1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-12-22 10:19:57 +01:00
gnupg/g10/getkey.c

1439 lines
35 KiB
C
Raw Blame History

/* getkey.c - Get a key from the database
* Copyright (C) 1998 Free Software Foundation, Inc.
*
* This file is part of GNUPG.
*
* GNUPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GNUPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#define DEFINES_GETKEY_CTX 1
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include "util.h"
#include "packet.h"
#include "memory.h"
#include "iobuf.h"
#include "keydb.h"
#include "options.h"
#include "main.h"
#include "i18n.h"
#define MAX_UNK_CACHE_ENTRIES 1000 /* we use a linked list - so I guess
* this is a reasonable limit */
#define MAX_PK_CACHE_ENTRIES 50
#define MAX_UID_CACHE_ENTRIES 50
struct getkey_ctx_s {
int mode;
int internal;
u32 keyid[2];
char *namebuf;
const char *name;
int primary;
KBNODE keyblock;
KBPOS kbpos;
int last_rc;
ulong count;
};
static struct {
int any;
int okay_count;
int nokey_count;
int error_count;
} lkup_stats[21];
#if MAX_UNK_CACHE_ENTRIES
typedef struct keyid_list {
struct keyid_list *next;
u32 keyid[2];
} *keyid_list_t;
static keyid_list_t unknown_keyids;
static int unk_cache_entries; /* number of entries in unknown keys cache */
static int unk_cache_disabled;
#endif
#if MAX_PK_CACHE_ENTRIES
typedef struct pk_cache_entry {
struct pk_cache_entry *next;
u32 keyid[2];
PKT_public_key *pk;
} *pk_cache_entry_t;
static pk_cache_entry_t pk_cache;
static int pk_cache_entries; /* number of entries in pk cache */
static int pk_cache_disabled;
#endif
#if MAX_UID_CACHE_ENTRIES < 5
#error we really need the userid cache
#endif
typedef struct user_id_db {
struct user_id_db *next;
u32 keyid[2];
int len;
char name[1];
} *user_id_db_t;
static user_id_db_t user_id_db;
static int uid_cache_entries; /* number of entries in uid cache */
static int lookup( GETKEY_CTX *ctx, PKT_public_key *pk,
int mode, u32 *keyid, const char *name,
KBNODE *ret_keyblock, int primary );
static void lookup_close( GETKEY_CTX ctx );
static int lookup_read( GETKEY_CTX ctx,
PKT_public_key *pk, KBNODE *ret_keyblock );
static int lookup_sk( PKT_secret_key *sk,
int mode, u32 *keyid, const char *name, int primary );
static void
print_stats()
{
int i;
for(i=0; i < DIM(lkup_stats); i++ ) {
if( lkup_stats[i].any )
fprintf(stderr,
"lookup stats: mode=%-2d ok=%-6d nokey=%-6d err=%-6d\n",
i,
lkup_stats[i].okay_count,
lkup_stats[i].nokey_count,
lkup_stats[i].error_count );
}
}
static void
cache_public_key( PKT_public_key *pk )
{
#if MAX_PK_CACHE_ENTRIES
pk_cache_entry_t ce;
u32 keyid[2];
if( pk_cache_disabled )
return;
if( is_ELGAMAL(pk->pubkey_algo)
|| pk->pubkey_algo == PUBKEY_ALGO_DSA
|| is_RSA(pk->pubkey_algo) ) {
keyid_from_pk( pk, keyid );
}
else
return; /* don't know how to get the keyid */
for( ce = pk_cache; ce; ce = ce->next )
if( ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1] ) {
if( DBG_CACHE )
log_debug("cache_public_key: already in cache\n");
return;
}
if( pk_cache_entries >= MAX_PK_CACHE_ENTRIES ) {
/* fixme: use another algorithm to free some cache slots */
pk_cache_disabled=1;
if( opt.verbose )
log_info(_("too many entries in pk cache - disabled\n"));
return;
}
pk_cache_entries++;
ce = m_alloc( sizeof *ce );
ce->next = pk_cache;
pk_cache = ce;
ce->pk = copy_public_key( NULL, pk );
ce->keyid[0] = keyid[0];
ce->keyid[1] = keyid[1];
#endif
}
/****************
* Store the association of keyid and userid
*/
void
cache_user_id( PKT_user_id *uid, u32 *keyid )
{
user_id_db_t r;
for(r=user_id_db; r; r = r->next )
if( r->keyid[0] == keyid[0] && r->keyid[1] == keyid[1] ) {
if( DBG_CACHE )
log_debug("cache_user_id: already in cache\n");
return;
}
if( uid_cache_entries >= MAX_UID_CACHE_ENTRIES ) {
/* fixme: use another algorithm to free some cache slots */
r = user_id_db;
user_id_db = r->next;
m_free(r);
uid_cache_entries--;
}
r = m_alloc( sizeof *r + uid->len-1 );
r->keyid[0] = keyid[0];
r->keyid[1] = keyid[1];
r->len = uid->len;
memcpy(r->name, uid->name, r->len);
r->next = user_id_db;
user_id_db = r;
uid_cache_entries++;
}
/****************
* Get a public key and store it into the allocated pk
* can be called with PK set to NULL to just read it into some
* internal structures.
