1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-25 15:27:03 +01:00
gnupg/agent/pkdecrypt.c
NIIBE Yutaka 9128d81bb7
agent:kem:ecc: Support a key on smartcard.
* agent/agent.h (agent_card_ecc_kem): New.
* agent/divert-scd.c (agent_card_ecc_kem): New.
* agent/pkdecrypt.c (ecc_extract_pk_from_key): New.
(ecc_extract_sk_from_key): New.
(ecc_raw_kem, get_cardkey, ecc_get_curve): New.
(ecc_pgp_kem_decrypt): Support a key on smartcard for ECC.
(composite_pgp_kem_decrypt): Handle a case of a key on smartcard.
* common/sexputil.c (get_ecc_curve_from_key): New.
* common/util.h (get_ecc_curve_from_key): New.

--

GnuPG-bug-id: 7097
Signed-off-by: NIIBE Yutaka <gniibe@fsij.org>
2024-04-26 14:18:03 +09:00

824 lines
22 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pkdecrypt.c - public key decryption (well, actually using a secret key)
* Copyright (C) 2001, 2003 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <unistd.h>
#include <sys/stat.h>
#include "agent.h"
#include "../common/openpgpdefs.h"
/* Table with parameters for KEM decryption. Use get_ecc_parms to
* find an entry. */
struct ecc_params
{
const char *curve; /* Canonical name of the curve. */
size_t pubkey_len; /* Pubkey in the SEXP representation. */
size_t scalar_len;
size_t point_len;
size_t shared_len;
int hash_algo;
int kem_algo;
int scalar_reverse;
};
static const struct ecc_params ecc_table[] =
{
{
"Curve25519",
33, 32, 32, 32,
GCRY_MD_SHA3_256, GCRY_KEM_RAW_X25519,
1
},
{
"X448",
56, 56, 56, 64,
GCRY_MD_SHA3_512, GCRY_KEM_RAW_X448,
0
},
{
"brainpoolP256r1",
65, 32, 65, 32,
GCRY_MD_SHA3_256, GCRY_KEM_RAW_BP256,
0
},
{
"brainpoolP384r1",
97, 48, 97, 64,
GCRY_MD_SHA3_512, GCRY_KEM_RAW_BP384,
0
},
{
"brainpoolP512r1",
129, 64, 129, 64,
GCRY_MD_SHA3_512, GCRY_KEM_RAW_BP512,
0
},
{ NULL, 0, 0, 0, 0, 0, 0, 0 }
};
/* Maximum buffer sizes required for ECC KEM. Keep this aligned to
* the ecc_table above. */
#define ECC_SCALAR_LEN_MAX 64
#define ECC_POINT_LEN_MAX (1+2*64)
#define ECC_HASH_LEN_MAX 64
/* Return the ECC parameters for CURVE. CURVE is expected to be the
* canonical name. */
static const struct ecc_params *
get_ecc_params (const char *curve)
{
int i;
for (i = 0; ecc_table[i].curve; i++)
if (!strcmp (ecc_table[i].curve, curve))
return &ecc_table[i];
return NULL;
}
/* DECRYPT the stuff in ciphertext which is expected to be a S-Exp.
