1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-10-29 19:48:43 +01:00
gnupg/tpm2d/tpm2.c
Werner Koch 6a83fc073d
tpmd2: Add copyright blurbs.
--

Confirmed by James Bottomley; see
https://lists.gnupg.org/pipermail/gnupg-devel/2021-March/034755.html

Signed-off-by: Werner Koch <wk@gnupg.org>
2021-03-11 08:33:44 +01:00

1008 lines
26 KiB
C

/* tpm2.c - Supporting TPM routines for the IBM TSS
* Copyright (C) 2021 James Bottomley <James.Bottomley@HansenPartnership.com>
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include <config.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include <unistd.h>
#include <sys/stat.h>
#include <arpa/inet.h>
#include "tpm2.h"
#include "../common/i18n.h"
#include "../common/sexp-parse.h"
int
tpm2_start (TSS_CONTEXT **tssc)
{
return TSS_start(tssc);
}
void
tpm2_end (TSS_CONTEXT *tssc)
{
TSS_Delete (tssc);
}
static TPM_HANDLE
tpm2_get_parent (TSS_CONTEXT *tssc, TPM_HANDLE p)
{
TPM_RC rc;
TPM2B_SENSITIVE_CREATE inSensitive;
TPM2B_PUBLIC inPublic;
TPM_HANDLE objectHandle;
p = tpm2_handle_int(tssc, p);
if (tpm2_handle_mso(tssc, p, TPM_HT_PERSISTENT))
return p; /* should only be permanent */
/* assume no hierarchy auth */
VAL_2B (inSensitive.sensitive.userAuth, size) = 0;
/* no sensitive date for storage keys */
VAL_2B (inSensitive.sensitive.data, size) = 0;
/* public parameters for a P-256 EC key */
inPublic.publicArea.type = TPM_ALG_ECC;
inPublic.publicArea.nameAlg = TPM_ALG_SHA256;
VAL (inPublic.publicArea.objectAttributes) =
TPMA_OBJECT_NODA |
TPMA_OBJECT_SENSITIVEDATAORIGIN |
TPMA_OBJECT_USERWITHAUTH |
TPMA_OBJECT_DECRYPT |
TPMA_OBJECT_RESTRICTED |
TPMA_OBJECT_FIXEDPARENT |
TPMA_OBJECT_FIXEDTPM;
inPublic.publicArea.parameters.eccDetail.symmetric.algorithm = TPM_ALG_AES;
inPublic.publicArea.parameters.eccDetail.symmetric.keyBits.aes = 128;
inPublic.publicArea.parameters.eccDetail.symmetric.mode.aes = TPM_ALG_CFB;
inPublic.publicArea.parameters.eccDetail.scheme.scheme = TPM_ALG_NULL;
inPublic.publicArea.parameters.eccDetail.curveID = TPM_ECC_NIST_P256;
inPublic.publicArea.parameters.eccDetail.kdf.scheme = TPM_ALG_NULL;
VAL_2B (inPublic.publicArea.unique.ecc.x, size) = 0;
VAL_2B (inPublic.publicArea.unique.ecc.y, size) = 0;
VAL_2B (inPublic.publicArea.authPolicy, size) = 0;
rc = tpm2_CreatePrimary (tssc, p, &inSensitive, &inPublic, &objectHandle);
if (rc)
{
tpm2_error (rc, "TSS_CreatePrimary");
return 0;
}
return objectHandle;
}
void
tpm2_flush_handle (TSS_CONTEXT *tssc, TPM_HANDLE h)
{
/* only flush volatile handles */
if (tpm2_handle_mso(tssc, h, TPM_HT_PERSISTENT))
return;
tpm2_FlushContext(tssc, h);
}
static int
tpm2_get_hmac_handle (TSS_CONTEXT *tssc, TPM_HANDLE *handle,
TPM_HANDLE salt_key)
{
TPM_RC rc;
TPMT_SYM_DEF symmetric;
symmetric.algorithm = TPM_ALG_AES;
symmetric.keyBits.aes = 128;
symmetric.mode.aes = TPM_ALG_CFB;
rc = tpm2_StartAuthSession(tssc, salt_key, TPM_RH_NULL, TPM_SE_HMAC,
&symmetric, TPM_ALG_SHA256, handle, NULL);
if (rc)
{
tpm2_error (rc, "TPM2_StartAuthSession");
return GPG_ERR_CARD;
}
return 0;
}
static int
tpm2_pre_auth (ctrl_t ctrl, TSS_CONTEXT *tssc,
gpg_error_t (*pin_cb)(ctrl_t ctrl, const char *info,
char **retstr),
TPM_HANDLE *ah, char **auth)
{
TPM_RC rc;
int len;
rc = pin_cb (ctrl, _("TPM Key Passphrase"), auth);
if (rc)
return rc;
len = strlen(*auth);
/*
* TPMs can't accept a longer passphrase than the name algorithm.