*/
int
get_pubkey( PKT_public_key *pk, u32 *keyid )
{
int internal = 0;
int rc = 0;
#if MAX_UNK_CACHE_ENTRIES
{ /* let's see whether we checked the keyid already */
keyid_list_t kl;
for( kl = unknown_keyids; kl; kl = kl->next )
if( kl->keyid[0] == keyid[0] && kl->keyid[1] == keyid[1] )
return G10ERR_NO_PUBKEY; /* already checked and not found */
}
#endif
#if MAX_PK_CACHE_ENTRIES
{ /* Try to get it from the cache */
pk_cache_entry_t ce;
for( ce = pk_cache; ce; ce = ce->next ) {
if( ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1] ) {
if( pk )
copy_public_key( pk, ce->pk );
return 0;
}
}
}
#endif
/* more init stuff */
if( !pk ) {
pk = m_alloc_clear( sizeof *pk );
internal++;
}
/* do a lookup */
rc = lookup( NULL, pk, 11, keyid, NULL, NULL, 0 );
if( !rc )
goto leave;
#if MAX_UNK_CACHE_ENTRIES
/* not found: store it for future reference */
if( unk_cache_disabled )
;
else if( ++unk_cache_entries > MAX_UNK_CACHE_ENTRIES ) {
unk_cache_disabled = 1;
if( opt.verbose )
log_info(_("too many entries in unk cache - disabled\n"));
}
else {
keyid_list_t kl;
kl = m_alloc( sizeof *kl );
kl->keyid[0] = keyid[0];
kl->keyid[1] = keyid[1];
kl->next = unknown_keyids;
unknown_keyids = kl;
}
#endif
rc = G10ERR_NO_PUBKEY;
leave:
if( !rc )
cache_public_key( pk );
if( internal )
free_public_key(pk);
return rc;
}
static int
hextobyte( const byte *s )
{
int c;
if( *s >= '0' && *s <= '9' )
c = 16 * (*s - '0');
else if( *s >= 'A' && *s <= 'F' )
c = 16 * (10 + *s - 'A');
else if( *s >= 'a' && *s <= 'f' )
c = 16 * (10 + *s - 'a');
else
return -1;
s++;
if( *s >= '0' && *s <= '9' )
c += *s - '0';
else if( *s >= 'A' && *s <= 'F' )
c += 10 + *s - 'A';
else if( *s >= 'a' && *s <= 'f' )
c += 10 + *s - 'a';
else
return -1;
return c;
}
/****************
* Return the type of the user id:
*
* 0 = Invalid user ID
* 1 = exact match
* 2 = match a substring
* 3 = match an email address
* 4 = match a substring of an email address
* 5 = match an email address, but compare from end
* 10 = it is a short KEYID (don't care about keyid[0])
* 11 = it is a long KEYID
* 16 = it is a 16 byte fingerprint
* 20 = it is a 20 byte fingerprint
*
* if fprint is not NULL, it should be an array of at least 20 bytes.
*
* Rules used:
* - If the username starts with 8,9,16 or 17 hex-digits (the first one
* must be in the range 0..9), this is considered a keyid; depending
* on the length a short or complete one.
* - If the username starts with 32,33,40 or 41 hex-digits (the first one
* must be in the range 0..9), this is considered a fingerprint.
* - If the username starts with a left angle, we assume it is a complete
* email address and look only at this part.
* - If the username starts with a '.', we assume it is the ending
* part of an email address
* - If the username starts with an '@', we assume it is a part of an
* email address
* - If the userid start with an '=' an exact compare is done.
* - If the userid starts with a '*' a case insensitive substring search is
* done (This is the default).
*/
int
classify_user_id( const char *name, u32 *keyid, byte *fprint,
const char **retstr, size_t *retlen )
{
const char *s;
int mode = 0;
/* check what kind of name it is */
for(s = name; *s && isspace(*s); s++ )
;
if( isdigit( *s ) ) { /* a keyid or a fingerprint */
int i, j;
char buf[9];
if( *s == '0' && s[1] == 'x' && isxdigit(s[2]) )
s += 2; /*kludge to allow 0x034343434 */
for(i=0; isxdigit(s[i]); i++ )
;
if( s[i] && !isspace(s[i]) ) /* not terminated by EOS or blank*/
return 0;
else if( i == 8 || (i == 9 && *s == '0') ) { /* short keyid */
if( i==9 )
s++;
if( keyid ) {
keyid[0] = 0;
keyid[1] = strtoul( s, NULL, 16 );
}
mode = 10;
}
else if( i == 16 || (i == 17 && *s == '0') ) { /* complete keyid */
if( i==17 )
s++;
mem2str(buf, s, 9 );
keyid[0] = strtoul( buf, NULL, 16 );
keyid[1] = strtoul( s+8, NULL, 16 );
mode = 11;
}
else if( i == 32 || ( i == 33 && *s == '0' ) ) { /* md5 fingerprint */
if( i==33 )
s++;
if( fprint ) {
memset(fprint+16, 4, 0);
for(j=0; j < 16; j++, s+=2 ) {
int c = hextobyte( s );
if( c == -1 )
return 0;
fprint[j] = c;
}
}
mode = 16;
}
else if( i == 40 || ( i == 41 && *s == '0' ) ) { /* sha1/rmd160 fprint*/
if( i==33 )
s++;
if( fprint ) {
for(j=0; j < 20; j++, s+=2 ) {
int c = hextobyte( s );
if( c == -1 )
return 0;
fprint[j] = c;
}
}
mode = 20;
}
else
return 0;
}
else if( *s == '=' ) { /* exact search */
mode = 1;
s++;
}
else if( *s == '*' ) { /* substring search */
mode = 2;
s++;
}
else if( *s == '<' ) { /* an email address */
mode = 3;
}
else if( *s == '@' ) { /* a part of an email address */
mode = 4;
s++;
}
else if( *s == '.' ) { /* an email address, compare from end */
mode = 5;
s++;
}
else if( *s == '#' ) { /* use local id */
return 0;
}
else if( !*s ) /* empty string */
return 0;
else
mode = 2;
if( retstr )
*retstr = s;
if( retlen )
*retlen = strlen(s);
return mode;
}
/****************
* Try to get the pubkey by the userid. This function looks for the
* first pubkey certificate which has the given name in a user_id.
