mirror of
git://git.gnupg.org/gnupg.git
synced 2025-01-17 14:07:03 +01:00
813f8d1b8e
* g10/packet.h (PKT_pubkey_enc): Add field seskey_algo. (struct pubkey_enc_list): Ditto. * g10/misc.c (pubkey_get_nenc): Change value for Kyber from 4 to 3. * g10/parse-packet.c (parse_pubkeyenc): Store the Kyber algo in the new field and adjust data. Do not store the length byte in data[2]. * g10/build-packet.c (do_pubkey_enc): Take the session algo for Kyber from the new field. * g10/encrypt.c (write_pubkey_enc): Ses the seskey_algo. * g10/mainproc.c (proc_pubkey_enc): Copy it. * g10/pubkey-enc.c (get_it): Support Kyber decryption. * g10/seskey.c (encode_session_key): Handle Kyber different from ECDH. -- Having always the single byte in the packet data than to store and retrieve it from an MPI is much easier. Thus this patch changes the original internal format. With this chnages decryption of the slighly modified test data works now. See the bug tracker for test data. GnuPG-bug-id: 6815
2221 lines
60 KiB
C
2221 lines
60 KiB
C
/* build-packet.c - assemble packets and write them
|
|
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
|
* 2006, 2010, 2011 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
|
|
#include "gpg.h"
|
|
#include "../common/util.h"
|
|
#include "packet.h"
|
|
#include "../common/status.h"
|
|
#include "../common/iobuf.h"
|
|
#include "../common/i18n.h"
|
|
#include "options.h"
|
|
#include "../common/host2net.h"
|
|
|
|
static gpg_error_t do_ring_trust (iobuf_t out, PKT_ring_trust *rt);
|
|
static int do_user_id( IOBUF out, int ctb, PKT_user_id *uid );
|
|
static int do_key (iobuf_t out, int ctb, PKT_public_key *pk);
|
|
static int do_symkey_enc( IOBUF out, int ctb, PKT_symkey_enc *enc );
|
|
static int do_pubkey_enc( IOBUF out, int ctb, PKT_pubkey_enc *enc );
|
|
static u32 calc_plaintext( PKT_plaintext *pt );
|
|
static int do_plaintext( IOBUF out, int ctb, PKT_plaintext *pt );
|
|
static int do_encrypted( IOBUF out, int ctb, PKT_encrypted *ed );
|
|
static int do_encrypted_mdc( IOBUF out, int ctb, PKT_encrypted *ed );
|
|
static int do_encrypted_aead (iobuf_t out, int ctb, PKT_encrypted *ed);
|
|
static int do_compressed( IOBUF out, int ctb, PKT_compressed *cd );
|
|
static int do_signature( IOBUF out, int ctb, PKT_signature *sig );
|
|
static int do_onepass_sig( IOBUF out, int ctb, PKT_onepass_sig *ops );
|
|
|
|
static int calc_header_length( u32 len, int new_ctb );
|
|
static int write_16(IOBUF inp, u16 a);
|
|
static int write_32(IOBUF inp, u32 a);
|
|
static int write_header( IOBUF out, int ctb, u32 len );
|
|
static int write_sign_packet_header( IOBUF out, int ctb, u32 len );
|
|
static int write_header2( IOBUF out, int ctb, u32 len, int hdrlen );
|
|
static int write_new_header( IOBUF out, int ctb, u32 len, int hdrlen );
|
|
|
|
/* Returns 1 if CTB is a new format ctb and 0 if CTB is an old format
|
|
ctb. */
|
|
static int
|
|
ctb_new_format_p (int ctb)
|
|
{
|
|
/* Bit 7 must always be set. */
|
|
log_assert ((ctb & (1 << 7)));
|
|
/* Bit 6 indicates whether the packet is a new format packet. */
|
|
return (ctb & (1 << 6));
|
|
}
|
|
|
|
/* Extract the packet type from a CTB. */
|
|
static int
|
|
ctb_pkttype (int ctb)
|
|
{
|
|
if (ctb_new_format_p (ctb))
|
|
/* Bits 0 through 5 are the packet type. */
|
|
return (ctb & ((1 << 6) - 1));
|
|
else
|
|
/* Bits 2 through 5 are the packet type. */
|
|
return (ctb & ((1 << 6) - 1)) >> 2;
|
|
}
|
|
|
|
|
|
/* Build a keyblock image from KEYBLOCK. Returns 0 on success and
|
|
* only then stores a new iobuf object at R_IOBUF; the returned iobuf
|
|
* can be access with the iobuf_get_temp_buffer and
|
|
* iobuf_get_temp_length macros. */
|
|
gpg_error_t
|
|
build_keyblock_image (kbnode_t keyblock, iobuf_t *r_iobuf)
|
|
{
|
|
gpg_error_t err;
|
|
iobuf_t iobuf;
|
|
kbnode_t kbctx, node;
|
|
|
|
*r_iobuf = NULL;
|
|
|
|
iobuf = iobuf_temp ();
|
|
for (kbctx = NULL; (node = walk_kbnode (keyblock, &kbctx, 0));)
|
|
{
|
|
/* Make sure to use only packets valid on a keyblock. */
|
|
switch (node->pkt->pkttype)
|
|
{
|
|
case PKT_PUBLIC_KEY:
|
|
case PKT_PUBLIC_SUBKEY:
|
|
case PKT_SIGNATURE:
|
|
case PKT_USER_ID:
|
|
case PKT_ATTRIBUTE:
|
|
case PKT_RING_TRUST:
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
err = build_packet_and_meta (iobuf, node->pkt);
|
|
if (err)
|
|
{
|
|
iobuf_close (iobuf);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
*r_iobuf = iobuf;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Build a packet and write it to the stream OUT.
|
|
* Returns: 0 on success or on an error code. */
|
|
int
|
|
build_packet (IOBUF out, PACKET *pkt)
|
|
{
|
|
int rc = 0;
|
|
int new_ctb = 0;
|
|
int ctb, pkttype;
|
|
|
|
if (DBG_PACKET)
|
|
log_debug ("build_packet() type=%d\n", pkt->pkttype);
|
|
log_assert (pkt->pkt.generic);
|
|
|
|
switch ((pkttype = pkt->pkttype))
|
|
{
|
|
case PKT_PUBLIC_KEY:
|
|
if (pkt->pkt.public_key->seckey_info)
|
|
pkttype = PKT_SECRET_KEY;
|
|
break;
|
|
case PKT_PUBLIC_SUBKEY:
|
|
if (pkt->pkt.public_key->seckey_info)
|
|
pkttype = PKT_SECRET_SUBKEY;
|
|
break;
|
|
case PKT_PLAINTEXT:
|
|
new_ctb = pkt->pkt.plaintext->new_ctb;
|
|
break;
|
|
case PKT_ENCRYPTED:
|
|
case PKT_ENCRYPTED_MDC:
|
|
case PKT_ENCRYPTED_AEAD:
|
|
new_ctb = pkt->pkt.encrypted->new_ctb;
|
|
break;
|
|
case PKT_COMPRESSED:
|
|
new_ctb = pkt->pkt.compressed->new_ctb;
|
|
break;
|
|
case PKT_USER_ID:
|
|
if (pkt->pkt.user_id->attrib_data)
|
|
pkttype = PKT_ATTRIBUTE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (new_ctb || pkttype > 15) /* new format */
|
|
ctb = (0xc0 | (pkttype & 0x3f));
|
|
else
|
|
ctb = (0x80 | ((pkttype & 15)<<2));
|
|
switch (pkttype)
|
|
{
|
|
case PKT_ATTRIBUTE:
|
|
case PKT_USER_ID:
|
|
rc = do_user_id (out, ctb, pkt->pkt.user_id);
|
|
break;
|
|
case PKT_OLD_COMMENT:
|
|
case PKT_COMMENT:
|
|
/* Ignore these. Theoretically, this will never be called as we
|
|
* have no way to output comment packets any longer, but just in
|
|
* case there is some code path that would end up outputting a
|
|
* comment that was written before comments were dropped (in the
|
|
* public key?) this is a no-op. */
|
|
break;
|
|
case PKT_PUBLIC_SUBKEY:
|
|
case PKT_PUBLIC_KEY:
|
|
case PKT_SECRET_SUBKEY:
|
|
case PKT_SECRET_KEY:
|
|
rc = do_key (out, ctb, pkt->pkt.public_key);
|
|
break;
|
|
case PKT_SYMKEY_ENC:
|
|
rc = do_symkey_enc (out, ctb, pkt->pkt.symkey_enc);
|
|
break;
|
|
case PKT_PUBKEY_ENC:
|
|
rc = do_pubkey_enc (out, ctb, pkt->pkt.pubkey_enc);
|
|
break;
|
|
case PKT_PLAINTEXT:
|
|
rc = do_plaintext (out, ctb, pkt->pkt.plaintext);
|
|
break;
|
|
case PKT_ENCRYPTED:
|
|
rc = do_encrypted (out, ctb, pkt->pkt.encrypted);
|
|
break;
|
|
case PKT_ENCRYPTED_MDC:
|
|
rc = do_encrypted_mdc (out, ctb, pkt->pkt.encrypted);
|
|
break;
|
|
case PKT_ENCRYPTED_AEAD:
|
|
rc = do_encrypted_aead (out, ctb, pkt->pkt.encrypted);
|
|
break;
|
|
case PKT_COMPRESSED:
|
|
rc = do_compressed (out, ctb, pkt->pkt.compressed);
|
|
break;
|
|
case PKT_SIGNATURE:
|
|
rc = do_signature (out, ctb, pkt->pkt.signature);
|
|
break;
|
|
case PKT_ONEPASS_SIG:
|
|
rc = do_onepass_sig (out, ctb, pkt->pkt.onepass_sig);
|
|
break;
|
|
case PKT_RING_TRUST:
|
|
/* Ignore it (only written by build_packet_and_meta) */
|
|
break;
|
|
case PKT_MDC:
|
|
/* We write it directly, so we should never see it here. */
|
|
default:
|
|
log_bug ("invalid packet type in build_packet()\n");
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Build a packet and write it to the stream OUT. This variant also
|
|
* writes the meta data using ring trust packets. Returns: 0 on
|
|
* success or on error code. */
|
|
gpg_error_t
|
|
build_packet_and_meta (iobuf_t out, PACKET *pkt)
|
|
{
|
|
gpg_error_t err;
|
|
PKT_ring_trust rt = {0};
|
|
|
|
err = build_packet (out, pkt);
|
|
if (err)
|
|
;
|
|
else if (pkt->pkttype == PKT_SIGNATURE)
|
|
{
|
|
PKT_signature *sig = pkt->pkt.signature;
|
|
|
|
rt.subtype = RING_TRUST_SIG;
|
|
/* Note: trustval is not yet used. */
|
|
if (sig->flags.checked)
|
|
{
|
|
rt.sigcache = 1;
|
|
if (sig->flags.valid)
|
|
rt.sigcache |= 2;
|
|
}
|
|
err = do_ring_trust (out, &rt);
|
|
}
|
|
else if (pkt->pkttype == PKT_USER_ID
|
|
|| pkt->pkttype == PKT_ATTRIBUTE)
|
|
{
|
|
PKT_user_id *uid = pkt->pkt.user_id;
|
|
|
|
rt.subtype = RING_TRUST_UID;
|
|
rt.keyorg = uid->keyorg;
|
|
rt.keyupdate = uid->keyupdate;
|
|
rt.url = uid->updateurl;
|
|
err = do_ring_trust (out, &rt);
|
|
rt.url = NULL;
|
|
}
|
|
else if (pkt->pkttype == PKT_PUBLIC_KEY
|
|
|| pkt->pkttype == PKT_SECRET_KEY)
|
|
{
|
|
PKT_public_key *pk = pkt->pkt.public_key;
|
|
|
|
rt.subtype = RING_TRUST_KEY;
|
|
rt.keyorg = pk->keyorg;
|
|
rt.keyupdate = pk->keyupdate;
|
|
rt.url = pk->updateurl;
|
|
err = do_ring_trust (out, &rt);
|
|
rt.url = NULL;
|
|
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
/*
|
|
* Write the mpi A to OUT. If R_NWRITTEN is not NULL the number of
|
|
* bytes written is stored there. To only get the number of bytes
|
|
* which would be written NULL may be passed for OUT.