* We hard code the name algorithm to SHA256 so the max passphrase
* length is 32
*/
if (len > 32)
{
log_error ("Truncating Passphrase to TPM allowed 32\n");
(*auth)[32] = '\0';
}
rc = tpm2_get_hmac_handle (tssc, ah, TPM_RH_NULL);
return rc;
}
static int
tpm2_post_auth (TSS_CONTEXT *tssc, TPM_RC rc, TPM_HANDLE ah,
char **auth, const char *cmd_str)
{
gcry_free (*auth);
*auth = NULL;
if (rc)
{
tpm2_error (rc, cmd_str);
tpm2_flush_handle (tssc, ah);
switch (rc & 0xFF)
{
case TPM_RC_BAD_AUTH:
case TPM_RC_AUTH_FAIL:
return GPG_ERR_BAD_PASSPHRASE;
default:
return GPG_ERR_CARD;
}
}
return 0;
}
static unsigned char *
make_tpm2_shadow_info (uint32_t parent, const char *pub, int pub_len,
const char *priv, int priv_len, size_t *len)
{
gcry_sexp_t s_exp;
char *info;
gcry_sexp_build (&s_exp, NULL, "(%u%b%b)", parent, pub_len, pub,
priv_len, priv);
*len = gcry_sexp_sprint (s_exp, GCRYSEXP_FMT_CANON, NULL, 0);
info = xtrymalloc (*len);
if (!info)
goto out;
gcry_sexp_sprint (s_exp, GCRYSEXP_FMT_CANON, info, *len);
out:
gcry_sexp_release (s_exp);
return (unsigned char *)info;
}
static gpg_error_t
parse_tpm2_shadow_info (const unsigned char *shadow_info,
uint32_t *parent,
const char **pub, int *pub_len,
const char **priv, int *priv_len)
{
const unsigned char *s;
size_t n;
int i;
s = shadow_info;
if (*s != '(')
return gpg_error (GPG_ERR_INV_SEXP);
s++;
n = snext (&s);
if (!n)
return gpg_error (GPG_ERR_INV_SEXP);
*parent = 0;
for (i = 0; i < n; i++)
{
*parent *= 10;
*parent += atoi_1(s+i);
}
s += n;
n = snext (&s);
if (!n)
return gpg_error (GPG_ERR_INV_SEXP);
*pub_len = n;
*pub = s;
s += n;
n = snext (&s);
if (!n)
return gpg_error (GPG_ERR_INV_SEXP);
*priv_len = n;
*priv = s;
return 0;
}
int
tpm2_load_key (TSS_CONTEXT *tssc, const unsigned char *shadow_info,
TPM_HANDLE *key, TPMI_ALG_PUBLIC *type)
{
uint32_t parent;
TPM_HANDLE parentHandle;
PRIVATE_2B inPrivate;
TPM2B_PUBLIC inPublic;
const char *pub, *priv;
int ret, pub_len, priv_len;
TPM_RC rc;
BYTE *buf;
uint32_t size;
ret = parse_tpm2_shadow_info (shadow_info, &parent, &pub, &pub_len,
&priv, &priv_len);
if (ret)
return ret;
parentHandle = tpm2_get_parent (tssc, parent);
buf = (BYTE *)priv;
size = priv_len;
TPM2B_PRIVATE_Unmarshal ((TPM2B_PRIVATE *)&inPrivate, &buf, &size);
buf = (BYTE *)pub;
size = pub_len;
TPM2B_PUBLIC_Unmarshal (&inPublic, &buf, &size, FALSE);
*type = inPublic.publicArea.type;
rc = tpm2_Load (tssc, parentHandle, &inPrivate, &inPublic, key,
TPM_RS_PW, NULL);
tpm2_flush_handle (tssc, parentHandle);
if (rc != TPM_RC_SUCCESS)
{
tpm2_error (rc, "TPM2_Load");
return GPG_ERR_CARD;
}
return 0;
}
int
tpm2_sign (ctrl_t ctrl, TSS_CONTEXT *tssc, TPM_HANDLE key,