* if pk has the pubkey algo set, the function will only return
* a pubkey with that algo.
*/
static int
key_byname( int secret, GETKEY_CTX *retctx,
PKT_public_key *pk, PKT_secret_key *sk,
const char *name, KBNODE *ret_kb )
{
int internal = 0;
int rc = 0;
const char *s;
u32 keyid[2] = {0}; /* init to avoid compiler warning */
byte fprint[20];
int mode;
mode = classify_user_id( name, keyid, fprint, &s, NULL );
if( !mode ) {
rc = G10ERR_INV_USER_ID;
goto leave;
}
if( secret ) {
if( !sk ) {
sk = m_alloc_clear( sizeof *sk );
internal++;
}
rc = mode < 16? lookup_sk( sk, mode, keyid, s, 1 )
: lookup_sk( sk, mode, keyid, fprint, 1 );
}
else {
if( !pk ) {
pk = m_alloc_clear( sizeof *pk );
internal++;
}
rc = mode < 16? lookup( retctx, pk, mode, keyid, s, ret_kb, 1 )
: lookup( retctx, pk, mode, keyid, fprint, ret_kb, 1 );
}
leave:
if( internal && secret )
m_free( sk );
else if( internal )
m_free( pk );
return rc;
}
int
get_pubkey_byname( GETKEY_CTX *retctx, PKT_public_key *pk,
const char *name, KBNODE *ret_keyblock )
{
int rc;
if( !pk ) {
/* fixme: key_byname should not need a pk in this case */
pk = m_alloc_clear( sizeof *pk );
rc = key_byname( 0, retctx, pk, NULL, name, ret_keyblock );
free_public_key( pk );
}
else
rc = key_byname( 0, retctx, pk, NULL, name, ret_keyblock );
return rc;
}
int
get_pubkey_next( GETKEY_CTX ctx, PKT_public_key *pk, KBNODE *ret_keyblock )
{
int rc;
if( !pk ) {
/* fixme: lookup_read should not need a pk in this case */
pk = m_alloc_clear( sizeof *pk );
rc = lookup_read( ctx, pk, ret_keyblock );
free_public_key( pk );
}
else
rc = lookup_read( ctx, pk, ret_keyblock );
return rc;
}
void
get_pubkey_end( GETKEY_CTX ctx )
{
if( ctx ) {
lookup_close( ctx );
m_free( ctx );
}
}
/****************
* Search for a key with the given fingerprint.
*/
int
get_pubkey_byfprint( PKT_public_key *pk, const byte *fprint, size_t fprint_len)
{
int rc;
if( fprint_len == 20 || fprint_len == 16 )
rc = lookup( NULL, pk, fprint_len, NULL, fprint, NULL, 0 );
else
rc = G10ERR_GENERAL; /* Oops */
return rc;
}
/****************
* Search for a key with the given fingerprint and return the
* complete keyblock which may have more than only this key.