Try to get the key from CTRL and write the decoded stuff back to
OUTFP. The padding information is stored at R_PADDING with -1
for not known. */
gpg_error_t
agent_pkdecrypt (ctrl_t ctrl, const char *desc_text,
const unsigned char *ciphertext, size_t ciphertextlen,
membuf_t *outbuf, int *r_padding)
{
gcry_sexp_t s_skey = NULL, s_cipher = NULL, s_plain = NULL;
unsigned char *shadow_info = NULL;
gpg_error_t err = 0;
char *buf = NULL;
size_t len;
*r_padding = -1;
if (!ctrl->have_keygrip)
{
log_error ("speculative decryption not yet supported\n");
err = gpg_error (GPG_ERR_NO_SECKEY);
goto leave;
}
err = gcry_sexp_sscan (&s_cipher, NULL, (char*)ciphertext, ciphertextlen);
if (err)
{
log_error ("failed to convert ciphertext: %s\n", gpg_strerror (err));
err = gpg_error (GPG_ERR_INV_DATA);
goto leave;
}
if (DBG_CRYPTO)
{
log_printhex (ctrl->keygrip, 20, "keygrip:");
log_printhex (ciphertext, ciphertextlen, "cipher: ");
}
err = agent_key_from_file (ctrl, NULL, desc_text,
NULL, &shadow_info,
CACHE_MODE_NORMAL, NULL, &s_skey, NULL, NULL);
if (err && gpg_err_code (err) != GPG_ERR_NO_SECKEY)
{
log_error ("failed to read the secret key\n");
}
else if (shadow_info
|| err /* gpg_err_code (err) == GPG_ERR_NO_SECKEY */)
{ /* divert operation to the smartcard */
if (!gcry_sexp_canon_len (ciphertext, ciphertextlen, NULL, NULL))
{
err = gpg_error (GPG_ERR_INV_SEXP);
goto leave;
}
if (s_skey && agent_is_tpm2_key (s_skey))
err = divert_tpm2_pkdecrypt (ctrl, ciphertext, shadow_info,
&buf, &len, r_padding);
else
err = divert_pkdecrypt (ctrl, ctrl->keygrip, ciphertext,
&buf, &len, r_padding);
if (err)
{
/* We restore the original error (ie. no seckey) as no card
* has been found and we have no shadow key. This avoids a
* surprising "card removed" error code. */
if ((gpg_err_code (err) == GPG_ERR_CARD_REMOVED
|| gpg_err_code (err) == GPG_ERR_CARD_NOT_PRESENT)
&& !shadow_info)
err = gpg_error (GPG_ERR_NO_SECKEY);
else
log_error ("smartcard decryption failed: %s\n", gpg_strerror (err));
goto leave;
}
put_membuf_printf (outbuf, "(5:value%u:", (unsigned int)len);
put_membuf (outbuf, buf, len);
put_membuf (outbuf, ")", 2);
}
else
{ /* No smartcard, but a private key */
/* if (DBG_CRYPTO ) */
/* { */
/* log_debug ("skey: "); */
/* gcry_sexp_dump (s_skey); */
/* } */
err = gcry_pk_decrypt (&s_plain, s_cipher, s_skey);
if (err)
{
log_error ("decryption failed: %s\n", gpg_strerror (err));
goto leave;
}
if (DBG_CRYPTO)
{
log_debug ("plain: ");
gcry_sexp_dump (s_plain);
}
len = gcry_sexp_sprint (s_plain, GCRYSEXP_FMT_CANON, NULL, 0);
log_assert (len);
buf = xmalloc (len);
len = gcry_sexp_sprint (s_plain, GCRYSEXP_FMT_CANON, buf, len);
log_assert (len);
if (*buf == '(')
put_membuf (outbuf, buf, len);
else
{
/* Old style libgcrypt: This is only an S-expression
part. Turn it into a complete S-expression. */
put_membuf (outbuf, "(5:value", 8);
put_membuf (outbuf, buf, len);
put_membuf (outbuf, ")", 2);
}
}
leave:
gcry_sexp_release (s_skey);
gcry_sexp_release (s_plain);
gcry_sexp_release (s_cipher);
xfree (buf);
xfree (shadow_info);
return err;
}
/* Reverse BUFFER to change the endianness. */
static void
reverse_buffer (unsigned char *buffer, unsigned int length)