gpg_error_t (*pin_cb)(ctrl_t ctrl, const char *info,
char **retstr),
TPMI_ALG_PUBLIC type,
const unsigned char *digest, size_t digestlen,
unsigned char **r_sig, size_t *r_siglen)
{
int ret;
DIGEST_2B digest2b;
TPMT_SIG_SCHEME inScheme;
TPMT_SIGNATURE signature;
TPM_HANDLE ah;
char *auth;
/* The TPM insists on knowing the digest type, so
* calculate that from the size */
switch (digestlen)
{
case 20:
inScheme.details.rsassa.hashAlg = TPM_ALG_SHA1;
break;
case 32:
inScheme.details.rsassa.hashAlg = TPM_ALG_SHA256;
break;
case 48:
inScheme.details.rsassa.hashAlg = TPM_ALG_SHA384;
break;
#ifdef TPM_ALG_SHA512
case 64:
inScheme.details.rsassa.hashAlg = TPM_ALG_SHA512;
break;
#endif
default:
log_error ("Unknown signature digest length, cannot deduce hash type for TPM\n");
return GPG_ERR_NO_SIGNATURE_SCHEME;
}
digest2b.size = digestlen;
memcpy (digest2b.buffer, digest, digestlen);
if (type == TPM_ALG_RSA)
inScheme.scheme = TPM_ALG_RSASSA;
else if (type == TPM_ALG_ECC)
inScheme.scheme = TPM_ALG_ECDSA;
else
return GPG_ERR_PUBKEY_ALGO;
ret = tpm2_pre_auth (ctrl, tssc, pin_cb, &ah, &auth);
if (ret)
return ret;
ret = tpm2_Sign (tssc, key, &digest2b, &inScheme, &signature, ah, auth);
ret = tpm2_post_auth (tssc, ret, ah, &auth, "TPM2_Sign");
if (ret)
return ret;
if (type == TPM_ALG_RSA)
*r_siglen = VAL_2B (signature.signature.rsassa.sig, size);
else if (type == TPM_ALG_ECC)
*r_siglen = VAL_2B (signature.signature.ecdsa.signatureR, size)
+ VAL_2B (signature.signature.ecdsa.signatureS, size);
*r_sig = xtrymalloc (*r_siglen);
if (!r_sig)
return GPG_ERR_ENOMEM;
if (type == TPM_ALG_RSA)
{
memcpy (*r_sig, VAL_2B (signature.signature.rsassa.sig, buffer),
*r_siglen);
}
else if (type == TPM_ALG_ECC)
{
memcpy (*r_sig, VAL_2B (signature.signature.ecdsa.signatureR, buffer),
VAL_2B (signature.signature.ecdsa.signatureR, size));
memcpy (*r_sig + VAL_2B (signature.signature.ecdsa.signatureR, size),
VAL_2B (signature.signature.ecdsa.signatureS, buffer),
VAL_2B (signature.signature.ecdsa.signatureS, size));
}
return 0;
}
static int
sexp_to_tpm2_sensitive_ecc (TPMT_SENSITIVE *s, gcry_sexp_t key)
{
gcry_mpi_t d;
gcry_sexp_t l;
int rc = -1;
size_t len;
s->sensitiveType = TPM_ALG_ECC;
VAL_2B (s->seedValue, size) = 0;
l = gcry_sexp_find_token (key, "d", 0);
if (!l)
return rc;
d = gcry_sexp_nth_mpi (l, 1, GCRYMPI_FMT_USG);
gcry_sexp_release (l);
len = sizeof (VAL_2B (s->sensitive.ecc, buffer));
rc = gcry_mpi_print (GCRYMPI_FMT_USG, VAL_2B (s->sensitive.ecc, buffer),
len, &len, d);
VAL_2B (s->sensitive.ecc, size) = len;
gcry_mpi_release (d);
return rc;
}
/* try to match the libgcrypt curve names to known TPM parameters.