*/
int
get_keyblock_byfprint( KBNODE *ret_keyblock, const byte *fprint,
size_t fprint_len )
{
int rc;
PKT_public_key *pk = m_alloc_clear( sizeof *pk );
if( fprint_len == 20 || fprint_len == 16 )
rc = lookup( NULL, pk, fprint_len, NULL, fprint, ret_keyblock, 0 );
else
rc = G10ERR_GENERAL; /* Oops */
free_public_key( pk );
return rc;
}
/****************
* Get a secret key and store it into sk
*/
int
get_seckey( PKT_secret_key *sk, u32 *keyid )
{
int rc;
rc = lookup_sk( sk, 11, keyid, NULL, 0 );
if( !rc ) {
/* check the secret key (this may prompt for a passprase to
* unlock the secret key
*/
rc = check_secret_key( sk, 0 );
}
return rc;
}
/****************
* Check whether the secret key is available
* Returns: 0 := key is available
* G10ERR_NO_SECKEY := not availabe
*/
int
seckey_available( u32 *keyid )
{
PKT_secret_key *sk;
int rc;
sk = m_alloc_clear( sizeof *sk );
rc = lookup_sk( sk, 11, keyid, NULL, 0 );
free_secret_key( sk );
return rc;
}
/****************
* Get a secret key by name and store it into sk
* If NAME is NULL use the default key
*/
int
get_seckey_byname( PKT_secret_key *sk, const char *name, int unprotect )
{
int rc;
if( !name && opt.def_secret_key && *opt.def_secret_key )
rc = key_byname( 1, NULL, NULL, sk, opt.def_secret_key, NULL );
else if( !name ) /* use the first one as default key */
rc = lookup_sk( sk, 15, NULL, NULL, 1 );
else
rc = key_byname( 1, NULL, NULL, sk, name, NULL );
if( !rc && unprotect )
rc = check_secret_key( sk, 0 );
return rc;
}
static int
compare_name( const char *uid, size_t uidlen, const char *name, int mode )
{
int i;
const char *s, *se;
if( mode == 1 ) { /* exact match */
for(i=0; name[i] && uidlen; i++, uidlen-- )
if( uid[i] != name[i] )
break;
if( !uidlen && !name[i] )
return 0; /* found */
}
else if( mode == 2 ) { /* case insensitive substring */
if( memistr( uid, uidlen, name ) )
return 0;
}
else if( mode >= 3 && mode <= 5 ) { /* look at the email address */
for( i=0, s= uid; i < uidlen && *s != '<'; s++, i++ )
;
if( i < uidlen ) {
/* skip opening delim and one char and look for the closing one*/
s++; i++;
for( se=s+1, i++; i < uidlen && *se != '>'; se++, i++ )
;
if( i < uidlen ) {
i = se - s;
if( mode == 3 ) { /* exact email address */
if( strlen(name)-2 == i && !memicmp( s, name+1, i) )
return 0;
}
else if( mode == 4 ) { /* email substring */
if( memistr( s, i, name ) )
return 0;
}
else { /* email from end */
/* nyi */
}
}
}
}
else
BUG();
return -1; /* not found */
}
/****************
* Assume that knode points to a public key packet and keyblock is
* the entire keyblock. This function adds all relevant information from
* a selfsignature to the public key.
*/
static void
merge_one_pk_and_selfsig( KBNODE keyblock, KBNODE knode )
{
PKT_public_key *pk = knode->pkt->pkt.public_key;
PKT_signature *sig;
KBNODE k;
u32 kid[2];
u32 sigdate = 0;
assert( knode->pkt->pkttype == PKT_PUBLIC_KEY
|| knode->pkt->pkttype == PKT_PUBLIC_SUBKEY );
if( pk->version < 4 )
return; /* this is only needed for version >=4 packets */
/* find the selfsignature */
if( knode->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
k = find_kbnode( keyblock, PKT_PUBLIC_KEY );
if( !k )
BUG(); /* keyblock without primary key!!! */
keyid_from_pk( knode->pkt->pkt.public_key, kid );
}
else
keyid_from_pk( pk, kid );
for(k=keyblock; k; k = k->next ) {
if( k->pkt->pkttype == PKT_SIGNATURE
&& (sig=k->pkt->pkt.signature)->sig_class >= 0x10
&& sig->sig_class <= 0x30
&& sig->keyid[0] == kid[0]
&& sig->keyid[1] == kid[1]
&& sig->version > 3 ) {
/* okay this is a self-signature which can be used.
* We use the latest self-signature.
* FIXME: We should only use this if the signature is valid
* but this is time consuming - we must provide another
* way to handle this
*/
const byte *p;
u32 ed;
p = parse_sig_subpkt( sig->hashed_data, SIGSUBPKT_KEY_EXPIRE, NULL );
ed = p? pk->timestamp + buffer_to_u32(p):0;
if( sig->timestamp > sigdate ) {
pk->expiredate = ed;
sigdate = sig->timestamp;
}
/* fixme: add usage etc. to pk */
}
}
}
/****************
* merge all selfsignatures with the keys.
*/
void
merge_keys_and_selfsig( KBNODE keyblock )
{
PKT_public_key *pk = NULL;
PKT_secret_key *sk = NULL;
PKT_signature *sig;
KBNODE k;
u32 kid[2] = { 0, 0 };
u32 sigdate = 0;
for(k=keyblock; k; k = k->next ) {
if( k->pkt->pkttype == PKT_PUBLIC_KEY
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
pk = k->pkt->pkt.public_key; sk = NULL;
if( pk->version < 4 )
pk = NULL; /* not needed for old keys */
else if( k->pkt->pkttype == PKT_PUBLIC_KEY )
keyid_from_pk( pk, kid );
}
else if( k->pkt->pkttype == PKT_SECRET_KEY
|| k->pkt->pkttype == PKT_SECRET_SUBKEY ) {
pk = NULL; sk = k->pkt->pkt.secret_key;
if( sk->version < 4 )
sk = NULL;
else if( k->pkt->pkttype == PKT_SECRET_KEY )
keyid_from_sk( sk, kid );
}
else if( (pk || sk ) && k->pkt->pkttype == PKT_SIGNATURE
&& (sig=k->pkt->pkt.signature)->sig_class >= 0x10
&& sig->sig_class <= 0x30 && sig->version > 3
&& sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1] ) {
/* okay this is a self-signature which can be used.
