nbytes);
if (gcry_mpi_print (GCRYMPI_FMT_USG, buf, &nbytes, sk->skey[0]))
BUG ();
gcry_md_write (md, buf, nbytes);
xfree (buf);
if (gcry_mpi_print( GCRYMPI_FMT_USG, NULL, &nbytes, sk->skey[1]))
BUG ();
/* fixme: allocate it on the stack */
buf = xmalloc(nbytes);
if (gcry_mpi_print( GCRYMPI_FMT_USG, buf, &nbytes, sk->skey[1]))
BUG ();
gcry_md_write( md, buf, nbytes );
xfree(buf);
}
gcry_md_final (md);
if( !array )
array = xmalloc ( 16 );
len = 16;
memcpy(array, gcry_md_read (md, DIGEST_ALGO_MD5), 16 );
gcry_md_close (md);
}
else {
gcry_md_hd_t md;
md = do_fingerprint_md_sk(sk);
dp = gcry_md_read ( md, 0 );
len = gcry_md_get_algo_dlen (gcry_md_get_algo (md));
assert( len <= MAX_FINGERPRINT_LEN );
if( !array )
array = xmalloc ( len );
memcpy(array, dp, len );
gcry_md_close (md);
}
*ret_len = len;
return array;
}