*
* As of 2018 the TCG defined curves are only NIST
* (192,224,256,384,521) Barreto-Naehring (256,638) and the Chinese
* SM2 (256), which means only the NIST ones overlap with libgcrypt */
static struct {
const char *name;
TPMI_ECC_CURVE c;
} tpm2_curves[] = {
{ "NIST P-192", TPM_ECC_NIST_P192 },
{ "prime192v1", TPM_ECC_NIST_P192 },
{ "secp192r1", TPM_ECC_NIST_P192 },
{ "nistp192", TPM_ECC_NIST_P192 },
{ "NIST P-224", TPM_ECC_NIST_P224 },
{ "secp224r1", TPM_ECC_NIST_P224 },
{ "nistp224", TPM_ECC_NIST_P224 },
{ "NIST P-256", TPM_ECC_NIST_P256 },
{ "prime256v1", TPM_ECC_NIST_P256 },
{ "secp256r1", TPM_ECC_NIST_P256 },
{ "nistp256", TPM_ECC_NIST_P256 },
{ "NIST P-384", TPM_ECC_NIST_P384 },
{ "secp384r1", TPM_ECC_NIST_P384 },
{ "nistp384", TPM_ECC_NIST_P384 },
{ "NIST P-521", TPM_ECC_NIST_P521 },
{ "secp521r1", TPM_ECC_NIST_P521 },
{ "nistp521", TPM_ECC_NIST_P521 },
};
static int
tpm2_ecc_curve (const char *curve_name, TPMI_ECC_CURVE *c)
{
int i;
for (i = 0; i < DIM (tpm2_curves); i++)
if (strcmp (tpm2_curves[i].name, curve_name) == 0)
break;
if (i == DIM (tpm2_curves))
{
log_error ("curve %s does not match any available TPM curves\n", curve_name);
return GPG_ERR_UNKNOWN_CURVE;
}
*c = tpm2_curves[i].c;
return 0;
}
static int
sexp_to_tpm2_public_ecc (TPMT_PUBLIC *p, gcry_sexp_t key)
{
const char *q;
gcry_sexp_t l;
int rc = GPG_ERR_BAD_PUBKEY;
size_t len;
TPMI_ECC_CURVE curve;
char *curve_name;
l = gcry_sexp_find_token (key, "curve", 0);
if (!l)
return rc;
curve_name = gcry_sexp_nth_string (l, 1);
if (!curve_name)
goto out;
rc = tpm2_ecc_curve (curve_name, &curve);
gcry_free (curve_name);
if (rc)
goto out;
gcry_sexp_release (l);
l = gcry_sexp_find_token (key, "q", 0);
if (!l)
return rc;
q = gcry_sexp_nth_data (l, 1, &len);
/* This is a point representation, the first byte tells you what
* type. The only format we understand is uncompressed (0x04)
* which has layout 0x04 | x | y */
if (q[0] != 0x04)
{
log_error ("Point format for q is not uncompressed\n");
goto out;
}
q++;
len--;
/* now should have to equal sized big endian point numbers */
if ((len & 0x01) == 1)
{
log_error ("Point format for q has incorrect length\n");
goto out;
}
len >>= 1;
p->type = TPM_ALG_ECC;
p->nameAlg = TPM_ALG_SHA256;
VAL (p->objectAttributes) = TPMA_OBJECT_NODA |
TPMA_OBJECT_SIGN |
TPMA_OBJECT_DECRYPT |
TPMA_OBJECT_USERWITHAUTH;
VAL_2B (p->authPolicy, size) = 0;
p->parameters.eccDetail.symmetric.algorithm = TPM_ALG_NULL;
p->parameters.eccDetail.scheme.scheme = TPM_ALG_NULL;
p->parameters.eccDetail.curveID = curve;
p->parameters.eccDetail.kdf.scheme = TPM_ALG_NULL;
memcpy (VAL_2B (p->unique.ecc.x, buffer), q, len);
VAL_2B (p->unique.ecc.x, size) = len;
memcpy (VAL_2B (p->unique.ecc.y, buffer), q + len, len);
VAL_2B (p->unique.ecc.y, size) = len;
out:
gcry_sexp_release (l);
return rc;
}
static int
sexp_to_tpm2_sensitive_rsa (TPMT_SENSITIVE *s, gcry_sexp_t key)
{
gcry_mpi_t p;
gcry_sexp_t l;
int rc = -1;
size_t len;
s->sensitiveType = TPM_ALG_RSA;
VAL_2B (s->seedValue, size) = 0;
l = gcry_sexp_find_token (key, "p", 0);
if (!l)
return rc;
p = gcry_sexp_nth_mpi (l, 1, GCRYMPI_FMT_USG);
gcry_sexp_release (l);
len = sizeof (VAL_2B (s->sensitive.rsa, buffer));
rc = gcry_mpi_print (GCRYMPI_FMT_USG, VAL_2B (s->sensitive.rsa, buffer),