|
|
*/
|
|
gpg_error_t
|
|
gpg_mpi_write (iobuf_t out, gcry_mpi_t a, unsigned int *r_nwritten)
|
|
{
|
|
gpg_error_t err;
|
|
unsigned int nwritten = 0;
|
|
|
|
if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE))
|
|
{
|
|
unsigned int nbits;
|
|
const unsigned char *p;
|
|
unsigned char lenhdr[2];
|
|
|
|
/* gcry_log_debugmpi ("a", a); */
|
|
p = gcry_mpi_get_opaque (a, &nbits);
|
|
if (p)
|
|
{
|
|
/* First get nbits back to full bytes. */
|
|
nbits = ((nbits + 7) / 8) * 8;
|
|
/* Then strip leading zero bits. */
|
|
for (; nbits >= 8 && !*p; p++, nbits -= 8)
|
|
;
|
|
if (nbits >= 8 && !(*p & 0x80))
|
|
if (--nbits >= 7 && !(*p & 0x40))
|
|
if (--nbits >= 6 && !(*p & 0x20))
|
|
if (--nbits >= 5 && !(*p & 0x10))
|
|
if (--nbits >= 4 && !(*p & 0x08))
|
|
if (--nbits >= 3 && !(*p & 0x04))
|
|
if (--nbits >= 2 && !(*p & 0x02))
|
|
if (--nbits >= 1 && !(*p & 0x01))
|
|
--nbits;
|
|
}
|
|
/* gcry_log_debug (" [%u bit]\n", nbits); */
|
|
/* gcry_log_debughex (" ", p, (nbits+7)/8); */
|
|
lenhdr[0] = nbits >> 8;
|
|
lenhdr[1] = nbits;
|
|
err = out? iobuf_write (out, lenhdr, 2) : 0;
|
|
if (!err)
|
|
{
|
|
nwritten += 2;
|
|
if (p)
|
|
{
|
|
err = out? iobuf_write (out, p, (nbits+7)/8) : 0;
|
|
if (!err)
|
|
nwritten += (nbits+7)/8;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
char buffer[(MAX_EXTERN_MPI_BITS+7)/8+2]; /* 2 is for the mpi length. */
|
|
size_t nbytes;
|
|
|
|
nbytes = DIM(buffer);
|
|
err = gcry_mpi_print (GCRYMPI_FMT_PGP, buffer, nbytes, &nbytes, a );
|
|
if (!err)
|
|
{
|
|
err = out? iobuf_write (out, buffer, nbytes) : 0;
|
|
if (!err)
|
|
nwritten += nbytes;
|
|
}
|
|
else if (gpg_err_code (err) == GPG_ERR_TOO_SHORT )
|
|
{
|
|
log_info ("mpi too large (%u bits)\n", gcry_mpi_get_nbits (a));
|
|
/* The buffer was too small. We better tell the user about
|
|
* the MPI. */
|
|
err = gpg_error (GPG_ERR_TOO_LARGE);
|
|
}
|
|
}
|
|
|
|
if (r_nwritten)
|
|
*r_nwritten = nwritten;
|
|
return err;
|
|
}
|
|
|
|
|
|
/*
|
|
* Write the mpi A to the output stream OUT as "SOS" (Strange Octet
|
|
* String). If R_NWRITTEN is not NULL the number of bytes written is
|
|
* stored there. To only get the number of bytes which would be
|
|
* written, NULL may be passed for OUT.
|
|
*/
|
|
static gpg_error_t
|
|
sos_write (iobuf_t out, gcry_mpi_t a, unsigned int *r_nwritten)
|
|
{
|
|
gpg_error_t err;
|
|
unsigned int nwritten = 0;
|
|
|
|
if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE))
|
|
{
|
|
unsigned int nbits;
|
|
const unsigned char *p;
|
|
unsigned char lenhdr[2];
|
|
|
|
/* gcry_log_debugmpi ("a", a); */
|
|
p = gcry_mpi_get_opaque (a, &nbits);
|
|
/* gcry_log_debug (" [%u bit]\n", nbits); */
|
|
/* gcry_log_debughex (" ", p, (nbits+7)/8); */
|
|
|
|
if (p && *p)
|
|
{
|
|
nbits = ((nbits + 7) / 8) * 8;
|
|
|
|
if (nbits >= 8 && !(*p & 0x80))
|
|
if (--nbits >= 7 && !(*p & 0x40))
|
|
if (--nbits >= 6 && !(*p & 0x20))
|
|
if (--nbits >= 5 && !(*p & 0x10))
|
|
if (--nbits >= 4 && !(*p & 0x08))
|
|
if (--nbits >= 3 && !(*p & 0x04))
|
|
if (--nbits >= 2 && !(*p & 0x02))
|
|
if (--nbits >= 1 && !(*p & 0x01))
|
|
--nbits;
|
|
}
|
|
|
|
lenhdr[0] = nbits >> 8;
|
|
lenhdr[1] = nbits;
|
|
err = out? iobuf_write (out, lenhdr, 2) : 0;
|
|
if (!err)
|
|
{
|
|
nwritten += 2;
|
|
if (p)
|
|
{
|
|
err = out? iobuf_write (out, p, (nbits+7)/8) : 0;
|
|
if (!err)
|
|
nwritten += (nbits+7)/8;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
log_info ("non-opaque MPI (%u bits) for SOS\n", gcry_mpi_get_nbits (a));
|
|
err = gpg_error (GPG_ERR_INV_DATA);
|
|
}
|
|
|
|
if (r_nwritten)
|
|
*r_nwritten = nwritten;
|
|
return err;
|
|
}
|
|
|
|
|
|
/*
|
|
* Write an opaque string to the output stream without length info.
|
|
*/
|
|
gpg_error_t
|
|
gpg_mpi_write_opaque_nohdr (iobuf_t out, gcry_mpi_t a)
|
|
{
|
|
int rc;
|
|
|
|
if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE))
|
|
{
|
|
unsigned int nbits;
|
|
const void *p;
|
|
|
|
p = gcry_mpi_get_opaque (a, &nbits);
|
|
rc = p ? iobuf_write (out, p, (nbits+7)/8) : 0;
|
|
}
|
|
else
|
|
rc = gpg_error (GPG_ERR_BAD_MPI);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
* Write an opaque MPI string with a four-byte octet count to the
|
|
* output stream. If R_NWRITTEN is not NULL the number of written
|
|
* bytes is stored there. OUT may be NULL in which case only
|
|
* R_NWRITTEN is updated and error checking is done.
|
|
*/
|
|
gpg_error_t
|
|
gpg_mpi_write_opaque_32 (iobuf_t out, gcry_mpi_t a, unsigned int *r_nwritten)
|
|
{
|
|
gpg_error_t err;
|
|
|
|
if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE))
|
|
{
|
|
unsigned int nbits, nbytes;
|
|
const void *p;
|
|
|
|
p = gcry_mpi_get_opaque (a, &nbits);
|
|
nbytes = (nbits + 7)/8;
|
|
if (out)
|
|
{
|
|
write_32 (out, nbytes);
|
|
err = p ? iobuf_write (out, p, nbytes) : 0;
|
|
}
|
|
else
|
|
err = 0;
|
|
if (r_nwritten)
|
|
*r_nwritten = 4 + (p? nbytes : 0);
|
|
}
|
|
else
|
|
{
|
|
err = gpg_error (GPG_ERR_BAD_MPI);
|
|
if (r_nwritten)
|
|
*r_nwritten = 0;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
/* Calculate the length of a packet described by PKT. */
|
|
u32
|
|
calc_packet_length( PACKET *pkt )
|
|
{
|
|
u32 n = 0;
|
|
int new_ctb = 0;
|
|
|
|
log_assert (pkt->pkt.generic);
|
|
switch (pkt->pkttype)
|
|
{
|
|
case PKT_PLAINTEXT:
|
|
n = calc_plaintext (pkt->pkt.plaintext);
|
|
new_ctb = pkt->pkt.plaintext->new_ctb;
|
|
break;
|
|
case PKT_ATTRIBUTE:
|
|
case PKT_USER_ID:
|
|
case PKT_COMMENT:
|
|
case PKT_PUBLIC_KEY:
|
|
case PKT_SECRET_KEY:
|
|
case PKT_SYMKEY_ENC:
|
|
case PKT_PUBKEY_ENC:
|
|
case PKT_ENCRYPTED:
|
|
case PKT_SIGNATURE:
|
|
case PKT_ONEPASS_SIG:
|
|
case PKT_RING_TRUST:
|
|
case PKT_COMPRESSED:
|
|
default:
|
|
log_bug ("invalid packet type in calc_packet_length()");
|
|
break;
|
|
}
|
|
|
|
n += calc_header_length (n, new_ctb);
|
|
return n;
|
|
}
|
|
|
|
|
|
static gpg_error_t
|
|
write_fake_data (IOBUF out, gcry_mpi_t a)
|
|
{
|
|
unsigned int n;
|
|
void *p;
|
|
|
|
if (!a)
|
|
return 0;
|
|
if (!gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE))
|
|
return 0; /* e.g. due to generating a key with wrong usage. */
|
|
p = gcry_mpi_get_opaque ( a, &n);
|
|
if (!p)
|
|
return 0; /* For example due to a read error in
|
|
parse-packet.c:read_rest. */
|
|
return iobuf_write (out, p, (n+7)/8 );
|
|
}
|
|
|
|
|
|
/* Write a ring trust meta packet. */
|
|
static gpg_error_t
|
|
do_ring_trust (iobuf_t out, PKT_ring_trust *rt)
|
|
{
|
|
unsigned int namelen = 0;
|
|
unsigned int pktlen = 6;
|
|
|
|
if (rt->subtype == RING_TRUST_KEY || rt->subtype == RING_TRUST_UID)
|
|
{
|
|
if (rt->url)
|
|
namelen = strlen (rt->url);
|
|
pktlen += 1 + 4 + 1 + namelen;
|
|
}
|
|
|
|
write_header (out, (0x80 | ((PKT_RING_TRUST & 15)<<2)), pktlen);
|
|
iobuf_put (out, rt->trustval);
|
|
iobuf_put (out, rt->sigcache);
|
|
iobuf_write (out, "gpg", 3);
|
|
iobuf_put (out, rt->subtype);
|
|
if (rt->subtype == RING_TRUST_KEY || rt->subtype == RING_TRUST_UID)
|
|
{
|
|
iobuf_put (out, rt->keyorg);
|
|
write_32 (out, rt->keyupdate);
|
|
iobuf_put (out, namelen);
|
|
if (namelen)
|
|
iobuf_write (out, rt->url, namelen);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Serialize the user id (RFC 4880, Section 5.11) or the user
|
|
* attribute UID (Section 5.12) and write it to OUT.