* FIXME: We should only use this if the signature is valid
* but this is time consuming - we must provide another
* way to handle this
*/
const byte *p;
u32 ed;
p = parse_sig_subpkt( sig->hashed_data, SIGSUBPKT_KEY_EXPIRE, NULL );
if( pk ) {
ed = p? pk->timestamp + buffer_to_u32(p):0;
if( sig->timestamp > sigdate ) {
pk->expiredate = ed;
sigdate = sig->timestamp;
}
}
else {
ed = p? sk->timestamp + buffer_to_u32(p):0;
if( sig->timestamp > sigdate ) {
sk->expiredate = ed;
sigdate = sig->timestamp;
}
}
}
}
}
static KBNODE
find_by_name( KBNODE keyblock, PKT_public_key *pk, const char *name,
int mode, byte *namehash, int *use_namehash )
{
KBNODE k, kk;
for(k=keyblock; k; k = k->next ) {
if( k->pkt->pkttype == PKT_USER_ID
&& !compare_name( k->pkt->pkt.user_id->name,
k->pkt->pkt.user_id->len, name, mode)) {
/* we found a matching name, look for the key */
for(kk=keyblock; kk; kk = kk->next ) {
if( ( kk->pkt->pkttype == PKT_PUBLIC_KEY
|| kk->pkt->pkttype == PKT_PUBLIC_SUBKEY )
&& ( !pk->pubkey_algo
|| pk->pubkey_algo
== kk->pkt->pkt.public_key->pubkey_algo)
&& ( !pk->pubkey_usage
|| !check_pubkey_algo2(
kk->pkt->pkt.public_key->pubkey_algo,
pk->pubkey_usage ))
)
break;
}
if( kk ) {
u32 aki[2];
keyid_from_pk( kk->pkt->pkt.public_key, aki );
cache_user_id( k->pkt->pkt.user_id, aki );
rmd160_hash_buffer( namehash,
k->pkt->pkt.user_id->name,
k->pkt->pkt.user_id->len );
*use_namehash = 1;
return kk;
}
else if( is_RSA(pk->pubkey_algo) )
log_error("RSA key cannot be used in this version\n");
else
log_error("No key for userid\n");
}
}
return NULL;
}
static KBNODE
find_by_keyid( KBNODE keyblock, PKT_public_key *pk, u32 *keyid, int mode )
{
KBNODE k;
if( DBG_CACHE )
log_debug("lookup keyid=%08lx%08lx req_algo=%d mode=%d\n",
(ulong)keyid[0], (ulong)keyid[1], pk->pubkey_algo, mode );
for(k=keyblock; k; k = k->next ) {
if( k->pkt->pkttype == PKT_PUBLIC_KEY
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
u32 aki[2];
keyid_from_pk( k->pkt->pkt.public_key, aki );
if( DBG_CACHE )
log_debug(" aki=%08lx%08lx algo=%d\n",
(ulong)aki[0], (ulong)aki[1],
k->pkt->pkt.public_key->pubkey_algo );
if( aki[1] == keyid[1]
&& ( mode == 10 || aki[0] == keyid[0] )
&& ( !pk->pubkey_algo
|| pk->pubkey_algo
== k->pkt->pkt.public_key->pubkey_algo) ){
KBNODE kk;
/* cache the userid */
for(kk=keyblock; kk; kk = kk->next )
if( kk->pkt->pkttype == PKT_USER_ID )
break;
if( kk )
cache_user_id( kk->pkt->pkt.user_id, aki );
else
log_error("No userid for key\n");
return k; /* found */
}
}
}
return NULL;
}
static KBNODE
find_first( KBNODE keyblock, PKT_public_key *pk )
{
KBNODE k;
for(k=keyblock; k; k = k->next ) {
if( k->pkt->pkttype == PKT_PUBLIC_KEY
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY )
{
if( !pk->pubkey_algo
|| pk->pubkey_algo == k->pkt->pkt.public_key->pubkey_algo )
return k;
}
}
return NULL;
}
static KBNODE
find_by_fpr( KBNODE keyblock, PKT_public_key *pk, const char *name, int mode )
{
KBNODE k;
for(k=keyblock; k; k = k->next ) {
if( k->pkt->pkttype == PKT_PUBLIC_KEY
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
byte afp[MAX_FINGERPRINT_LEN];
size_t an;
fingerprint_from_pk(k->pkt->pkt.public_key, afp, &an );
if( DBG_CACHE ) {
u32 aki[2];
keyid_from_pk( k->pkt->pkt.public_key, aki );
log_debug(" aki=%08lx%08lx algo=%d mode=%d an=%u\n",
(ulong)aki[0], (ulong)aki[1],
k->pkt->pkt.public_key->pubkey_algo, mode, an );
}
if( an == mode
&& !memcmp( afp, name, an)
&& ( !pk->pubkey_algo
|| pk->pubkey_algo == k->pkt->pkt.public_key->pubkey_algo) )
return k;
}
}
return NULL;
}
static void
finish_lookup( KBNODE keyblock, PKT_public_key *pk, KBNODE k, byte *namehash,
int use_namehash, int primary )
{
assert( k->pkt->pkttype == PKT_PUBLIC_KEY
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY );
assert( keyblock->pkt->pkttype == PKT_PUBLIC_KEY );
if( primary && !pk->pubkey_usage ) {