len, &len, p);
VAL_2B (s->sensitive.rsa, size) = len;
gcry_mpi_release (p);
return rc;
}
static int
sexp_to_tpm2_public_rsa (TPMT_PUBLIC *p, gcry_sexp_t key)
{
gcry_mpi_t n, e;
gcry_sexp_t l;
int rc = -1, i;
size_t len;
/* longer than an int */
unsigned char ebuf[5];
uint32_t exp = 0;
p->type = TPM_ALG_RSA;
p->nameAlg = TPM_ALG_SHA256;
VAL (p->objectAttributes) = TPMA_OBJECT_NODA |
TPMA_OBJECT_DECRYPT |
TPMA_OBJECT_SIGN |
TPMA_OBJECT_USERWITHAUTH;
VAL_2B (p->authPolicy, size) = 0;
p->parameters.rsaDetail.symmetric.algorithm = TPM_ALG_NULL;
p->parameters.rsaDetail.scheme.scheme = TPM_ALG_NULL;
l = gcry_sexp_find_token (key, "n", 0);
if (!l)
return rc;
n = gcry_sexp_nth_mpi (l, 1, GCRYMPI_FMT_USG);
gcry_sexp_release (l);
len = sizeof (VAL_2B (p->unique.rsa, buffer));
p->parameters.rsaDetail.keyBits = gcry_mpi_get_nbits (n);
rc = gcry_mpi_print (GCRYMPI_FMT_USG, VAL_2B (p->unique.rsa, buffer),
len, &len, n);
VAL_2B (p->unique.rsa, size) = len;
gcry_mpi_release (n);
if (rc)
return rc;
rc = -1;
l = gcry_sexp_find_token (key, "e", 0);
if (!l)
return rc;
e = gcry_sexp_nth_mpi (l, 1, GCRYMPI_FMT_USG);
gcry_sexp_release (l);
len = sizeof (ebuf);
rc = gcry_mpi_print (GCRYMPI_FMT_USG, ebuf, len, &len, e);
gcry_mpi_release (e);
if (rc)
return rc;
if (len > 4)
return -1;
/* MPI are simply big endian integers, so convert to uint32 */
for (i = 0; i < len; i++)
{
exp <<= 8;
exp += ebuf[i];
}
if (exp == 0x10001)
p->parameters.rsaDetail.exponent = 0;
else
p->parameters.rsaDetail.exponent = exp;
return 0;
}
static int
sexp_to_tpm2(TPMT_PUBLIC *p, TPMT_SENSITIVE *s, gcry_sexp_t s_skey)
{
gcry_sexp_t l1, l2;
int rc = -1;
/* find the value of (private-key */
l1 = gcry_sexp_nth (s_skey, 1);
if (!l1)
return rc;
l2 = gcry_sexp_find_token (l1, "rsa", 0);
if (l2)
{
rc = sexp_to_tpm2_public_rsa (p, l2);
if (!rc)
rc = sexp_to_tpm2_sensitive_rsa (s, l2);
}
else
{
l2 = gcry_sexp_find_token (l1, "ecc", 0);
if (!l2)
goto out;
rc = sexp_to_tpm2_public_ecc (p, l2);
if (!rc)
rc = sexp_to_tpm2_sensitive_ecc (s, l2);
}
gcry_sexp_release (l2);
out:
gcry_sexp_release (l1);
return rc;
}
/* copied from TPM implementation code */
static TPM_RC
tpm2_ObjectPublic_GetName (NAME_2B *name,
TPMT_PUBLIC *tpmtPublic)
{
TPM_RC rc = 0;
uint16_t written = 0;
TPMT_HA digest;
uint32_t sizeInBytes;
uint8_t buffer[MAX_RESPONSE_SIZE];
/* marshal the TPMT_PUBLIC */
if (rc == 0)
{
INT32 size = MAX_RESPONSE_SIZE;
uint8_t *buffer1 = buffer;
rc = TSS_TPMT_PUBLIC_Marshal (tpmtPublic, &written, &buffer1, &size);
}
/* hash the public area */
if (rc == 0)
{
sizeInBytes = TSS_GetDigestSize (tpmtPublic->nameAlg);
digest.hashAlg = tpmtPublic->nameAlg; /* Name digest algorithm */
/* generate the TPMT_HA */
rc = TSS_Hash_Generate (&digest, written, buffer, 0, NULL);
}
if (rc == 0)
{
TPMI_ALG_HASH nameAlgNbo;
/* copy the digest */
memcpy (name->name + sizeof (TPMI_ALG_HASH),
(uint8_t *)&digest.digest, sizeInBytes);
/* copy the hash algorithm */
nameAlgNbo = htons (tpmtPublic->nameAlg);
memcpy (name->name, (uint8_t *)&nameAlgNbo, sizeof (TPMI_ALG_HASH));
/* set the size */
name->size = sizeInBytes + sizeof (TPMI_ALG_HASH);
}
return rc;
}
/*
* Cut down version of Part 4 Supporting Routines 7.6.3.10
*