|
|
*
|
|
* CTB is the serialization's CTB. It specifies the header format and
|
|
* the packet's type. The header length must not be set. */
|
|
static int
|
|
do_user_id( IOBUF out, int ctb, PKT_user_id *uid )
|
|
{
|
|
int rc;
|
|
int hdrlen;
|
|
|
|
log_assert (ctb_pkttype (ctb) == PKT_USER_ID
|
|
|| ctb_pkttype (ctb) == PKT_ATTRIBUTE);
|
|
|
|
/* We need to take special care of a user ID with a length of 0:
|
|
* Without forcing HDRLEN to 2 in this case an indeterminate length
|
|
* packet would be written which is not allowed. Note that we are
|
|
* always called with a CTB indicating an old packet header format,
|
|
* so that forcing a 2 octet header works. We also check for the
|
|
* maximum allowed packet size by the parser using an arbitrary
|
|
* extra 10 bytes for header data. */
|
|
if (uid->attrib_data)
|
|
{
|
|
if (uid->attrib_len > MAX_ATTR_PACKET_LENGTH - 10)
|
|
return gpg_error (GPG_ERR_TOO_LARGE);
|
|
hdrlen = uid->attrib_len? 0 : 2;
|
|
write_header2 (out, ctb, uid->attrib_len, hdrlen);
|
|
rc = iobuf_write( out, uid->attrib_data, uid->attrib_len );
|
|
}
|
|
else
|
|
{
|
|
if (uid->len > MAX_UID_PACKET_LENGTH - 10)
|
|
return gpg_error (GPG_ERR_TOO_LARGE);
|
|
hdrlen = uid->len? 0 : 2;
|
|
write_header2 (out, ctb, uid->len, hdrlen);
|
|
rc = iobuf_write( out, uid->name, uid->len );
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Serialize the key (RFC 4880, Section 5.5) described by PK and write
|
|
* it to OUT.
|
|
*
|
|
* This function serializes both primary keys and subkeys with or
|
|
* without a secret part.
|
|
*
|
|
* CTB is the serialization's CTB. It specifies the header format and
|
|
* the packet's type. The header length must not be set.
|
|
*
|
|
* PK->VERSION specifies the serialization format. A value of 0 means
|
|
* to use the default version. Currently, only version 4 packets are
|
|
* supported.
|
|
*/
|
|
static int
|
|
do_key (iobuf_t out, int ctb, PKT_public_key *pk)
|
|
{
|
|
gpg_error_t err = 0;
|
|
iobuf_t a;
|
|
int i, nskey, npkey;
|
|
u32 pkbytes = 0;
|
|
int is_v5;
|
|
|
|
log_assert (pk->version == 0 || pk->version == 4 || pk->version == 5);
|
|
log_assert (ctb_pkttype (ctb) == PKT_PUBLIC_KEY
|
|
|| ctb_pkttype (ctb) == PKT_PUBLIC_SUBKEY
|
|
|| ctb_pkttype (ctb) == PKT_SECRET_KEY
|
|
|| ctb_pkttype (ctb) == PKT_SECRET_SUBKEY);
|
|
|
|
/* The length of the body is stored in the packet's header, which
|
|
* occurs before the body. Unfortunately, we don't know the length
|
|
* of the packet's body until we've written all of the data! To
|
|
* work around this, we first write the data into this temporary
|
|
* buffer, then generate the header, and finally copy the content
|
|
* of this buffer to OUT. */
|
|
a = iobuf_temp();
|
|
|
|
/* Note that the Version number, Timestamp, Algo, and the v5 Key
|
|
* material count are written at the end of the function. */
|
|
|
|
is_v5 = (pk->version == 5);
|
|
|
|
/* Get number of secret and public parameters. They are held in one
|
|
array: the public ones followed by the secret ones. */
|
|
nskey = pubkey_get_nskey (pk->pubkey_algo);
|
|
npkey = pubkey_get_npkey (pk->pubkey_algo);
|
|
|
|
/* If we don't have any public parameters - which is for example the
|
|
case if we don't know the algorithm used - the parameters are
|
|
stored as one blob in a faked (opaque) MPI. */
|
|
if (!npkey)
|
|
{
|
|
write_fake_data (a, pk->pkey[0]);
|
|
goto leave;
|
|
}
|
|
log_assert (npkey < nskey);
|
|
|
|
for (i=0; i < npkey; i++ )
|
|
{
|
|
if ( (pk->pubkey_algo == PUBKEY_ALGO_ECDSA && (i == 0))
|
|
|| (pk->pubkey_algo == PUBKEY_ALGO_EDDSA && (i == 0))
|
|
|| (pk->pubkey_algo == PUBKEY_ALGO_ECDH && (i == 0 || i == 2))
|
|
|| (pk->pubkey_algo == PUBKEY_ALGO_KYBER && (i == 0)))
|
|
err = gpg_mpi_write_opaque_nohdr (a, pk->pkey[i]);
|
|
else if (pk->pubkey_algo == PUBKEY_ALGO_KYBER && i == 2)
|
|
{
|
|
/* Write a four-octet count prefixed Kyber public key. */
|
|
err = gpg_mpi_write_opaque_32 (a, pk->pkey[2], NULL);
|
|
}
|
|
else if (pk->pubkey_algo == PUBKEY_ALGO_ECDSA
|
|
|| pk->pubkey_algo == PUBKEY_ALGO_EDDSA
|
|
|| pk->pubkey_algo == PUBKEY_ALGO_ECDH)
|
|
err = sos_write (a, pk->pkey[i], NULL);
|
|
else
|
|
err = gpg_mpi_write (a, pk->pkey[i], NULL);
|
|
if (err)
|
|
goto leave;
|
|
}
|
|
|
|
/* Record the length of the public key part. */
|
|
pkbytes = iobuf_get_temp_length (a);
|
|
|
|
if (pk->seckey_info)
|
|
{
|
|
/* This is a secret key packet. */
|
|
struct seckey_info *ski = pk->seckey_info;
|
|
|
|
/* Build the header for protected (encrypted) secret parameters. */
|
|
if (ski->is_protected)
|
|
{
|
|
iobuf_put (a, ski->sha1chk? 0xfe : 0xff); /* S2k usage. */
|
|
if (is_v5)
|
|
{
|
|
/* For a v5 key determine the count of the following
|
|
* key-protection material and write it. */
|
|
int count = 1; /* Pubkey algo octet. */
|
|
if (ski->s2k.mode >= 1000)
|
|
count += 6; /* GNU specific mode descriptor. */
|
|
else
|
|
count += 2; /* Mode and hash algo. */
|
|
if (ski->s2k.mode == 1 || ski->s2k.mode == 3)
|
|
count += 8; /* Salt. */
|
|
if (ski->s2k.mode == 3)
|
|
count++; /* S2K.COUNT */
|
|
if (ski->s2k.mode != 1001 && ski->s2k.mode != 1002
|
|
&& ski->s2k.mode != 1003)
|
|
count += ski->ivlen;
|
|
|
|
iobuf_put (a, count);
|
|
}
|
|
iobuf_put (a, ski->algo); /* Pubkey algo octet. */
|
|
if (ski->s2k.mode >= 1000)
|
|
{
|
|
/* These modes are not possible in OpenPGP, we use them
|
|
to implement our extensions, 101 can be viewed as a
|
|
private/experimental extension (this is not specified
|
|
in rfc2440 but the same scheme is used for all other
|
|
algorithm identifiers). */
|
|
iobuf_put (a, 101);
|
|
iobuf_put (a, ski->s2k.hash_algo);
|
|
iobuf_write (a, "GNU", 3 );
|
|
iobuf_put (a, ski->s2k.mode - 1000);
|
|
}
|
|
else
|
|
{
|
|
iobuf_put (a, ski->s2k.mode);
|
|
iobuf_put (a, ski->s2k.hash_algo);
|
|
}
|
|
|
|
if (ski->s2k.mode == 1 || ski->s2k.mode == 3)
|
|
iobuf_write (a, ski->s2k.salt, 8);
|
|
|
|
if (ski->s2k.mode == 3)
|
|
iobuf_put (a, ski->s2k.count);
|
|
|
|
/* For our special modes 1001..1003 we do not need an IV. */
|
|
if (ski->s2k.mode != 1001 && ski->s2k.mode != 1002
|
|
&& ski->s2k.mode != 1003)
|
|
iobuf_write (a, ski->iv, ski->ivlen);
|
|
|
|
}
|
|
else /* Not protected. */
|
|
{
|
|
iobuf_put (a, 0 ); /* S2K usage = not protected. */
|
|
if (is_v5)
|
|
iobuf_put (a, 0); /* Zero octets of key-protection
|
|
* material follows. */
|
|
}
|
|
|
|
if (ski->s2k.mode == 1001)
|
|
{
|
|
/* GnuPG extension - don't write a secret key at all. */
|
|
if (is_v5)
|
|
write_32 (a, 0); /* Zero octets of key material. */
|
|
}
|
|
else if (ski->s2k.mode == 1002)
|
|
{
|
|
/* GnuPG extension - divert to OpenPGP smartcard. */
|
|
if (is_v5)
|
|
write_32 (a, 1 + ski->ivlen);
|
|
/* Length of the serial number or 0 for no serial number. */
|
|