{
unsigned int tmp, i;
for (i=0; i < length/2; i++)
{
tmp = buffer[i];
buffer[i] = buffer[length-1-i];
buffer[length-1-i] = tmp;
}
}
static gpg_error_t
ecc_extract_pk_from_key (const struct ecc_params *ecc, gcry_sexp_t s_skey,
unsigned char *ecc_pk)
{
gpg_error_t err;
unsigned int nbits;
const unsigned char *p;
size_t len;
gcry_mpi_t ecc_pk_mpi = NULL;
err = gcry_sexp_extract_param (s_skey, NULL, "/q", &ecc_pk_mpi, NULL);
if (err)
{
if (opt.verbose)
log_info ("%s: extracting q and d from ECC key failed\n", __func__);
return err;
}
p = gcry_mpi_get_opaque (ecc_pk_mpi, &nbits);
len = (nbits+7)/8;
if (len != ecc->pubkey_len)
{
if (opt.verbose)
log_info ("%s: ECC public key length invalid (%zu)\n", __func__, len);
err = gpg_error (GPG_ERR_INV_DATA);
goto leave;
}
else if (len == ecc->point_len)
memcpy (ecc_pk, p, ecc->point_len);
else if (len == ecc->point_len + 1 && p[0] == 0x40)
/* Remove the 0x40 prefix (for Curve25519) */
memcpy (ecc_pk, p+1, ecc->point_len);
else
{
err = gpg_error (GPG_ERR_BAD_SECKEY);
goto leave;
}
if (DBG_CRYPTO)
log_printhex (ecc_pk, ecc->pubkey_len, "ECC pubkey:");
leave:
mpi_release (ecc_pk_mpi);
return err;
}
static gpg_error_t
ecc_extract_sk_from_key (const struct ecc_params *ecc, gcry_sexp_t s_skey,
unsigned char *ecc_sk)
{
gpg_error_t err;
unsigned int nbits;
const unsigned char *p;
size_t len;
gcry_mpi_t ecc_sk_mpi = NULL;
err = gcry_sexp_extract_param (s_skey, NULL, "/d", &ecc_sk_mpi, NULL);
if (err)
{
if (opt.verbose)
log_info ("%s: extracting d from ECC key failed\n", __func__);
return err;
}
p = gcry_mpi_get_opaque (ecc_sk_mpi, &nbits);
len = (nbits+7)/8;
if (len > ecc->scalar_len)
{
if (opt.verbose)
log_info ("%s: ECC secret key too long (%zu)\n", __func__, len);
err = gpg_error (GPG_ERR_INV_DATA);
goto leave;
}
memset (ecc_sk, 0, ecc->scalar_len - len);
memcpy (ecc_sk + ecc->scalar_len - len, p, len);
if (ecc->scalar_reverse)
reverse_buffer (ecc_sk, ecc->scalar_len);
mpi_release (ecc_sk_mpi);
ecc_sk_mpi = NULL;
if (DBG_CRYPTO)
log_printhex (ecc_sk, ecc->scalar_len, "ECC seckey:");
leave:
mpi_release (ecc_sk_mpi);
return err;
}
static gpg_error_t
ecc_raw_kem (const struct ecc_params *ecc, gcry_sexp_t s_skey,
const unsigned char *ecc_ct, unsigned char *ecc_ecdh)
{
gpg_error_t err = 0;
unsigned char ecc_sk[ECC_SCALAR_LEN_MAX];
if (ecc->scalar_len > ECC_SCALAR_LEN_MAX)
{
if (opt.verbose)
log_info ("%s: ECC scalar length invalid (%zu)\n",
__func__, ecc->scalar_len);
err = gpg_error (GPG_ERR_INV_DATA);
goto leave;
}
err = ecc_extract_sk_from_key (ecc, s_skey, ecc_sk);
if (err)
goto leave;
err = gcry_kem_decap (ecc->kem_algo, ecc_sk, ecc->scalar_len,
ecc_ct, ecc->point_len, ecc_ecdh, ecc->point_len,
NULL, 0);
if (err)
{
if (opt.verbose)
log_info ("%s: gcry_kem_decap for ECC failed\n", __func__);
}
leave:
wipememory (ecc_sk, sizeof ecc_sk);
return err;
}
static gpg_error_t
get_cardkey (ctrl_t ctrl, const char *keygrip, gcry_sexp_t *r_s_pk)
{
gpg_error_t err;
unsigned char *pkbuf;
size_t pkbuflen;
err = agent_card_readkey (ctrl, keygrip, &pkbuf, NULL);
if (err)
return err;
pkbuflen = gcry_sexp_canon_len (pkbuf, 0, NULL, NULL);