copy_public_key_new_namehash( pk, keyblock->pkt->pkt.public_key,
use_namehash? namehash:NULL);
merge_one_pk_and_selfsig( keyblock, keyblock );
}
else {
if( primary && pk->pubkey_usage
&& check_pubkey_algo2( k->pkt->pkt.public_key->pubkey_algo,
pk->pubkey_usage ) == G10ERR_WR_PUBKEY_ALGO ) {
/* if the usage is not correct, try to use a subkey */
KBNODE save_k = k;
k = NULL;
/* kludge for pgp 5: which doesn't accept type 20:
* try to use a type 16 subkey instead */
if( pk->pubkey_usage == PUBKEY_USAGE_ENC ) {
for( k = save_k; k; k = k->next ) {
if( k->pkt->pkttype == PKT_PUBLIC_SUBKEY
&& k->pkt->pkt.public_key->pubkey_algo
== PUBKEY_ALGO_ELGAMAL_E
&& !check_pubkey_algo2(
k->pkt->pkt.public_key->pubkey_algo,
pk->pubkey_usage ) )
break;
}
}
if( !k ) {
for(k = save_k ; k; k = k->next ) {
if( k->pkt->pkttype == PKT_PUBLIC_SUBKEY
&& !check_pubkey_algo2(
k->pkt->pkt.public_key->pubkey_algo,
pk->pubkey_usage ) )
break;
}
}
if( !k )
k = save_k;
else
log_info(_("using secondary key %08lX "
"instead of primary key %08lX\n"),
(ulong)keyid_from_pk( k->pkt->pkt.public_key, NULL),
(ulong)keyid_from_pk( save_k->pkt->pkt.public_key, NULL)
);
}
copy_public_key_new_namehash( pk, k->pkt->pkt.public_key,
use_namehash? namehash:NULL);
merge_one_pk_and_selfsig( keyblock, k );
}
}
/****************
* Lookup a key by scanning all keyresources
* mode 1 = lookup by NAME (exact)
* 2 = lookup by NAME (substring)
* 3 = lookup by NAME (email address)
* 4 = email address (substring)
* 5 = email address (compare from end)
* 10 = lookup by short KEYID (don't care about keyid[0])
* 11 = lookup by long KEYID
* 15 = Get the first key.
* 16 = lookup by 16 byte fingerprint which is stored in NAME
* 20 = lookup by 20 byte fingerprint which is stored in NAME
* Caller must provide an empty PK, if the pubkey_algo is filled in, only
* a key of this algo will be returned.
* If ret_keyblock is not NULL, the complete keyblock is returned also
* and the caller must release it.
*/
static int
lookup( GETKEY_CTX *retctx, PKT_public_key *pk, int mode, u32 *keyid,
const char *name, KBNODE *ret_keyblock, int primary )
{
struct getkey_ctx_s help_ctx;
GETKEY_CTX ctx;
int rc;
if( !retctx )
ctx = &help_ctx;
else {
ctx = m_alloc( sizeof *ctx );
*retctx = ctx;
}
memset( ctx, 0, sizeof *ctx );
ctx->mode = mode;
if( keyid ) {
ctx->keyid[0] = keyid[0];
ctx->keyid[1] = keyid[1];
}
if( retctx ) {
ctx->namebuf = name? m_strdup(name) : NULL;
ctx->name = ctx->namebuf;
}
else
ctx->name = name;
ctx->primary = primary;
rc = lookup_read( ctx, pk, ret_keyblock );
if( !retctx )
lookup_close( ctx );
return rc;
}
static void
lookup_close( GETKEY_CTX ctx )
{
enum_keyblocks( 2, &ctx->kbpos, NULL ); /* close */
m_free( ctx->namebuf );
}
static int
lookup_read( GETKEY_CTX ctx, PKT_public_key *pk, KBNODE *ret_keyblock )
{
int rc;
KBNODE k;
int oldmode = set_packet_list_mode(0);
byte namehash[20];
int use_namehash=0;
/* try the quick functions */
if( !ctx->count ) {
k = NULL;
switch( ctx->mode ) {
case 10:
case 11:
rc = locate_keyblock_by_keyid( &ctx->kbpos, ctx->keyid,
ctx->mode==10, 0 );
if( !rc )
rc = read_keyblock( &ctx->kbpos, &ctx->keyblock );
if( !rc )
k = find_by_keyid( ctx->keyblock, pk, ctx->keyid, ctx->mode );
break;
case 16:
case 20:
rc = locate_keyblock_by_fpr( &ctx->kbpos, ctx->name, ctx->mode, 0 );
if( !rc )
rc = read_keyblock( &ctx->kbpos, &ctx->keyblock );
if( !rc )
k = find_by_fpr( ctx->keyblock, pk, ctx->name, ctx->mode );
break;
default: rc = G10ERR_UNSUPPORTED;
}
if( !rc ) {
if( !k ) {
log_error("lookup: key has been located but was not found\n");
rc = G10ERR_INV_KEYRING;
}
else
finish_lookup( ctx->keyblock, pk, k, namehash, 0, ctx->primary );
}
}
else
rc = G10ERR_UNSUPPORTED;
/* if this was not possible, loop over all keyblocks
* fixme: If one of the resources in the quick functions above