iobuf_put (a, ski->ivlen );
|
|
/* The serial number gets stored in the IV field. */
|
|
iobuf_write (a, ski->iv, ski->ivlen);
|
|
}
|
|
else if (ski->s2k.mode == 1003)
|
|
{
|
|
/* GnuPG extension - Store raw s-expression. */
|
|
byte *p;
|
|
unsigned int ndatabits;
|
|
|
|
log_assert (gcry_mpi_get_flag (pk->pkey[npkey], GCRYMPI_FLAG_OPAQUE));
|
|
|
|
p = gcry_mpi_get_opaque (pk->pkey[npkey], &ndatabits);
|
|
/* For v5 keys we first write the number of octets of the
|
|
* following key material. */
|
|
if (is_v5)
|
|
write_32 (a, p? (ndatabits+7)/8 : 0);
|
|
if (p)
|
|
iobuf_write (a, p, (ndatabits+7)/8 );
|
|
}
|
|
else if (ski->is_protected)
|
|
{
|
|
/* The secret key is protected - write it out as it is. */
|
|
byte *p;
|
|
unsigned int ndatabits;
|
|
|
|
log_assert (gcry_mpi_get_flag (pk->pkey[npkey], GCRYMPI_FLAG_OPAQUE));
|
|
p = gcry_mpi_get_opaque (pk->pkey[npkey], &ndatabits);
|
|
/* For v5 keys we first write the number of octets of the
|
|
* following encrypted key material. */
|
|
if (is_v5)
|
|
write_32 (a, p? (ndatabits+7)/8 : 0);
|
|
if (p)
|
|
iobuf_write (a, p, (ndatabits+7)/8 );
|
|
}
|
|
else
|
|
{
|
|
/* Non-protected key. */
|
|
if (is_v5)
|
|
{
|
|
unsigned int skbytes = 0;
|
|
unsigned int n;
|
|
int j;
|
|
|
|
for (j=i; j < nskey; j++ )
|
|
{
|
|
if (pk->pubkey_algo == PUBKEY_ALGO_KYBER && j == 4)
|
|
{
|
|
if ((err=gpg_mpi_write_opaque_32 (NULL,pk->pkey[j], &n)))
|
|
goto leave;
|
|
}
|
|
else if (pk->pubkey_algo == PUBKEY_ALGO_ECDSA
|
|
|| pk->pubkey_algo == PUBKEY_ALGO_EDDSA
|
|
|| pk->pubkey_algo == PUBKEY_ALGO_ECDH
|
|
|| pk->pubkey_algo == PUBKEY_ALGO_KYBER)
|
|
{
|
|
if ((err = sos_write (NULL, pk->pkey[j], &n)))
|
|
goto leave;
|
|
}
|
|
else
|
|
{
|
|
if ( (err = gpg_mpi_write (a, pk->pkey[i], NULL)))
|
|
goto leave;
|
|
}
|
|
skbytes += n;
|
|
}
|
|
|
|
write_32 (a, skbytes);
|
|
}
|
|
|
|
for ( ; i < nskey; i++ )
|
|
{
|
|
if (pk->pubkey_algo == PUBKEY_ALGO_KYBER && i == 4)
|
|
{
|
|
err = gpg_mpi_write_opaque_32 (a, pk->pkey[i], NULL);
|
|
if (err)
|
|
goto leave;
|
|
}
|
|
else if (pk->pubkey_algo == PUBKEY_ALGO_ECDSA
|
|
|| pk->pubkey_algo == PUBKEY_ALGO_EDDSA
|
|
|| pk->pubkey_algo == PUBKEY_ALGO_ECDH)
|
|
{
|
|
if ((err = sos_write (a, pk->pkey[i], NULL)))
|
|
goto leave;
|
|
}
|
|
else
|
|
{
|
|
if ((err = gpg_mpi_write (a, pk->pkey[i], NULL)))
|
|
goto leave;
|
|
}
|
|
}
|
|
|
|
write_16 (a, ski->csum );
|
|
}
|
|
}
|
|
|
|
leave:
|
|
if (!err)
|
|
{
|
|
/* Build the header of the packet - which we must do after
|
|
* writing all the other stuff, so that we know the length of
|
|
* the packet */
|
|
u32 len = iobuf_get_temp_length (a);
|
|
len += 1; /* version number */
|
|
len += 4; /* timestamp */
|
|
len += 1; /* algo */
|
|
if (is_v5)
|
|
len += 4; /* public key material count */
|
|
|
|
write_header2 (out, ctb, len, 0);
|
|
/* And finally write it out to the real stream. */
|
|
iobuf_put (out, pk->version? pk->version : 4); /* version number */
|
|
write_32 (out, pk->timestamp );
|
|
iobuf_put (out, pk->pubkey_algo); /* algo */
|
|
if (is_v5)
|
|
write_32 (out, pkbytes); /* public key material count */
|
|
err = iobuf_write_temp (out, a); /* pub and sec key material */
|
|
}
|
|
|
|
iobuf_close (a); /* Close the temporary buffer */
|
|
return err;
|
|
}
|
|
|
|
|
|
/* Serialize the symmetric-key encrypted session key packet (RFC 4880,
|
|
* 5.3) described by ENC and write it to OUT.
|
|
*
|
|
* CTB is the serialization's CTB. It specifies the header format and
|
|
* the packet's type. The header length must not be set. */
|
|
static int
|
|
do_symkey_enc( IOBUF out, int ctb, PKT_symkey_enc *enc )
|
|
{
|
|
int rc = 0;
|
|
IOBUF a = iobuf_temp();
|
|
|
|
log_assert (ctb_pkttype (ctb) == PKT_SYMKEY_ENC);
|
|
log_assert (enc->version == 4 || enc->version == 5);
|
|
|
|
switch (enc->s2k.mode)
|
|
{
|
|
case 0: /* Simple S2K. */
|
|
case 1: /* Salted S2K. */
|
|
case 3: /* Iterated and salted S2K. */
|
|
break; /* Reasonable values. */
|
|
|
|
default:
|
|
log_bug ("do_symkey_enc: s2k=%d\n", enc->s2k.mode);
|
|
}
|
|
iobuf_put (a, enc->version);
|
|
iobuf_put (a, enc->cipher_algo);
|
|
if (enc->version == 5)
|
|
iobuf_put (a, enc->aead_algo);
|
|
iobuf_put (a, enc->s2k.mode);
|
|
iobuf_put (a, enc->s2k.hash_algo);
|
|
if (enc->s2k.mode == 1 || enc->s2k.mode == 3)
|
|
{
|
|
iobuf_write (a, enc->s2k.salt, 8);
|
|
if (enc->s2k.mode == 3)
|
|
iobuf_put (a, enc->s2k.count);
|
|
}
|
|
if (enc->seskeylen)
|
|
iobuf_write (a, enc->seskey, enc->seskeylen);
|
|
|
|
write_header (out, ctb, iobuf_get_temp_length(a));
|
|
rc = iobuf_write_temp (out, a);
|
|
|
|
iobuf_close (a);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Serialize the public-key encrypted session key packet (RFC 4880,
|
|
5.1) described by ENC and write it to OUT.
|
|
|
|
CTB is the serialization's CTB. It specifies the header format and
|
|
the packet's type. The header length must not be set. */
|
|
static int
|
|
do_pubkey_enc( IOBUF out, int ctb, PKT_pubkey_enc *enc )
|
|
{
|
|
int rc = 0;
|
|
int n, i;
|
|
IOBUF a = iobuf_temp();
|
|
|
|
log_assert (ctb_pkttype (ctb) == PKT_PUBKEY_ENC);
|
|
|
|
iobuf_put (a, 3); /* Version. */
|
|
|
|
if ( enc->throw_keyid )
|
|
{
|
|
write_32(a, 0 ); /* Don't tell Eve who can decrypt the message. */
|
|
write_32(a, 0 );
|
|
}
|
|
else
|
|
{
|
|
write_32(a, enc->keyid[0] );
|
|
write_32(a, enc->keyid[1] );
|
|
}
|
|
iobuf_put(a,enc->pubkey_algo );
|
|
n = pubkey_get_nenc( enc->pubkey_algo );
|
|
if ( !n )
|
|
write_fake_data( a, enc->data[0] );
|
|
|
|
for (i=0; i < n && !rc ; i++ )
|
|
{
|
|
/* For Kyber we need to insert the algo before the final data
|
|
* element because it is not stored in the data array. */
|
|
if (enc->pubkey_algo == PUBKEY_ALGO_KYBER && i == 2)
|
|
iobuf_put (a, enc->seskey_algo);
|
|
|
|
if (enc->pubkey_algo == PUBKEY_ALGO_ECDH && i == 1)
|
|
rc = gpg_mpi_write_opaque_nohdr (a, enc->data[i]);
|
|
else if (enc->pubkey_algo == PUBKEY_ALGO_ECDH)
|
|
rc = sos_write (a, enc->data[i], NULL);
|
|
else
|
|
rc = gpg_mpi_write (a, enc->data[i], NULL);
|
|
}
|
|
|
|
if (!rc)
|
|
{
|
|
write_header (out, ctb, iobuf_get_temp_length(a) );
|
|
rc = iobuf_write_temp (out, a);
|
|
}
|
|
iobuf_close(a);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Calculate the length of the serialized plaintext packet PT (RFC
|
|
4480, Section 5.9). */
|
|
static u32
|
|
calc_plaintext( PKT_plaintext *pt )
|
|
{
|
|
/* Truncate namelen to the maximum 255 characters. Note this means
|
|
that a function that calls build_packet with an illegal literal
|
|
packet will get it back legalized. */
|
|
|
|
if(pt->namelen>255)
|
|
pt->namelen=255;
|
|
|
|
return pt->len? (1 + 1 + pt->namelen + 4 + pt->len) : 0;
|
|
}
|
|
|
|
/* Serialize the plaintext packet (RFC 4880, 5.9) described by PT and
|
|
write it to OUT.