err = gcry_sexp_sscan (r_s_pk, NULL, (char*)pkbuf, pkbuflen);
if (err)
log_error ("failed to build S-Exp from received card key: %s\n",
gpg_strerror (err));
xfree (pkbuf);
return err;
}
static gpg_error_t
ecc_get_curve (ctrl_t ctrl, gcry_sexp_t s_skey, const char **r_curve)
{
gpg_error_t err = 0;
gcry_sexp_t s_skey_card = NULL;
const char *curve = NULL;
gcry_sexp_t key;
*r_curve = NULL;
if (!s_skey)
{
err = get_cardkey (ctrl, ctrl->keygrip, &s_skey_card);
if (err)
goto leave;
key = s_skey_card;
}
else
key = s_skey;
curve = get_ecc_curve_from_key (key);
if (!curve)
{
err = gpg_error (GPG_ERR_BAD_SECKEY);
goto leave;
}
*r_curve = curve;
leave:
gcry_sexp_release (s_skey_card);
return err;
}
/* Given a private key in SEXP by S_SKEY0 and a cipher text by ECC_CT
* with length ECC_POINT_LEN, do ECC-KEM operation. Result is
* returned in the memory referred by ECC_SS. Shared secret length is
* returned in the memory referred by R_SHARED_LEN. CTRL is used to
* access smartcard, internally. */
static gpg_error_t
ecc_pgp_kem_decrypt (ctrl_t ctrl, gcry_sexp_t s_skey0,
unsigned char *shadow_info0,
const unsigned char *ecc_ct, size_t ecc_point_len,
unsigned char *ecc_ss, size_t *r_shared_len)
{
gpg_error_t err;
unsigned char ecc_ecdh[ECC_POINT_LEN_MAX];
unsigned char ecc_pk[ECC_POINT_LEN_MAX];
const char *curve;
const struct ecc_params *ecc = NULL;
if (ecc_point_len > ECC_POINT_LEN_MAX)
return gpg_error (GPG_ERR_INV_DATA);
err = ecc_get_curve (ctrl, s_skey0, &curve);
if (err)
{
if ((gpg_err_code (err) == GPG_ERR_CARD_REMOVED
|| gpg_err_code (err) == GPG_ERR_CARD_NOT_PRESENT)
&& !s_skey0)
err = gpg_error (GPG_ERR_NO_SECKEY);
return err;
}
ecc = get_ecc_params (curve);
if (!ecc)
{
if (opt.verbose)
log_info ("%s: curve '%s' not supported\n", __func__, curve);
return gpg_error (GPG_ERR_BAD_SECKEY);
}
*r_shared_len = ecc->shared_len;
if (DBG_CRYPTO)
log_debug ("ECC curve: %s\n", curve);
if (ecc->point_len != ecc_point_len)
{
if (opt.verbose)
log_info ("%s: ECC cipher text length invalid (%zu != %zu)\n",
__func__, ecc->point_len, ecc_point_len);
return gpg_error (GPG_ERR_INV_DATA);
}
err = ecc_extract_pk_from_key (ecc, s_skey0, ecc_pk);
if (err)
return err;
if (DBG_CRYPTO)
log_printhex (ecc_ct, ecc->point_len, "ECC ephem:");
if (shadow_info0 || !s_skey0)
{
if (s_skey0 && agent_is_tpm2_key (s_skey0))
{
log_error ("TPM decryption failed: %s\n", gpg_strerror (err));
return gpg_error (GPG_ERR_NOT_IMPLEMENTED);
}
else
{
err = agent_card_ecc_kem (ctrl, ecc_ct, ecc->point_len, ecc_ecdh);
if (err)
{
log_error ("smartcard decryption failed: %s\n",
gpg_strerror (err));
return err;
}
}
}
else
err = ecc_raw_kem (ecc, s_skey0, ecc_ct, ecc_ecdh);
if (err)
return err;
if (DBG_CRYPTO)
log_printhex (ecc_ecdh, ecc_point_len, "ECC ecdh:");
err = gnupg_ecc_kem_kdf (ecc_ss, ecc->shared_len, ecc->hash_algo,
ecc_ecdh, ecc->point_len, ecc_ct, ecc->point_len,
ecc_pk, ecc->point_len);
wipememory (ecc_ecdh, sizeof ecc_ecdh);
if (err)
{
if (opt.verbose)
log_info ("%s: kdf for ECC failed\n", __func__);
return err;
}
if (DBG_CRYPTO)
log_printhex (ecc_ss, ecc->shared_len, "ECC shared:");
return 0;
}
/* For composite PGP KEM (ECC+ML-KEM), decrypt CIPHERTEXT using KEM API.