* works, but the key was not found, we will not find it
* in the other resources */
if( rc == G10ERR_UNSUPPORTED ) {
if( !ctx->count )
rc = enum_keyblocks( 0, &ctx->kbpos, &ctx->keyblock );
else
rc = 0;
if( !rc ) {
while( !(rc = enum_keyblocks( 1, &ctx->kbpos, &ctx->keyblock )) ) {
/* fixme: we don<6F>t enum the complete keyblock, but
* use the first match and that continue with the next keyblock
*/
if( ctx->mode < 10 )
k = find_by_name( ctx->keyblock, pk, ctx->name, ctx->mode,
namehash, &use_namehash);
else if( ctx->mode == 10 ||ctx-> mode == 11 )
k = find_by_keyid( ctx->keyblock, pk, ctx->keyid,
ctx->mode );
else if( ctx->mode == 15 )
k = find_first( ctx->keyblock, pk );
else if( ctx->mode == 16 || ctx->mode == 20 )
k = find_by_fpr( ctx->keyblock, pk, ctx->name, ctx->mode );
else
BUG();
if( k ) {
finish_lookup( ctx->keyblock, pk, k, namehash,
use_namehash, ctx->primary );
break; /* found */
}
release_kbnode( ctx->keyblock );
ctx->keyblock = NULL;
}
}
if( rc && rc != -1 )
log_error("enum_keyblocks failed: %s\n", g10_errstr(rc));
}
if( !rc ) {
if( ret_keyblock ) {
*ret_keyblock = ctx->keyblock;
ctx->keyblock = NULL;
}
}
else if( rc == -1 )
rc = G10ERR_NO_PUBKEY;
release_kbnode( ctx->keyblock );
ctx->keyblock = NULL;
set_packet_list_mode(oldmode);
if( opt.debug & DBG_MEMSTAT_VALUE ) {
static int initialized;
if( !initialized ) {
initialized = 1;
atexit( print_stats );
}
assert( ctx->mode < DIM(lkup_stats) );
lkup_stats[ctx->mode].any = 1;
if( !rc )
lkup_stats[ctx->mode].okay_count++;
else if ( rc == G10ERR_NO_PUBKEY )
lkup_stats[ctx->mode].nokey_count++;
else
lkup_stats[ctx->mode].error_count++;
}
ctx->last_rc = rc;
ctx->count++;
return rc;
}
/****************
* Ditto for secret keys
*/
static int
lookup_sk( PKT_secret_key *sk, int mode, u32 *keyid, const char *name,
int primary )
{
int rc;
KBNODE keyblock = NULL;
KBPOS kbpos;
int oldmode = set_packet_list_mode(0);
rc = enum_keyblocks( 5 /* open secret */, &kbpos, &keyblock );
if( rc ) {
if( rc == -1 )
rc = G10ERR_NO_SECKEY;
else if( rc )
log_error("enum_keyblocks(open secret) failed: %s\n", g10_errstr(rc) );
goto leave;
}
while( !(rc = enum_keyblocks( 1, &kbpos, &keyblock )) ) {
KBNODE k, kk;
if( mode < 10 ) { /* name lookup */
for(k=keyblock; k; k = k->next ) {
if( k->pkt->pkttype == PKT_USER_ID
&& !compare_name( k->pkt->pkt.user_id->name,
k->pkt->pkt.user_id->len, name, mode)) {
/* we found a matching name, look for the key */
for(kk=keyblock; kk; kk = kk->next ) {
if( ( kk->pkt->pkttype == PKT_SECRET_KEY
|| kk->pkt->pkttype == PKT_SECRET_SUBKEY )
&& ( !sk->pubkey_algo
|| sk->pubkey_algo
== kk->pkt->pkt.secret_key->pubkey_algo)
&& ( !sk->pubkey_usage
|| !check_pubkey_algo2(
kk->pkt->pkt.secret_key->pubkey_algo,
sk->pubkey_usage ))
)
break;
}
if( kk ) {
u32 aki[2];
keyid_from_sk( kk->pkt->pkt.secret_key, aki );
cache_user_id( k->pkt->pkt.user_id, aki );
k = kk;
break;
}
else
log_error("No key for userid (in sk)\n");
}
}
}
else { /* keyid or fingerprint lookup */
if( DBG_CACHE && (mode== 10 || mode==11) ) {
log_debug("lookup_sk keyid=%08lx%08lx req_algo=%d mode=%d\n",
(ulong)keyid[0], (ulong)keyid[1],
sk->pubkey_algo, mode );
}
for(k=keyblock; k; k = k->next ) {
if( k->pkt->pkttype == PKT_SECRET_KEY
|| k->pkt->pkttype == PKT_SECRET_SUBKEY ) {
if( mode == 10 || mode == 11 ) {
u32 aki[2];
keyid_from_sk( k->pkt->pkt.secret_key, aki );
if( DBG_CACHE ) {
log_debug(" aki=%08lx%08lx algo=%d\n",
(ulong)aki[0], (ulong)aki[1],
k->pkt->pkt.secret_key->pubkey_algo );
}
if( aki[1] == keyid[1]
&& ( mode == 10 || aki[0] == keyid[0] )
&& ( !sk->pubkey_algo
|| sk->pubkey_algo
== k->pkt->pkt.secret_key->pubkey_algo) ){
/* cache the userid */
for(kk=keyblock; kk; kk = kk->next )
if( kk->pkt->pkttype == PKT_USER_ID )
break;
if( kk )
cache_user_id( kk->pkt->pkt.user_id, aki );
else
log_error("No userid for key\n");