* Hard coded to symmetrically encrypt with aes128 as the inner
* wrapper and no outer wrapper but with a prototype that allows
* drop in replacement with a tss equivalent
*/
TPM_RC tpm2_SensitiveToDuplicate (TPMT_SENSITIVE *s,
NAME_2B *name,
TPM_ALG_ID nalg,
TPMT_SYM_DEF_OBJECT *symdef,
DATA_2B *innerkey,
PRIVATE_2B *p)
{
BYTE *buf = p->buffer;
p->size = 0;
memset (p, 0, sizeof (*p));
/* hard code AES CFB */
if (symdef->algorithm == TPM_ALG_AES
&& symdef->mode.aes == TPM_ALG_CFB)
{
TPMT_HA hash;
const int hlen = TSS_GetDigestSize (nalg);
TPM2B *digest = (TPM2B *)buf;
TPM2B *s2b;
int32_t size;
unsigned char null_iv[AES_128_BLOCK_SIZE_BYTES];
UINT16 bsize, written = 0;
gcry_cipher_hd_t hd;
/* WARNING: don't use the static null_iv trick here:
* the AES routines alter the passed in iv */
memset (null_iv, 0, sizeof (null_iv));
/* reserve space for hash before the encrypted sensitive */
bsize = sizeof (digest->size) + hlen;
buf += bsize;
p->size += bsize;
s2b = (TPM2B *)buf;
/* marshal the digest size */
buf = (BYTE *)&digest->size;
bsize = hlen;
size = 2;
TSS_UINT16_Marshal (&bsize, &written, &buf, &size);
/* marshal the unencrypted sensitive in place */
size = sizeof (*s);
bsize = 0;
buf = s2b->buffer;
TSS_TPMT_SENSITIVE_Marshal (s, &bsize, &buf, &size);
buf = (BYTE *)&s2b->size;
size = 2;
TSS_UINT16_Marshal (&bsize, &written, &buf, &size);
bsize = bsize + sizeof (s2b->size);
p->size += bsize;
/* compute hash of unencrypted marshalled sensitive and
* write to the digest buffer */
hash.hashAlg = nalg;
TSS_Hash_Generate (&hash, bsize, s2b,
name->size, name->name,
0, NULL);
memcpy (digest->buffer, &hash.digest, hlen);
gcry_cipher_open (&hd, GCRY_CIPHER_AES128,
GCRY_CIPHER_MODE_CFB, GCRY_CIPHER_SECURE);
gcry_cipher_setiv (hd, null_iv, sizeof (null_iv));
gcry_cipher_setkey (hd, innerkey->buffer, innerkey->size);
/* encrypt the hash and sensitive in-place */
gcry_cipher_encrypt (hd, p->buffer, p->size, NULL, 0);
gcry_cipher_close (hd);
}
else if (symdef->algorithm == TPM_ALG_NULL)
{
/* Code is for debugging only, should never be used in production */
TPM2B *s2b = (TPM2B *)buf;
int32_t size = sizeof (*s);
UINT16 bsize = 0, written = 0;
log_error ("Secret key sent to TPM unencrypted\n");
buf = s2b->buffer;
/* marshal the unencrypted sensitive in place */
TSS_TPMT_SENSITIVE_Marshal (s, &bsize, &buf, &size);
buf = (BYTE *)&s2b->size;
size = 2;
TSS_UINT16_Marshal (&bsize, &written, &buf, &size);
p->size += bsize + sizeof (s2b->size);
}
else
{
log_error ("Unknown symmetric algorithm\n");
return TPM_RC_SYMMETRIC;
}
return TPM_RC_SUCCESS;
}
int
tpm2_import_key (ctrl_t ctrl, TSS_CONTEXT *tssc,
gpg_error_t (*pin_cb)(ctrl_t ctrl, const char *info,
char **retstr),
unsigned char **shadow_info, size_t *shadow_len,
gcry_sexp_t s_skey, unsigned long parent)
{
TPM_HANDLE parentHandle;
DATA_2B encryptionKey;
TPM2B_PUBLIC objectPublic;
PRIVATE_2B duplicate;
ENCRYPTED_SECRET_2B inSymSeed;
TPMT_SYM_DEF_OBJECT symmetricAlg;
PRIVATE_2B outPrivate;
NAME_2B name;
const int aes_key_bits = 128;
const int aes_key_bytes = aes_key_bits/8;
TPMT_SENSITIVE s;
TPM_HANDLE ah;
TPM_RC rc;
uint32_t size;
uint16_t len;
BYTE *buffer;
int ret;
char *passphrase;
char pub[sizeof (TPM2B_PUBLIC)];
int pub_len;
char priv[sizeof (TPM2B_PRIVATE)];