First keygrip is for ECC, second keygrip is for PQC. CIPHERTEXT
should follow the format of:
(enc-val(pqc(c%d)(e%m)(k%m)(s%m)(fixed-info&)))
c: cipher identifier (symmetric)
e: ECDH ciphertext
k: ML-KEM ciphertext
s: encrypted session key
fixed-info: A buffer with the fixed info.
FIXME: For now, possible keys on smartcard are not supported.
*/
static gpg_error_t
composite_pgp_kem_decrypt (ctrl_t ctrl, const char *desc_text,
gcry_sexp_t s_cipher, membuf_t *outbuf)
{
gcry_sexp_t s_skey0 = NULL;
gcry_sexp_t s_skey1 = NULL;
unsigned char *shadow_info0 = NULL;
unsigned char *shadow_info1 = NULL;
gpg_error_t err = 0;
unsigned int nbits;
size_t len;
int algo;
gcry_mpi_t encrypted_sessionkey_mpi = NULL;
const unsigned char *encrypted_sessionkey;
size_t encrypted_sessionkey_len;
gcry_mpi_t ecc_ct_mpi = NULL;
const unsigned char *ecc_ct;
size_t ecc_ct_len;
unsigned char ecc_ss[ECC_HASH_LEN_MAX];
size_t ecc_shared_len, ecc_point_len;
enum gcry_kem_algos mlkem_kem_algo;
gcry_mpi_t mlkem_sk_mpi = NULL;
gcry_mpi_t mlkem_ct_mpi = NULL;
const unsigned char *mlkem_sk;
size_t mlkem_sk_len;
const unsigned char *mlkem_ct;
size_t mlkem_ct_len;
unsigned char mlkem_ss[GCRY_KEM_MLKEM1024_SHARED_LEN];
size_t mlkem_ss_len;
unsigned char kek[32];
size_t kek_len = 32; /* AES-256 is mandatory */
gcry_cipher_hd_t hd;
unsigned char sessionkey[256];
size_t sessionkey_len;
gcry_buffer_t fixed_info = { 0, 0, 0, NULL };
err = agent_key_from_file (ctrl, NULL, desc_text,
ctrl->keygrip, &shadow_info0,
CACHE_MODE_NORMAL, NULL, &s_skey0, NULL, NULL);
if (err && gpg_err_code (err) != GPG_ERR_NO_SECKEY)
{
log_error ("failed to read the secret key\n");
goto leave;
}
err = agent_key_from_file (ctrl, NULL, desc_text,
ctrl->keygrip1, &shadow_info1,
CACHE_MODE_NORMAL, NULL, &s_skey1, NULL, NULL);
/* Here assumes no smartcard for ML-KEM, but private key in a file. */
if (err)
{
log_error ("failed to read the another secret key\n");
goto leave;
}
err = gcry_sexp_extract_param (s_cipher, NULL, "%dc/eks&'fixed-info'",
&algo, &ecc_ct_mpi, &mlkem_ct_mpi,
&encrypted_sessionkey_mpi, &fixed_info, NULL);
if (err)
{
if (opt.verbose)
log_info ("%s: extracting parameters failed\n", __func__);
goto leave;
}
ecc_ct = gcry_mpi_get_opaque (ecc_ct_mpi, &nbits);
ecc_ct_len = (nbits+7)/8;
len = gcry_cipher_get_algo_keylen (algo);
encrypted_sessionkey = gcry_mpi_get_opaque (encrypted_sessionkey_mpi, &nbits);
encrypted_sessionkey_len = (nbits+7)/8;
if (len == 0 || encrypted_sessionkey_len != len + 8)
{
if (opt.verbose)