|
|
|
|
The body of the message is stored in PT->BUF. The amount of data
|
|
to write is PT->LEN. (PT->BUF should be configured to return EOF
|
|
after this much data has been read.) If PT->LEN is 0 and CTB
|
|
indicates that this is a new format packet, then partial block mode
|
|
is assumed to have been enabled on OUT. On success, partial block
|
|
mode is disabled.
|
|
|
|
If PT->BUF is NULL, the caller must write out the data. In
|
|
this case, if PT->LEN was 0, then partial body length mode was
|
|
enabled and the caller must disable it by calling
|
|
iobuf_set_partial_body_length_mode (out, 0). */
|
|
static int
|
|
do_plaintext( IOBUF out, int ctb, PKT_plaintext *pt )
|
|
{
|
|
int rc = 0;
|
|
size_t nbytes;
|
|
|
|
log_assert (ctb_pkttype (ctb) == PKT_PLAINTEXT);
|
|
|
|
write_header(out, ctb, calc_plaintext( pt ) );
|
|
log_assert (pt->mode == 'b' || pt->mode == 't' || pt->mode == 'u'
|
|
|| pt->mode == 'm'
|
|
|| pt->mode == 'l' || pt->mode == '1');
|
|
iobuf_put(out, pt->mode );
|
|
iobuf_put(out, pt->namelen );
|
|
iobuf_write (out, pt->name, pt->namelen);
|
|
rc = write_32(out, pt->timestamp );
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (pt->buf)
|
|
{
|
|
nbytes = iobuf_copy (out, pt->buf);
|
|
if (nbytes == (size_t)(-1)
|
|
&& (iobuf_error (out) || iobuf_error (pt->buf)))
|
|
return iobuf_error (out)? iobuf_error (out):iobuf_error (pt->buf);
|
|
/* Always get the error to catch write errors because
|
|
* iobuf_copy does not reliable return (-1) in that case. */
|
|
rc = iobuf_error (out);
|
|
if(ctb_new_format_p (ctb) && !pt->len)
|
|
/* Turn off partial body length mode. */
|
|
iobuf_set_partial_body_length_mode (out, 0);
|
|
if (pt->len && nbytes != pt->len)
|
|
{
|
|
log_error ("do_plaintext(): wrote %lu bytes"
|
|
" but expected %lu bytes\n",
|
|
(ulong)nbytes, (ulong)pt->len );
|
|
if (!rc) /* Just in case no error was set */
|
|
rc = gpg_error (GPG_ERR_EIO);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
|
|
/* Serialize the symmetrically encrypted data packet (RFC 4880,
|
|
Section 5.7) described by ED and write it to OUT.
|
|
|
|
Note: this only writes the packets header! The call must then
|
|
follow up and write the initial random data and the body to OUT.
|
|
(If you use the encryption iobuf filter (cipher_filter), then this
|
|
is done automatically.) */
|
|
static int
|
|
do_encrypted( IOBUF out, int ctb, PKT_encrypted *ed )
|
|
{
|
|
int rc = 0;
|
|
u32 n;
|
|
|
|
log_assert (! ed->mdc_method);
|
|
log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED);
|
|
|
|
n = ed->len ? (ed->len + ed->extralen) : 0;
|
|
write_header(out, ctb, n );
|
|
|
|
/* This is all. The caller has to write the real data */
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Serialize the symmetrically encrypted integrity protected data
|
|
packet (RFC 4880, Section 5.13) described by ED and write it to
|
|
OUT.
|
|
|
|
Note: this only writes the packet's header! The caller must then
|
|
follow up and write the initial random data, the body and the MDC
|
|
packet to OUT. (If you use the encryption iobuf filter
|
|
(cipher_filter), then this is done automatically.) */
|
|
static int
|
|
do_encrypted_mdc( IOBUF out, int ctb, PKT_encrypted *ed )
|
|
{
|
|
int rc = 0;
|
|
u32 n;
|
|
|
|
log_assert (ed->mdc_method);
|
|
log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED_MDC);
|
|
|
|
/* Take version number and the following MDC packet in account. */
|
|
n = ed->len ? (ed->len + ed->extralen + 1 + 22) : 0;
|
|
write_header(out, ctb, n );
|
|
iobuf_put(out, 1 ); /* version */
|
|
|
|
/* This is all. The caller has to write the real data */
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Serialize the symmetrically AEAD encrypted data packet
|
|
* (rfc4880bis-03, Section 5.16) described by ED and write it to OUT.
|
|
*
|
|
* Note: this only writes only packet's header. The caller must then
|
|
* follow up and write the actual encrypted data. This should be done
|
|
* by pushing the the cipher_filter_aead. */
|
|
static int
|
|
do_encrypted_aead (iobuf_t out, int ctb, PKT_encrypted *ed)
|
|
{
|
|
u32 n;
|
|
|
|
log_assert (ctb_pkttype (ctb) == PKT_ENCRYPTED_AEAD);
|
|
|
|
n = ed->len ? (ed->len + ed->extralen + 4) : 0;
|
|
write_header (out, ctb, n );
|
|
iobuf_writebyte (out, 1); /* Version. */
|
|
iobuf_writebyte (out, ed->cipher_algo);
|
|
iobuf_writebyte (out, ed->aead_algo);
|
|
iobuf_writebyte (out, ed->chunkbyte);
|
|
|
|
/* This is all. The caller has to write the encrypted data */
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Serialize the compressed packet (RFC 4880, Section 5.6) described
|
|
by CD and write it to OUT.
|
|
|
|
Note: this only writes the packet's header! The caller must then
|
|
follow up and write the body to OUT. */
|
|
static int
|
|
do_compressed( IOBUF out, int ctb, PKT_compressed *cd )
|
|
{
|
|
int rc = 0;
|
|
|
|
log_assert (ctb_pkttype (ctb) == PKT_COMPRESSED);
|
|
|
|
/* We must use the old convention and don't use blockmode for the
|
|
sake of PGP 2 compatibility. However if the new_ctb flag was
|
|
set, CTB is already formatted as new style and write_header2
|
|
does create a partial length encoding using new the new
|
|
style. */
|
|
write_header2(out, ctb, 0, 0);
|
|
iobuf_put(out, cd->algorithm );
|
|
|
|
/* This is all. The caller has to write the real data */
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/****************
|
|
* Delete all subpackets of type REQTYPE and return a bool whether a packet
|
|
* was deleted.
|
|
*/
|
|
int
|
|
delete_sig_subpkt (subpktarea_t *area, sigsubpkttype_t reqtype )
|
|
{
|
|
int buflen;
|
|
sigsubpkttype_t type;
|
|
byte *buffer, *bufstart;
|
|
size_t n;
|
|
size_t unused = 0;
|
|
int okay = 0;
|
|
|
|
if( !area )
|
|
return 0;
|
|
buflen = area->len;
|
|
buffer = area->data;
|
|
for(;;) {
|
|
if( !buflen ) {
|
|
okay = 1;
|
|
break;
|
|
}
|
|
bufstart = buffer;
|
|
n = *buffer++; buflen--;
|
|
if( n == 255 ) {
|
|
if( buflen < 4 )
|
|
break;
|
|
n = buf32_to_size_t (buffer);
|
|
buffer += 4;
|
|
buflen -= 4;
|
|
}
|
|
else if( n >= 192 ) {
|
|
if( buflen < 2 )
|
|
break;
|
|
n = (( n - 192 ) << 8) + *buffer + 192;
|
|
buffer++;
|
|
buflen--;
|
|
}
|
|
if( buflen < n )
|
|
break;
|
|
|
|
type = *buffer & 0x7f;
|
|
if( type == reqtype ) {
|
|
buffer++;
|
|
buflen--;
|
|
n--;
|
|
if( n > buflen )
|
|
break;
|
|
buffer += n; /* point to next subpkt */
|
|
buflen -= n;
|
|
memmove (bufstart, buffer, buflen); /* shift */
|
|
unused += buffer - bufstart;
|
|
buffer = bufstart;
|
|
}
|
|
else {
|
|
buffer += n; buflen -=n;
|
|
}
|
|
}
|
|
|
|
if (!okay)
|
|
log_error ("delete_subpkt: buffer shorter than subpacket\n");
|
|
log_assert (unused <= area->len);
|
|
area->len -= unused;
|
|
return !!unused;
|
|
}
|
|
|
|
|
|
/****************
|
|
* Create or update a signature subpacket for SIG of TYPE. This
|
|
* functions knows where to put the data (hashed or unhashed). The
|
|
* function may move data from the unhashed part to the hashed one.
|
|
* Note: All pointers into sig->[un]hashed (e.g. returned by
|
|
* parse_sig_subpkt) are not valid after a call to this function. The
|
|
* data to put into the subpaket should be in a buffer with a length
|
|
* of buflen.