break; /* found */
}
}
else if( mode == 15 ) { /* get the first key */
if( !sk->pubkey_algo
|| sk->pubkey_algo
== k->pkt->pkt.secret_key->pubkey_algo )
break;
}
else if( mode == 16 || mode == 20 ) {
size_t an;
byte afp[MAX_FINGERPRINT_LEN];
fingerprint_from_sk(k->pkt->pkt.secret_key, afp, &an );
if( an == mode && !memcmp( afp, name, an)
&& ( !sk->pubkey_algo
|| sk->pubkey_algo
== k->pkt->pkt.secret_key->pubkey_algo) ) {
break;
}
}
else
BUG();
} /* end compare secret keys */
}
}
if( k ) { /* found */
assert( k->pkt->pkttype == PKT_SECRET_KEY
|| k->pkt->pkttype == PKT_SECRET_SUBKEY );
assert( keyblock->pkt->pkttype == PKT_SECRET_KEY );
if( primary && !sk->pubkey_usage )
copy_secret_key( sk, keyblock->pkt->pkt.secret_key );
else
copy_secret_key( sk, k->pkt->pkt.secret_key );
break; /* enumeration */
}
release_kbnode( keyblock );
keyblock = NULL;
}
if( rc == -1 )
rc = G10ERR_NO_SECKEY;
else if( rc )
log_error("enum_keyblocks(read) failed: %s\n", g10_errstr(rc));
leave:
enum_keyblocks( 2, &kbpos, &keyblock ); /* close */
release_kbnode( keyblock );
set_packet_list_mode(oldmode);
return rc;
}
/****************
* Enumerate all primary secret keys. Caller must use these procedure:
* 1) create a void pointer and initialize it to NULL
* 2) pass this void pointer by reference to this function
* and provide space for the secret key (pass a buffer for sk)
* 3) call this function as long as it does not return -1
* to indicate EOF.
* 4) Always call this function a last time with SK set to NULL,
* so that can free it's context.
*
*
*/
int
enum_secret_keys( void **context, PKT_secret_key *sk, int with_subkeys )
{
int rc=0;
PACKET pkt;
int save_mode;
struct {
int eof;
int sequence;
const char *name;
IOBUF iobuf;
} *c = *context;
if( !c ) { /* make a new context */
c = m_alloc_clear( sizeof *c );
*context = c;
c->sequence = 0;
c->name = enum_keyblock_resources( &c->sequence, 1 );
}
if( !sk ) { /* free the context */
if( c->iobuf )
iobuf_close(c->iobuf);
m_free( c );
*context = NULL;
return 0;
}
if( c->eof )
return -1;
/* FIXME: This assumes a plain keyring file */
for( ; c->name; c->name = enum_keyblock_resources( &c->sequence, 1 ) ) {
if( !c->iobuf ) {
if( !(c->iobuf = iobuf_open( c->name ) ) ) {
log_error("enum_secret_keys: can't open '%s'\n", c->name );
continue; /* try next file */
}
}
save_mode = set_packet_list_mode(0);
init_packet(&pkt);
while( (rc=parse_packet(c->iobuf, &pkt)) != -1 ) {
if( rc )
; /* e.g. unknown packet */
else if( pkt.pkttype == PKT_SECRET_KEY
|| ( with_subkeys && pkt.pkttype == PKT_SECRET_SUBKEY ) ) {
copy_secret_key( sk, pkt.pkt.secret_key );
set_packet_list_mode(save_mode);
return 0; /* found */
}
free_packet(&pkt);
}
set_packet_list_mode(save_mode);
iobuf_close(c->iobuf); c->iobuf = NULL;
}
c->eof = 1;
return -1;
}
/****************
* Return a string with a printable representation of the user_id.
* this string must be freed by m_free.
*/
char*
get_user_id_string( u32 *keyid )
{
user_id_db_t r;
char *p;
int pass=0;
/* try it two times; second pass reads from key resources */
do {
for(r=user_id_db; r; r = r->next )
if( r->keyid[0] == keyid[0] && r->keyid[1] == keyid[1] ) {
p = m_alloc( r->len + 10 );
sprintf(p, "%08lX %.*s", (ulong)keyid[1], r->len, r->name );
return p;
}
} while( ++pass < 2 && !get_pubkey( NULL, keyid ) );
p = m_alloc( 15 );
sprintf(p, "%08lX [?]", (ulong)keyid[1] );
return p;
}
char*
get_user_id( u32 *keyid, size_t *rn )
{
user_id_db_t r;
char *p;
int pass=0;
/* try it two times; second pass reads from key resources */
do {
for(r=user_id_db; r; r = r->next )
if( r->keyid[0] == keyid[0] && r->keyid[1] == keyid[1] ) {
p = m_alloc( r->len );
memcpy(p, r->name, r->len );
*rn = r->len;
return p;
}
} while( ++pass < 2 && !get_pubkey( NULL, keyid ) );
p = m_alloc( 19 );
memcpy(p, "[User id not found]", 19 );
*rn = 19;
return p;
}