log_info ("%s: encrypted session key length %zu"
" does not match the length for algo %d\n",
__func__, encrypted_sessionkey_len, algo);
err = gpg_error (GPG_ERR_INV_DATA);
goto leave;
}
/* Firstly, ECC part. */
ecc_point_len = ecc_ct_len;
err = ecc_pgp_kem_decrypt (ctrl, s_skey0, shadow_info0, ecc_ct, ecc_point_len,
ecc_ss, &ecc_shared_len);
if (err)
goto leave;
/* Secondly, PQC part. For now, we assume ML-KEM. */
err = gcry_sexp_extract_param (s_skey1, NULL, "/s", &mlkem_sk_mpi, NULL);
if (err)
{
if (opt.verbose)
log_info ("%s: extracting s from PQ key failed\n", __func__);
goto leave;
}
mlkem_sk = gcry_mpi_get_opaque (mlkem_sk_mpi, &nbits);
mlkem_sk_len = (nbits+7)/8;
if (mlkem_sk_len == GCRY_KEM_MLKEM512_SECKEY_LEN)
{
mlkem_kem_algo = GCRY_KEM_MLKEM512;
mlkem_ss_len = GCRY_KEM_MLKEM512_SHARED_LEN;
mlkem_ct_len = GCRY_KEM_MLKEM512_CIPHER_LEN;
}
else if (mlkem_sk_len == GCRY_KEM_MLKEM768_SECKEY_LEN)
{
mlkem_kem_algo = GCRY_KEM_MLKEM768;
mlkem_ss_len = GCRY_KEM_MLKEM768_SHARED_LEN;
mlkem_ct_len = GCRY_KEM_MLKEM768_CIPHER_LEN;
}
else if (mlkem_sk_len == GCRY_KEM_MLKEM1024_SECKEY_LEN)
{
mlkem_kem_algo = GCRY_KEM_MLKEM1024;
mlkem_ss_len = GCRY_KEM_MLKEM1024_SHARED_LEN;
mlkem_ct_len = GCRY_KEM_MLKEM1024_CIPHER_LEN;
}
else
{
if (opt.verbose)
log_info ("%s: PQ key length invalid (%zu)\n", __func__, mlkem_sk_len);
err = gpg_error (GPG_ERR_INV_DATA);
goto leave;
}
mlkem_ct = gcry_mpi_get_opaque (mlkem_ct_mpi, &nbits);
len = (nbits+7)/8;
if (len != mlkem_ct_len)
{
if (opt.verbose)
log_info ("%s: PQ cipher text length invalid (%zu)\n",
__func__, mlkem_ct_len);
err = gpg_error (GPG_ERR_INV_DATA);
goto leave;
}
err = gcry_kem_decap (mlkem_kem_algo, mlkem_sk, mlkem_sk_len,
mlkem_ct, mlkem_ct_len, mlkem_ss, mlkem_ss_len,
NULL, 0);
if (err)
{
if (opt.verbose)
log_info ("%s: gcry_kem_decap for PQ failed\n", __func__);
goto leave;
}
mpi_release (mlkem_sk_mpi);
mlkem_sk_mpi = NULL;
/* Then, combine two shared secrets and ciphertexts into one KEK */
err = gnupg_kem_combiner (kek, kek_len,
ecc_ss, ecc_shared_len, ecc_ct, ecc_point_len,
mlkem_ss, mlkem_ss_len, mlkem_ct, mlkem_ct_len,
fixed_info.data, fixed_info.size);
if (err)
{
if (opt.verbose)
log_info ("%s: KEM combiner failed\n", __func__);
goto leave;
}
mpi_release (ecc_ct_mpi);
ecc_ct_mpi = NULL;
mpi_release (mlkem_ct_mpi);
mlkem_ct_mpi = NULL;
if (DBG_CRYPTO)
{
log_printhex (kek, kek_len, "KEK key: ");
}
err = gcry_cipher_open (&hd, GCRY_CIPHER_AES256,
GCRY_CIPHER_MODE_AESWRAP, 0);
if (err)
{
if (opt.verbose)
log_error ("ecdh failed to initialize AESWRAP: %s\n",