|
|
*/
|
|
void
|
|
build_sig_subpkt (PKT_signature *sig, sigsubpkttype_t type,
|
|
const byte *buffer, size_t buflen )
|
|
{
|
|
byte *p;
|
|
int critical, hashed;
|
|
subpktarea_t *oldarea, *newarea;
|
|
size_t nlen, n, n0;
|
|
|
|
critical = (type & SIGSUBPKT_FLAG_CRITICAL);
|
|
type &= ~SIGSUBPKT_FLAG_CRITICAL;
|
|
|
|
/* Sanity check buffer sizes */
|
|
if(parse_one_sig_subpkt(buffer,buflen,type)<0)
|
|
BUG();
|
|
|
|
switch(type)
|
|
{
|
|
case SIGSUBPKT_NOTATION:
|
|
case SIGSUBPKT_POLICY:
|
|
case SIGSUBPKT_REV_KEY:
|
|
case SIGSUBPKT_SIGNATURE:
|
|
/* we do allow multiple subpackets */
|
|
break;
|
|
|
|
default:
|
|
/* we don't allow multiple subpackets */
|
|
delete_sig_subpkt(sig->hashed,type);
|
|
delete_sig_subpkt(sig->unhashed,type);
|
|
break;
|
|
}
|
|
|
|
/* Any special magic that needs to be done for this type so the
|
|
packet doesn't need to be reparsed? */
|
|
switch(type)
|
|
{
|
|
case SIGSUBPKT_NOTATION:
|
|
sig->flags.notation=1;
|
|
break;
|
|
|
|
case SIGSUBPKT_POLICY:
|
|
sig->flags.policy_url=1;
|
|
break;
|
|
|
|
case SIGSUBPKT_PREF_KS:
|
|
sig->flags.pref_ks=1;
|
|
break;
|
|
|
|
case SIGSUBPKT_EXPORTABLE:
|
|
if(buffer[0])
|
|
sig->flags.exportable=1;
|
|
else
|
|
sig->flags.exportable=0;
|
|
break;
|
|
|
|
case SIGSUBPKT_REVOCABLE:
|
|
if(buffer[0])
|
|
sig->flags.revocable=1;
|
|
else
|
|
sig->flags.revocable=0;
|
|
break;
|
|
|
|
case SIGSUBPKT_TRUST:
|
|
sig->trust_depth=buffer[0];
|
|
sig->trust_value=buffer[1];
|
|
break;
|
|
|
|
case SIGSUBPKT_REGEXP:
|
|
sig->trust_regexp=buffer;
|
|
break;
|
|
|
|
/* This should never happen since we don't currently allow
|
|
creating such a subpacket, but just in case... */
|
|
case SIGSUBPKT_SIG_EXPIRE:
|
|
if(buf32_to_u32(buffer)+sig->timestamp<=make_timestamp())
|
|
sig->flags.expired=1;
|
|
else
|
|
sig->flags.expired=0;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if( (buflen+1) >= 8384 )
|
|
nlen = 5; /* write 5 byte length header */
|
|
else if( (buflen+1) >= 192 )
|
|
nlen = 2; /* write 2 byte length header */
|
|
else
|
|
nlen = 1; /* just a 1 byte length header */
|
|
|
|
switch( type )
|
|
{
|
|
/* The issuer being unhashed is a historical oddity. It
|
|
should work equally as well hashed. Of course, if even an
|
|
unhashed issuer is tampered with, it makes it awfully hard
|
|
to verify the sig... */
|
|
case SIGSUBPKT_ISSUER:
|
|
case SIGSUBPKT_SIGNATURE:
|
|
hashed = 0;
|
|
break;
|
|
default:
|
|
hashed = 1;
|
|
break;
|
|
}
|
|
|
|
if( critical )
|
|
type |= SIGSUBPKT_FLAG_CRITICAL;
|
|
|
|
oldarea = hashed? sig->hashed : sig->unhashed;
|
|
|
|
/* Calculate new size of the area and allocate */
|
|
n0 = oldarea? oldarea->len : 0;
|
|
n = n0 + nlen + 1 + buflen; /* length, type, buffer */
|
|
if (oldarea && n <= oldarea->size) { /* fits into the unused space */
|
|
newarea = oldarea;
|
|
/*log_debug ("updating area for type %d\n", type );*/
|
|
}
|
|
else if (oldarea) {
|
|
newarea = xrealloc (oldarea, sizeof (*newarea) + n - 1);
|
|
newarea->size = n;
|
|
/*log_debug ("reallocating area for type %d\n", type );*/
|
|
}
|
|
else {
|
|
newarea = xmalloc (sizeof (*newarea) + n - 1);
|
|
newarea->size = n;
|
|
/*log_debug ("allocating area for type %d\n", type );*/
|
|
}
|
|
newarea->len = n;
|
|
|
|
p = newarea->data + n0;
|
|
if (nlen == 5) {
|
|
*p++ = 255;
|
|
*p++ = (buflen+1) >> 24;
|
|
*p++ = (buflen+1) >> 16;
|
|
*p++ = (buflen+1) >> 8;
|
|
*p++ = (buflen+1);
|
|
*p++ = type;
|
|
memcpy (p, buffer, buflen);
|
|
}
|
|
else if (nlen == 2) {
|
|
*p++ = (buflen+1-192) / 256 + 192;
|
|
*p++ = (buflen+1-192) % 256;
|
|
*p++ = type;
|
|
memcpy (p, buffer, buflen);
|
|
}
|
|
else {
|
|
*p++ = buflen+1;
|
|
*p++ = type;
|
|
memcpy (p, buffer, buflen);
|
|
}
|
|
|
|
if (hashed)
|
|
sig->hashed = newarea;
|
|
else
|
|
sig->unhashed = newarea;
|
|
}
|
|
|
|
/*
|
|
* Put all the required stuff from SIG into subpackets of sig.
|
|
* PKSK is the signing key. SIGNHINTS are various flags like
|
|
* SIGNHINT_ADSK.
|
|
* Hmmm, should we delete those subpackets which are in a wrong area?
|
|
*/
|
|
void
|
|
build_sig_subpkt_from_sig (PKT_signature *sig, PKT_public_key *pksk,
|
|
unsigned int signhints)
|
|
{
|
|
u32 u;
|
|
byte buf[1+MAX_FINGERPRINT_LEN];
|
|
size_t fprlen;
|
|
|
|
/* For v4 keys we need to write the ISSUER subpacket. We do not
|
|
* want that for a future v5 format. We also don't write it if
|
|
* only the new RENC keyflag is set (implementations with support
|
|
* for this key flag should understand the ISSUER_FPR). */
|
|
if (pksk->version < 5 && !(signhints & SIGNHINT_ADSK))
|
|
{
|
|
u = sig->keyid[0];
|
|
buf[0] = (u >> 24) & 0xff;
|
|
buf[1] = (u >> 16) & 0xff;
|
|
buf[2] = (u >> 8) & 0xff;
|
|
buf[3] = u & 0xff;
|
|
u = sig->keyid[1];
|
|
buf[4] = (u >> 24) & 0xff;
|
|
buf[5] = (u >> 16) & 0xff;
|
|
buf[6] = (u >> 8) & 0xff;
|
|
buf[7] = u & 0xff;
|
|
build_sig_subpkt (sig, SIGSUBPKT_ISSUER, buf, 8);
|
|
}
|
|
|
|
/* Write the new ISSUER_FPR subpacket. */
|
|
fingerprint_from_pk (pksk, buf+1, &fprlen);
|
|
if (fprlen == 20 || fprlen == 32)
|
|
{
|
|
buf[0] = pksk->version;
|
|
build_sig_subpkt (sig, SIGSUBPKT_ISSUER_FPR, buf, fprlen + 1);
|
|
}
|
|
|
|
/* Write the timestamp. */
|
|
u = sig->timestamp;
|
|
buf[0] = (u >> 24) & 0xff;
|
|
buf[1] = (u >> 16) & 0xff;
|
|
buf[2] = (u >> 8) & 0xff;
|
|
buf[3] = u & 0xff;
|
|
build_sig_subpkt( sig, SIGSUBPKT_SIG_CREATED, buf, 4 );
|
|
|
|
if(sig->expiredate)
|
|
{
|
|
if(sig->expiredate>sig->timestamp)
|
|
u=sig->expiredate-sig->timestamp;
|
|
else
|
|
u=1; /* A 1-second expiration time is the shortest one
|
|
OpenPGP has */
|
|
|
|
buf[0] = (u >> 24) & 0xff;
|
|
buf[1] = (u >> 16) & 0xff;
|
|
buf[2] = (u >> 8) & 0xff;
|
|
buf[3] = u & 0xff;
|
|
|
|
/* Mark this CRITICAL, so if any implementation doesn't
|
|
understand sigs that can expire, it'll just disregard this
|
|
sig altogether. */
|
|
|
|
build_sig_subpkt( sig, SIGSUBPKT_SIG_EXPIRE | SIGSUBPKT_FLAG_CRITICAL,
|
|
buf, 4 );
|
|
}
|
|
}
|
|
|
|
void
|
|
build_attribute_subpkt(PKT_user_id *uid,byte type,
|
|
const void *buf,u32 buflen,
|
|
const void *header,u32 headerlen)
|
|
{
|
|
byte *attrib;
|
|
int idx;
|
|
|
|
if(1+headerlen+buflen>8383)
|
|
idx=5;
|
|
else if(1+headerlen+buflen>191)
|
|
idx=2;
|
|
else
|
|
idx=1;
|
|
|
|
/* realloc uid->attrib_data to the right size */
|
|
|
|
uid->attrib_data=xrealloc(uid->attrib_data,
|
|
uid->attrib_len+idx+1+headerlen+buflen);
|
|
|
|
attrib=&uid->attrib_data[uid->attrib_len];
|
|
|
|
if(idx==5)
|
|
{
|
|
attrib[0]=255;
|
|
attrib[1]=(1+headerlen+buflen) >> 24;
|
|
attrib[2]=(1+headerlen+buflen) >> 16;
|
|
attrib[3]=(1+headerlen+buflen) >> 8;
|
|
attrib[4]=1+headerlen+buflen;
|
|
}
|
|
else if(idx==2)
|
|
{
|
|
attrib[0]=(1+headerlen+buflen-192) / 256 + 192;
|
|
attrib[1]=(1+headerlen+buflen-192) % 256;
|
|
}
|
|
else
|
|
attrib[0]=1+headerlen+buflen; /* Good luck finding a JPEG this small! */
|
|
|
|
attrib[idx++]=type;
|
|
|
|
/* Tack on our data at the end */
|
|
|
|
if(headerlen>0)
|
|
memcpy(&attrib[idx],header,headerlen);
|
|
memcpy(&attrib[idx+headerlen],buf,buflen);
|
|
uid->attrib_len+=idx+headerlen+buflen;
|
|
}
|
|
|
|
/* Returns a human-readable string corresponding to the notation.
|
|
This ignores notation->value. The caller must free the result. */
|
|
static char *
|
|
notation_value_to_human_readable_string (struct notation *notation)
|
|
{
|
|
if(notation->bdat)
|
|
/* Binary data. */
|
|
{
|
|
size_t len = notation->blen;
|
|
int i;
|
|
char preview[20];
|
|
|
|
for (i = 0; i < len && i < sizeof (preview) - 1; i ++)
|
|
if (isprint (notation->bdat[i]))
|
|
preview[i] = notation->bdat[i];
|
|
else
|
|
preview[i] = '?';
|
|
preview[i] = 0;
|
|
|
|
return xasprintf (_("[ not human readable (%zu bytes: %s%s) ]"),
|
|
len, preview, i < len ? "..." : "");
|
|
}
|
|
else
|
|
/* The value is human-readable. */
|
|
return xstrdup (notation->value);
|
|
}
|
|
|
|
/* Turn the notation described by the string STRING into a notation.
|
|
|
|
STRING has the form:
|
|
|
|
- -name - Delete the notation.
|
|
- name@domain.name=value - Normal notation
|
|
- !name@domain.name=value - Notation with critical bit set.
