1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-23 15:07:03 +01:00
gnupg/cipher/rsa.c
1997-11-19 13:12:23 +00:00

199 lines
5.5 KiB
C

/* rsa.c - RSA function
* Copyright (c) 1997 by Werner Koch (dd9jn)
*
* ATTENTION: This code should not be exported from the United States
* nor should it be used their without a license agreement with PKP.
* The RSA alorithm is protected by U.S. Patent #4,405,829 which
* expires on September 20, 2000!
*
* For a description of the algorithm, see:
* Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
* ISBN 0-471-11709-9. Pages 466 ff.
*
* This file is part of G10.
*
* G10 is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* G10 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "util.h"
#include "mpi.h"
#include "cipher.h"
void
rsa_free_public_key( RSA_public_key *pk )
{
mpi_free( pk->n ); pk->n = NULL;
mpi_free( pk->e ); pk->e = NULL;
}
void
rsa_free_secret_key( RSA_secret_key *sk )
{
mpi_free( sk->e ); sk->e = NULL;
mpi_free( sk->n ); sk->n = NULL;
mpi_free( sk->p ); sk->p = NULL;
mpi_free( sk->q ); sk->q = NULL;
mpi_free( sk->d ); sk->d = NULL;
mpi_free( sk->u ); sk->u = NULL;
}
static void
test_keys( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits )
{
MPI test = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
MPI out1 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
MPI out2 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
mpi_set_bytes( test, nbits, get_random_byte, 0 );
rsa_public( out1, test, pk );
rsa_secret( out2, out1, sk );
if( mpi_cmp( test, out2 ) )
log_fatal("RSA operation: public, secret failed\n");
rsa_secret( out1, test, sk );
rsa_public( out2, out1, pk );
if( mpi_cmp( test, out2 ) )
log_fatal("RSA operation: secret, public failed\n");
mpi_free( test );
mpi_free( out1 );
mpi_free( out2 );
}
/****************
* Generate a key pair with a key of size NBITS
* Returns: 2 structures filles with all needed values
*/
void
rsa_generate( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits )
{
MPI p, q; /* the two primes */
MPI d; /* the private key */
MPI u;
MPI t1, t2;
MPI n; /* the public key */
MPI e; /* the exponent */
MPI phi; /* helper: (p-a)(q-1) */
MPI g;
MPI f;
/* select two (very secret) primes */
p = generate_random_prime( nbits / 2 );
q = generate_random_prime( nbits / 2 );
if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q (for calc of u)*/
mpi_swap(p,q);
/* calculate Euler totient: phi = (p-1)(q-1) */
t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
phi = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
g = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
f = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
mpi_sub_ui( t1, p, 1 );
mpi_sub_ui( t2, q, 1 );
mpi_mul( phi, t1, t2 );
mpi_gcd(g, t1, t2);
mpi_fdiv_q(f, phi, g);
/* multiply them to make the private key */
n = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
mpi_mul( n, p, q );
/* find a public exponent */
e = mpi_alloc(1);
mpi_set_ui( e, 17); /* start with 17 */
while( !mpi_gcd(t1, e, phi) ) /* (while gcd is not 1) */
mpi_add_ui( e, e, 2);
/* calculate the secret key d = e^1 mod phi */
d = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
mpi_inv_mod(d, e, f );
/* calculate the inverse of p and q (used for chinese remainder theorem)*/
u = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
mpi_inv_mod(u, p, q );
if( DBG_CIPHER ) {
log_mpidump(" p= ", p );
log_mpidump(" q= ", q );
log_mpidump("phi= ", phi );
log_mpidump(" g= ", g );
log_mpidump(" f= ", f );
log_mpidump(" n= ", n );
log_mpidump(" e= ", e );
log_mpidump(" d= ", d );
log_mpidump(" u= ", u );
}
mpi_free(t1);
mpi_free(t2);
mpi_free(phi);
mpi_free(f);
mpi_free(g);
pk->n = mpi_copy(n);
pk->e = mpi_copy(e);
sk->n = n;
sk->e = e;
sk->p = p;
sk->q = q;
sk->d = d;
sk->u = u;
/* now we can test our keys (this should never fail!) */
test_keys( pk, sk, nbits - 64 );
}
/****************
* Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
*
* c = m^e mod n
*
* Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
*/
void
rsa_public(MPI output, MPI input, RSA_public_key *pkey )
{
if( output == input ) { /* powm doesn't like output and input the same */
MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 );
mpi_powm( x, input, pkey->e, pkey->n );
mpi_set(output, x);
mpi_free(x);
}
else
mpi_powm( output, input, pkey->e, pkey->n );
}
/****************
* Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
*
* m = c^d mod n
*
* Where m is OUTPUT, c is INPUT and d,n are elements of PKEY.
*
* FIXME: We should better use the Chinese Remainder Theorem
*/
void
rsa_secret(MPI output, MPI input, RSA_secret_key *skey )
{
mpi_powm( output, input, skey->d, skey->n );
}