int priv_len;
if (parent == 0)
parent = EXT_TPM_RH_OWNER;
ret = sexp_to_tpm2 (&objectPublic.publicArea, &s, s_skey);
if (ret)
{
log_error ("Failed to parse Key s-expression: key corrupt?\n");
return ret;
}
/* add an authorization password to the key which the TPM will check */
ret = pin_cb (ctrl, _("Please enter the TPM Authorization passphrase for the key."), &passphrase);
if (ret)
return ret;
len = strlen(passphrase);
if (len > TSS_GetDigestSize(objectPublic.publicArea.nameAlg))
{
len = TSS_GetDigestSize(objectPublic.publicArea.nameAlg);
log_error ("Truncating Passphrase to TPM allowed %d\n", len);
}
VAL_2B (s.authValue, size) = len;
memcpy (VAL_2B (s.authValue, buffer), passphrase, len);
/* We're responsible for securing the data in transmission to the
* TPM here. The TPM provides parameter encryption via a session,
* but only for the first parameter. For TPM2_Import, the first
* parameter is a symmetric key used to encrypt the sensitive data,
* so we must populate this key with random value and encrypt the
* sensitive data with it */
parentHandle = tpm2_get_parent (tssc, parent);
tpm2_ObjectPublic_GetName (&name, &objectPublic.publicArea);
gcry_randomize (encryptionKey.buffer,
aes_key_bytes, GCRY_STRONG_RANDOM);
encryptionKey.size = aes_key_bytes;
/* set random symSeed */
inSymSeed.size = 0;
symmetricAlg.algorithm = TPM_ALG_AES;
symmetricAlg.keyBits.aes = aes_key_bits;
symmetricAlg.mode.aes = TPM_ALG_CFB;
tpm2_SensitiveToDuplicate (&s, &name, objectPublic.publicArea.nameAlg,
&symmetricAlg, &encryptionKey, &duplicate);
/* use salted parameter encryption to hide the key. First we read
* the public parameters of the parent key and use them to agree an
* encryption for the first parameter */
rc = tpm2_get_hmac_handle (tssc, &ah, parentHandle);
if (rc)
{
tpm2_flush_handle (tssc, parentHandle);
return GPG_ERR_CARD;
}
rc = tpm2_Import (tssc, parentHandle, &encryptionKey, &objectPublic,
&duplicate, &inSymSeed, &symmetricAlg, &outPrivate,
ah, NULL);
tpm2_flush_handle (tssc, parentHandle);
if (rc)
{
tpm2_error (rc, "TPM2_Import");
/* failure means auth handle is not flushed */
tpm2_flush_handle (tssc, ah);
if ((rc & 0xbf) == TPM_RC_VALUE)
{
log_error ("TPM cannot import RSA key: wrong size");
return GPG_ERR_UNSUPPORTED_ALGORITHM;
}
else if ((rc & 0xbf) == TPM_RC_CURVE)
{
log_error ("TPM cannot import requested curve");
return GPG_ERR_UNKNOWN_CURVE;
}
return GPG_ERR_CARD;
}
size = sizeof (pub);
buffer = pub;
len = 0;
TSS_TPM2B_PUBLIC_Marshal (&objectPublic,
&len, &buffer, &size);
pub_len = len;
size = sizeof (priv);
buffer = priv;
len = 0;
TSS_TPM2B_PRIVATE_Marshal ((TPM2B_PRIVATE *)&outPrivate,
&len, &buffer, &size);
priv_len = len;
*shadow_info = make_tpm2_shadow_info (parent, pub, pub_len,
priv, priv_len, shadow_len);
return rc;
}
int
tpm2_ecc_decrypt (ctrl_t ctrl, TSS_CONTEXT *tssc, TPM_HANDLE key,
gpg_error_t (*pin_cb)(ctrl_t ctrl, const char *info,
char **retstr),
const char *ciphertext, int ciphertext_len,
char **decrypt, size_t *decrypt_len)
{
TPM2B_ECC_POINT inPoint;
TPM2B_ECC_POINT outPoint;
TPM_HANDLE ah;
char *auth;
size_t len;
int ret;
/* This isn't really a decryption per se. The ciphertext actually
* contains an EC Point which we must multiply by the private key number.