|
|
|
|
The caller must free the result using free_notation(). */
|
|
struct notation *
|
|
string_to_notation(const char *string,int is_utf8)
|
|
{
|
|
const char *s;
|
|
int saw_at=0;
|
|
struct notation *notation;
|
|
|
|
notation=xmalloc_clear(sizeof(*notation));
|
|
|
|
if(*string=='-')
|
|
{
|
|
notation->flags.ignore=1;
|
|
string++;
|
|
}
|
|
|
|
if(*string=='!')
|
|
{
|
|
notation->flags.critical=1;
|
|
string++;
|
|
}
|
|
|
|
/* If and when the IETF assigns some official name tags, we'll have
|
|
to add them here. */
|
|
|
|
for( s=string ; *s != '='; s++ )
|
|
{
|
|
if( *s=='@')
|
|
saw_at++;
|
|
|
|
/* -notationname is legal without an = sign */
|
|
if(!*s && notation->flags.ignore)
|
|
break;
|
|
|
|
if( !*s || !isascii (*s) || (!isgraph(*s) && !isspace(*s)) )
|
|
{
|
|
log_error(_("a notation name must have only printable characters"
|
|
" or spaces, and end with an '='\n") );
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
notation->name=xmalloc((s-string)+1);
|
|
memcpy(notation->name,string,s-string);
|
|
notation->name[s-string]='\0';
|
|
|
|
if(!saw_at && !opt.expert)
|
|
{
|
|
log_error(_("a user notation name must contain the '@' character\n"));
|
|
goto fail;
|
|
}
|
|
|
|
if (saw_at > 1)
|
|
{
|
|
log_error(_("a notation name must not contain more than"
|
|
" one '@' character\n"));
|
|
goto fail;
|
|
}
|
|
|
|
if(*s)
|
|
{
|
|
const char *i=s+1;
|
|
int highbit=0;
|
|
|
|
/* we only support printable text - therefore we enforce the use
|
|
of only printable characters (an empty value is valid) */
|
|
for(s++; *s ; s++ )
|
|
{
|
|
if ( !isascii (*s) )
|
|
highbit=1;
|
|
else if (iscntrl(*s))
|
|
{
|
|
log_error(_("a notation value must not use any"
|
|
" control characters\n"));
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if(!highbit || is_utf8)
|
|
notation->value=xstrdup(i);
|
|
else
|
|
notation->value=native_to_utf8(i);
|
|
}
|
|
|
|
return notation;
|
|
|
|
fail:
|
|
free_notation(notation);
|
|
return NULL;
|
|
}
|
|
|
|
/* Like string_to_notation, but store opaque data rather than human
|
|
readable data. */
|
|
struct notation *
|
|
blob_to_notation(const char *name, const char *data, size_t len)
|
|
{
|
|
const char *s;
|
|
int saw_at=0;
|
|
struct notation *notation;
|
|
|
|
notation=xmalloc_clear(sizeof(*notation));
|
|
|
|
if(*name=='-')
|
|
{
|
|
notation->flags.ignore=1;
|
|
name++;
|
|
}
|
|
|
|
if(*name=='!')
|
|
{
|
|
notation->flags.critical=1;
|
|
name++;
|
|
}
|
|
|
|
/* If and when the IETF assigns some official name tags, we'll have
|
|
to add them here. */
|
|
|
|
for( s=name ; *s; s++ )
|
|
{
|
|
if( *s=='@')
|
|
saw_at++;
|
|
|
|
/* -notationname is legal without an = sign */
|
|
if(!*s && notation->flags.ignore)
|
|
break;
|
|
|
|
if (*s == '=')
|
|
{
|
|
log_error(_("a notation name may not contain an '=' character\n"));
|
|
goto fail;
|
|
}
|
|
|
|
if (!isascii (*s) || (!isgraph(*s) && !isspace(*s)))
|
|
{
|
|
log_error(_("a notation name must have only printable characters"
|
|
" or spaces\n") );
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
notation->name=xstrdup (name);
|
|
|
|
if(!saw_at && !opt.expert)
|
|
{
|
|
log_error(_("a user notation name must contain the '@' character\n"));
|
|
goto fail;
|
|
}
|
|
|
|
if (saw_at > 1)
|
|
{
|
|
log_error(_("a notation name must not contain more than"
|
|
" one '@' character\n"));
|
|
goto fail;
|
|
}
|
|
|
|
notation->bdat = xmalloc (len);
|
|
memcpy (notation->bdat, data, len);
|
|
notation->blen = len;
|
|
|
|
notation->value = notation_value_to_human_readable_string (notation);
|
|
|
|
return notation;
|
|
|
|
fail:
|
|
free_notation(notation);
|
|
return NULL;
|
|
}
|
|
|
|
struct notation *
|
|
sig_to_notation(PKT_signature *sig)
|
|
{
|
|
const byte *p;
|
|
size_t len;
|
|
int seq = 0;
|
|
int crit;
|
|
notation_t list = NULL;
|
|
|
|
/* See RFC 4880, 5.2.3.16 for the format of notation data. In
|
|
short, a notation has:
|
|
|
|
- 4 bytes of flags
|
|
- 2 byte name length (n1)
|
|
- 2 byte value length (n2)
|
|
- n1 bytes of name data
|
|
- n2 bytes of value data
|
|
*/
|
|
while((p=enum_sig_subpkt (sig, 1, SIGSUBPKT_NOTATION, &len, &seq, &crit)))
|
|
{
|
|
int n1,n2;
|
|
struct notation *n=NULL;
|
|
|
|
if(len<8)
|
|
{
|
|
log_info(_("WARNING: invalid notation data found\n"));
|
|
continue;
|
|
}
|
|
|
|
/* name length. */
|
|
n1=(p[4]<<8)|p[5];
|
|
/* value length. */
|
|
n2=(p[6]<<8)|p[7];
|
|
|
|
if(8+n1+n2!=len)
|
|
{
|
|
log_info(_("WARNING: invalid notation data found\n"));
|
|
continue;
|
|
}
|
|
|
|
n=xmalloc_clear(sizeof(*n));
|
|
n->name=xmalloc(n1+1);
|
|
|
|
memcpy(n->name,&p[8],n1);
|
|
n->name[n1]='\0';
|
|
|
|
if(p[0]&0x80)
|
|
/* The value is human-readable. */
|
|
{
|
|
n->value=xmalloc(n2+1);
|
|
memcpy(n->value,&p[8+n1],n2);
|
|
n->value[n2]='\0';
|
|
n->flags.human = 1;
|
|
}
|
|
else
|
|
/* Binary data. */
|
|
{
|
|
n->bdat=xmalloc(n2);
|
|
n->blen=n2;
|
|
memcpy(n->bdat,&p[8+n1],n2);
|
|
|
|
n->value = notation_value_to_human_readable_string (n);
|
|
}
|
|
|
|
n->flags.critical=crit;
|
|
|
|
n->next=list;
|
|
list=n;
|
|
}
|
|
|
|
return list;
|
|
}
|
|
|
|
|
|
/* Return a list of notation data matching NAME. The caller needs to
|
|
* to free the list using free_notation. Other than sig_to_notation
|
|
* this function does not return the notation in human readable format
|
|
* but always returns the raw data. The human readable flag is set
|
|
* anyway set but .value is always NULL. */
|
|
struct notation *
|
|
search_sig_notations (PKT_signature *sig, const char *name)
|
|
{
|
|
const byte *p;
|
|
size_t len;
|
|
int seq = 0;
|
|
int crit;
|
|
notation_t list = NULL;
|
|
|
|
while((p=enum_sig_subpkt (sig, 1, SIGSUBPKT_NOTATION, &len, &seq, &crit)))
|
|
{
|
|
int n1,n2;
|
|
struct notation *n=NULL;
|
|
|
|
if (len < 8)
|
|
{
|
|
log_info (_("WARNING: invalid notation data found\n"));
|
|
continue;
|
|
}
|
|
|
|
/* name length. */
|
|
n1=(p[4]<<8)|p[5];
|
|
/* value length. */
|
|
n2=(p[6]<<8)|p[7];
|
|
|
|
if (8 + n1 + n2 != len)
|
|
{
|
|
log_info (_("WARNING: invalid notation data found\n"));
|
|
continue;
|
|
}
|
|
|
|
if (!name)
|
|
; /* Return everything. */
|
|
else if (n1 != strlen (name) || memcmp (p+8, name, n1))
|
|
continue; /* Not the requested name. */
|
|
|
|
|
|
n = xmalloc_clear (sizeof *n);
|
|
n->name = xmalloc (n1+1);
|
|
|
|
memcpy (n->name,p + 8, n1);
|
|
n->name[n1]='\0';
|
|
|
|
/* In any case append a Nul. */
|
|
n->bdat = xmalloc (n2+1);
|
|
memcpy (n->bdat, p + 8 + n1, n2);
|
|
n->bdat[n2] = '\0';
|
|
n->blen = n2;
|
|
n->flags.human = !!(p[0] & 0x80);
|
|
|
|
n->flags.critical = crit;
|
|
|
|
n->next = list;
|
|
list = n;
|
|
}
|
|
|
|
return list;
|
|
}
|
|
|
|
|
|
/* Release the resources associated with the *list* of notations. To
|
|
release a single notation, make sure that notation->next is
|
|
NULL. */
|
|
void
|
|
free_notation(struct notation *notation)
|
|
{
|
|
while(notation)
|
|
{
|
|
struct notation *n=notation;
|
|
|
|
xfree(n->name);
|
|
xfree(n->value);
|
|
xfree(n->altvalue);
|
|
xfree(n->bdat);
|
|
notation=n->next;
|
|
xfree(n);
|
|
}
|
|
}
|
|
|
|
/* Serialize the signature packet (RFC 4880, Section 5.2) described by
|
|
SIG and write it to OUT. */
|
|
static int
|
|
do_signature( IOBUF out, int ctb, PKT_signature *sig )
|
|
{
|
|
int rc = 0;
|
|
int n, i;
|
|
IOBUF a = iobuf_temp();
|
|
|
|
log_assert (ctb_pkttype (ctb) == PKT_SIGNATURE);
|
|
|
|
if ( !sig->version || sig->version == 3)
|
|
{
|
|
iobuf_put( a, 3 );
|
|
|
|
/* Version 3 packets don't support subpackets. Actually we
|
|
* should never get to here but real life is different and thus
|
|
* we now use a log_fatal instead of a log_assert here. */
|
|
if (sig->hashed || sig->unhashed)
|
|
log_fatal ("trying to write a subpacket to a v3 signature (%d,%d)\n",
|
|
!!sig->hashed, !!sig->unhashed);
|
|
}
|
|
else
|
|
iobuf_put( a, sig->version );
|
|
if ( sig->version < 4 )
|
|
iobuf_put (a, 5 ); /* Constant used by pre-v4 signatures. */