gpg_strerror (err));
goto leave;
}
err = gcry_cipher_setkey (hd, kek, kek_len);
sessionkey_len = encrypted_sessionkey_len - 8;
err = gcry_cipher_decrypt (hd, sessionkey, sessionkey_len,
encrypted_sessionkey, encrypted_sessionkey_len);
gcry_cipher_close (hd);
mpi_release (encrypted_sessionkey_mpi);
encrypted_sessionkey_mpi = NULL;
if (err)
{
log_error ("KEM decrypt failed: %s\n", gpg_strerror (err));
goto leave;
}
put_membuf_printf (outbuf,
"(5:value%u:", (unsigned int)sessionkey_len);
put_membuf (outbuf, sessionkey, sessionkey_len);
put_membuf (outbuf, ")", 2);
leave:
wipememory (ecc_ss, sizeof ecc_ss);
wipememory (mlkem_ss, sizeof mlkem_ss);
wipememory (kek, sizeof kek);
wipememory (sessionkey, sizeof sessionkey);
mpi_release (ecc_ct_mpi);
mpi_release (mlkem_sk_mpi);
mpi_release (mlkem_ct_mpi);
mpi_release (encrypted_sessionkey_mpi);
gcry_free (fixed_info.data);
gcry_sexp_release (s_skey0);
gcry_sexp_release (s_skey1);
xfree (shadow_info0);
xfree (shadow_info1);
return err;
}
/* DECRYPT the encrypted stuff (like encrypted session key) in
CIPHERTEXT using KEM API, with KEMID. Keys (or a key) are
specified in CTRL. DESC_TEXT is used to retrieve private key.
OPTION can be specified for upper layer option for KEM. Decrypted
stuff (like session key) is written to OUTBUF.
*/
gpg_error_t
agent_kem_decrypt (ctrl_t ctrl, const char *desc_text, int kemid,
const unsigned char *ciphertext, size_t ciphertextlen,
const unsigned char *option, size_t optionlen,
membuf_t *outbuf)
{
gcry_sexp_t s_cipher = NULL;
gpg_error_t err = 0;
/* For now, only PQC-PGP is supported. */
if (kemid != KEM_PQC_PGP)
return gpg_error (GPG_ERR_UNSUPPORTED_ALGORITHM);
(void)optionlen;
if (kemid == KEM_PQC_PGP && option)
{
log_error ("PQC-PGP requires no option\n");
return gpg_error (GPG_ERR_INV_ARG);
}
if (!ctrl->have_keygrip)
{
log_error ("speculative decryption not yet supported\n");
return gpg_error (GPG_ERR_NO_SECKEY);
}
if (!ctrl->have_keygrip1)
{
log_error ("Composite KEM requires two KEYGRIPs\n");
return gpg_error (GPG_ERR_NO_SECKEY);
}
err = gcry_sexp_sscan (&s_cipher, NULL, (char*)ciphertext, ciphertextlen);
if (err)
{
log_error ("failed to convert ciphertext: %s\n", gpg_strerror (err));
return gpg_error (GPG_ERR_INV_DATA);
}
if (DBG_CRYPTO)
{
log_printhex (ctrl->keygrip, 20, "keygrip0:");
log_printhex (ctrl->keygrip1, 20, "keygrip1:");
gcry_log_debugsxp ("cipher", s_cipher);
}
err = composite_pgp_kem_decrypt (ctrl, desc_text, s_cipher, outbuf);
gcry_sexp_release (s_cipher);
return err;
}