*
* The reason is to generate a diffe helman agreement on a shared
* point. This shared point is then used to generate the per
* session encryption key.
*/
if (ciphertext[0] != 0x04)
{
log_error ("Decryption Shared Point format is not uncompressed\n");
return GPG_ERR_ENCODING_PROBLEM;
}
if ((ciphertext_len & 0x01) != 1)
{
log_error ("Decryption Shared Point has incorrect length\n");
return GPG_ERR_ENCODING_PROBLEM;
}
len = ciphertext_len >> 1;
memcpy (VAL_2B (inPoint.point.x, buffer), ciphertext + 1, len);
VAL_2B (inPoint.point.x, size) = len;
memcpy (VAL_2B (inPoint.point.y, buffer), ciphertext + 1 + len, len);
VAL_2B (inPoint.point.y, size) = len;
ret = tpm2_pre_auth (ctrl, tssc, pin_cb, &ah, &auth);
if (ret)
return ret;
ret = tpm2_ECDH_ZGen (tssc, key, &inPoint, &outPoint, ah, auth);
ret = tpm2_post_auth (tssc, ret, ah, &auth, "TPM2_ECDH_ZGen");
if (ret)
return ret;
*decrypt_len = VAL_2B (outPoint.point.x, size) +
VAL_2B (outPoint.point.y, size) + 1;
*decrypt = xtrymalloc (*decrypt_len);
(*decrypt)[0] = 0x04;
memcpy (*decrypt + 1, VAL_2B (outPoint.point.x, buffer),
VAL_2B (outPoint.point.x, size));
memcpy (*decrypt + 1 + VAL_2B (outPoint.point.x, size),
VAL_2B (outPoint.point.y, buffer),
VAL_2B (outPoint.point.y, size));
return 0;
}
int
tpm2_rsa_decrypt (ctrl_t ctrl, TSS_CONTEXT *tssc, TPM_HANDLE key,
gpg_error_t (*pin_cb)(ctrl_t ctrl, const char *info,
char **retstr),
const char *ciphertext, int ciphertext_len,
char **decrypt, size_t *decrypt_len)
{
int ret;
PUBLIC_KEY_RSA_2B cipherText;
TPMT_RSA_DECRYPT inScheme;
PUBLIC_KEY_RSA_2B message;
TPM_HANDLE ah;
char *auth;
inScheme.scheme = TPM_ALG_RSAES;
/*
* apparent gcrypt error: occasionally rsa ciphertext will
* be one byte too long and have a leading zero
*/
if ((ciphertext_len & 1) == 1 && ciphertext[0] == 0)
{
log_info ("Fixing Wrong Ciphertext size %d\n", ciphertext_len);
ciphertext_len--;
ciphertext++;
}
cipherText.size = ciphertext_len;
memcpy (cipherText.buffer, ciphertext, ciphertext_len);
ret = tpm2_pre_auth (ctrl, tssc, pin_cb, &ah, &auth);
if (ret)
return ret;
ret = tpm2_RSA_Decrypt (tssc, key, &cipherText, &inScheme, &message,
ah, auth, TPMA_SESSION_ENCRYPT);
ret = tpm2_post_auth (tssc, ret, ah, &auth, "TPM2_RSA_Decrypt");
if (ret)
return ret;
*decrypt_len = message.size;
*decrypt = xtrymalloc (message.size);
memcpy (*decrypt, message.buffer, message.size);
return 0;
}