|
|
iobuf_put (a, sig->sig_class );
|
|
if ( sig->version < 4 )
|
|
{
|
|
write_32(a, sig->timestamp );
|
|
write_32(a, sig->keyid[0] );
|
|
write_32(a, sig->keyid[1] );
|
|
}
|
|
iobuf_put(a, sig->pubkey_algo );
|
|
iobuf_put(a, sig->digest_algo );
|
|
if ( sig->version >= 4 )
|
|
{
|
|
size_t nn;
|
|
/* Timestamp and keyid must have been packed into the subpackets
|
|
prior to the call of this function, because these subpackets
|
|
are hashed. */
|
|
nn = sig->hashed? sig->hashed->len : 0;
|
|
write_16(a, nn);
|
|
if (nn)
|
|
iobuf_write( a, sig->hashed->data, nn );
|
|
nn = sig->unhashed? sig->unhashed->len : 0;
|
|
write_16(a, nn);
|
|
if (nn)
|
|
iobuf_write( a, sig->unhashed->data, nn );
|
|
}
|
|
iobuf_put(a, sig->digest_start[0] );
|
|
iobuf_put(a, sig->digest_start[1] );
|
|
n = pubkey_get_nsig( sig->pubkey_algo );
|
|
if ( !n )
|
|
write_fake_data( a, sig->data[0] );
|
|
if (sig->pubkey_algo == PUBKEY_ALGO_ECDSA
|
|
|| sig->pubkey_algo == PUBKEY_ALGO_EDDSA)
|
|
for (i=0; i < n && !rc ; i++ )
|
|
rc = sos_write (a, sig->data[i], NULL);
|
|
else
|
|
for (i=0; i < n && !rc ; i++ )
|
|
rc = gpg_mpi_write (a, sig->data[i], NULL);
|
|
|
|
if (!rc)
|
|
{
|
|
if ( is_RSA(sig->pubkey_algo) && sig->version < 4 )
|
|
write_sign_packet_header(out, ctb, iobuf_get_temp_length(a) );
|
|
else
|
|
write_header(out, ctb, iobuf_get_temp_length(a) );
|
|
rc = iobuf_write_temp( out, a );
|
|
}
|
|
|
|
iobuf_close(a);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Serialize the one-pass signature packet (RFC 4880, Section 5.4)
|
|
described by OPS and write it to OUT. */
|
|
static int
|
|
do_onepass_sig( IOBUF out, int ctb, PKT_onepass_sig *ops )
|
|
{
|
|
log_assert (ctb_pkttype (ctb) == PKT_ONEPASS_SIG);
|
|
|
|
write_header(out, ctb, 4 + 8 + 1);
|
|
|
|
iobuf_put (out, 3); /* Version. */
|
|
iobuf_put(out, ops->sig_class );
|
|
iobuf_put(out, ops->digest_algo );
|
|
iobuf_put(out, ops->pubkey_algo );
|
|
write_32(out, ops->keyid[0] );
|
|
write_32(out, ops->keyid[1] );
|
|
iobuf_put(out, ops->last );
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Write a 16-bit quantity to OUT in big endian order. */
|
|
static int
|
|
write_16(IOBUF out, u16 a)
|
|
{
|
|
iobuf_put(out, a>>8);
|
|
if( iobuf_put(out,a) )
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Write a 32-bit quantity to OUT in big endian order. */
|
|
static int
|
|
write_32(IOBUF out, u32 a)
|
|
{
|
|
iobuf_put(out, a>> 24);
|
|
iobuf_put(out, a>> 16);
|
|
iobuf_put(out, a>> 8);
|
|
return iobuf_put(out, a);
|
|
}
|
|
|
|
|
|
/****************
|
|
* calculate the length of a header.
|
|
*
|
|
* LEN is the length of the packet's body. NEW_CTB is whether we are
|
|
* using a new or old format packet.
|
|
*
|
|
* This function does not handle indeterminate lengths or partial body
|
|
* lengths. (If you pass LEN as 0, then this function assumes you
|
|
* really mean an empty body.)
|
|
*/
|
|
static int
|
|
calc_header_length( u32 len, int new_ctb )
|
|
{
|
|
if( new_ctb ) {
|
|
if( len < 192 )
|
|
return 2;
|
|
if( len < 8384 )
|
|
return 3;
|
|
else
|
|
return 6;
|
|
}
|
|
if( len < 256 )
|
|
return 2;
|
|
if( len < 65536 )
|
|
return 3;
|
|
|
|
return 5;
|
|
}
|
|
|
|
/****************
|
|
* Write the CTB and the packet length
|
|
*/
|
|
static int
|
|
write_header( IOBUF out, int ctb, u32 len )
|
|
{
|
|
return write_header2( out, ctb, len, 0 );
|
|
}
|
|
|
|
|
|
static int
|
|
write_sign_packet_header (IOBUF out, int ctb, u32 len)
|
|
{
|
|
(void)ctb;
|
|
|
|
/* Work around a bug in the pgp read function for signature packets,
|
|
which are not correctly coded and silently assume at some point 2
|
|
byte length headers.*/
|
|
iobuf_put (out, 0x89 );
|
|
iobuf_put (out, len >> 8 );
|
|
return iobuf_put (out, len) == -1 ? -1:0;
|
|
}
|
|
|
|
/****************
|
|
* Write a packet header to OUT.
|
|
*
|
|
* CTB is the ctb. It determines whether a new or old format packet
|
|
* header should be written. The length field is adjusted, but the
|
|
* CTB is otherwise written out as is.
|
|
*
|
|
* LEN is the length of the packet's body.
|
|
*
|
|
* If HDRLEN is set, then we don't necessarily use the most efficient
|
|
* encoding to store LEN, but the specified length. (If this is not
|
|
* possible, this is a bug.) In this case, LEN=0 means a 0 length
|
|
* packet. Note: setting HDRLEN is only supported for old format
|
|
* packets!
|
|
*
|
|
* If HDRLEN is not set, then the shortest encoding is used. In this
|
|
* case, LEN=0 means the body has an indeterminate length and a
|
|
* partial body length header (if a new format packet) or an
|
|
* indeterminate length header (if an old format packet) is written
|
|
* out. Further, if using partial body lengths, this enables partial
|
|
* body length mode on OUT.
|
|
*/
|
|
static int
|
|
write_header2( IOBUF out, int ctb, u32 len, int hdrlen )
|
|
{
|
|
if (ctb_new_format_p (ctb))
|
|
return write_new_header( out, ctb, len, hdrlen );
|
|
|
|
/* An old format packet. Refer to RFC 4880, Section 4.2.1 to
|
|
understand how lengths are encoded in this case. */
|
|
|
|
/* The length encoding is stored in the two least significant bits.
|
|
Make sure they are cleared. */
|
|
log_assert ((ctb & 3) == 0);
|
|
|
|
log_assert (hdrlen == 0 || hdrlen == 2 || hdrlen == 3 || hdrlen == 5);
|
|
|
|
if (hdrlen)
|
|
/* Header length is given. */
|
|
{
|
|
if( hdrlen == 2 && len < 256 )
|
|
/* 00 => 1 byte length. */
|
|
;
|
|
else if( hdrlen == 3 && len < 65536 )
|
|
/* 01 => 2 byte length. If len < 256, this is not the most
|
|
compact encoding, but it is a correct encoding. */
|
|
ctb |= 1;
|
|
else if (hdrlen == 5)
|
|
/* 10 => 4 byte length. If len < 65536, this is not the most
|
|
compact encoding, but it is a correct encoding. */
|
|
ctb |= 2;
|
|
else
|
|
log_bug ("Can't encode length=%d in a %d byte header!\n",
|
|
len, hdrlen);
|
|
}
|
|
else
|
|
{
|
|
if( !len )
|
|
/* 11 => Indeterminate length. */
|
|
ctb |= 3;
|
|
else if( len < 256 )
|
|
/* 00 => 1 byte length. */
|
|
;
|
|
else if( len < 65536 )
|
|
/* 01 => 2 byte length. */
|
|
ctb |= 1;
|
|
else
|
|
/* 10 => 4 byte length. */
|
|
ctb |= 2;
|
|
}
|
|
|
|
if( iobuf_put(out, ctb ) )
|
|
return -1;
|
|
|
|
if( len || hdrlen )
|
|
{
|
|
if( ctb & 2 )
|
|
{
|
|
if(iobuf_put(out, len >> 24 ))
|
|
return -1;
|
|
if(iobuf_put(out, len >> 16 ))
|
|
return -1;
|
|
}
|
|
|
|
if( ctb & 3 )
|
|
if(iobuf_put(out, len >> 8 ))
|
|
return -1;
|
|
|
|
if( iobuf_put(out, len ) )
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Write a new format header to OUT.
|
|
|
|
CTB is the ctb.
|
|
|
|
LEN is the length of the packet's body. If LEN is 0, then enables
|
|
partial body length mode (i.e., the body is of an indeterminant
|
|
length) on OUT. Note: this function cannot be used to generate a
|
|
header for a zero length packet.
|
|
|
|
HDRLEN is the length of the packet's header. If HDRLEN is 0, the
|
|
shortest encoding is chosen based on the length of the packet's
|
|
body. Currently, values other than 0 are not supported.
|
|
|
|
Returns 0 on success. */
|
|
static int
|
|
write_new_header( IOBUF out, int ctb, u32 len, int hdrlen )
|
|
{
|
|
if( hdrlen )
|
|
log_bug("can't cope with hdrlen yet\n");
|
|
|
|
if( iobuf_put(out, ctb ) )
|
|
return -1;
|
|
if( !len ) {
|
|
iobuf_set_partial_body_length_mode(out, 512 );
|
|
}
|
|
else {
|
|
if( len < 192 ) {
|
|
if( iobuf_put(out, len ) )
|
|
return -1;
|
|
}
|
|
else if( len < 8384 ) {
|
|
len -= 192;
|
|
if( iobuf_put( out, (len / 256) + 192) )
|
|
return -1;
|
|
if( iobuf_put( out, (len % 256) ) )
|
|
return -1;
|
|
}
|
|
else {
|
|
if( iobuf_put( out, 0xff ) )
|
|
return -1;
|
|
if( iobuf_put( out, (len >> 24)&0xff ) )
|
|
return -1;
|
|
if( iobuf_put( out, (len >> 16)&0xff ) )
|
|
return -1;
|
|
if( iobuf_put( out, (len >> 8)&0xff ) )
|
|
return -1;
|
|
if( iobuf_put( out, len & 0xff ) )
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|