mirror of
git://git.gnupg.org/gnupg.git
synced 2025-01-12 13:16:57 +01:00
1025 lines
36 KiB
C
1025 lines
36 KiB
C
/* des.c - DES and Triple-DES encryption/decryption Algorithm
|
|
* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*
|
|
*
|
|
* According to the definition of DES in FIPS PUB 46-2 from December 1993.
|
|
* For a description of triple encryption, see:
|
|
* Bruce Schneier: Applied Cryptography. Second Edition.
|
|
* John Wiley & Sons, 1996. ISBN 0-471-12845-7. Pages 358 ff.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Written by Michael Roth <mroth@nessie.de>, September 1998
|
|
*/
|
|
|
|
|
|
/*
|
|
* U S A G E
|
|
* ===========
|
|
*
|
|
* For DES or Triple-DES encryption/decryption you must initialize a proper
|
|
* encryption context with a key.
|
|
*
|
|
* A DES key is 64bit wide but only 56bits of the key are used. The remaining
|
|
* bits are parity bits and they will _not_ checked in this implementation, but
|
|
* simply ignored.
|
|
*
|
|
* For Tripple-DES you could use either two 64bit keys or three 64bit keys.
|
|
* The parity bits will _not_ checked, too.
|
|
*
|
|
* After initializing a context with a key you could use this context to
|
|
* encrypt or decrypt data in 64bit blocks in Electronic Codebook Mode.
|
|
*
|
|
* (In the examples below the slashes at the beginning and ending of comments
|
|
* are omited.)
|
|
*
|
|
* DES Example
|
|
* -----------
|
|
* unsigned char key[8];
|
|
* unsigned char plaintext[8];
|
|
* unsigned char ciphertext[8];
|
|
* unsigned char recoverd[8];
|
|
* des_ctx context;
|
|
*
|
|
* * Fill 'key' and 'plaintext' with some data *
|
|
* ....
|
|
*
|
|
* * Set up the DES encryption context *
|
|
* des_setkey(context, key);
|
|
*
|
|
* * Encrypt the plaintext *
|
|
* des_ecb_encrypt(context, plaintext, ciphertext);
|
|
*
|
|
* * To recover the orginal plaintext from ciphertext use: *
|
|
* des_ecb_decrypt(context, ciphertext, recoverd);
|
|
*
|
|
*
|
|
* Triple-DES Example
|
|
* ------------------
|
|
* unsigned char key1[8];
|
|
* unsigned char key2[8];
|
|
* unsigned char key3[8];
|
|
* unsigned char plaintext[8];
|
|
* unsigned char ciphertext[8];
|
|
* unsigned char recoverd[8];
|
|
* tripledes_ctx context;
|
|
*
|
|
* * If you would like to use two 64bit keys, fill 'key1' and'key2'
|
|
* then setup the encryption context: *
|
|
* tripledes_set2keys(context, key1, key2);
|
|
*
|
|
* * To use three 64bit keys with Triple-DES use: *
|
|
* tripledes_set3keys(context, key1, key2, key3);
|
|
*
|
|
* * Encrypting plaintext with Triple-DES *
|
|
* tripledes_ecb_encrypt(context, plaintext, ciphertext);
|
|
*
|
|
* * Decrypting ciphertext to recover the plaintext with Triple-DES *
|
|
* tripledes_ecb_decrypt(context, ciphertext, recoverd);
|
|
*
|
|
*
|
|
* Selftest
|
|
* --------
|
|
* char *error_msg;
|
|
*
|
|
* * To perform a selftest of this DES/Triple-DES implementation use the
|
|
* function selftest(). It will return an error string if their are
|
|
* some problems with this library. *
|
|
*
|
|
* if ( (error_msg = selftest()) )
|
|
* {
|
|
* fprintf(stderr, "An error in the DES/Tripple-DES implementation occured: %s\n", error_msg);
|
|
* abort();
|
|
* }
|
|
*/
|
|
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <string.h> /* memcpy, memcmp */
|
|
#include "types.h" /* for byte and u32 typedefs */
|
|
#include "errors.h"
|
|
#include "des.h"
|
|
|
|
#if defined(__GNUC__) && defined(__GNU_LIBRARY__)
|
|
#define working_memcmp memcmp
|
|
#else
|
|
/*
|
|
* According to the SunOS man page, memcmp returns indeterminate sign
|
|
* depending on whether characters are signed or not.
|
|
*/
|
|
int
|
|
working_memcmp( const char *a, const char *b, size_t n )
|
|
{
|
|
for( ; n; n--, a++, b++ )
|
|
if( *a != *b )
|
|
return (int)(*(byte*)a) - (int)(*(byte*)b);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
/* Some defines/checks to support standalone modules */
|
|
|
|
#ifndef CIPHER_ALGO_3DES
|
|
#define CIPHER_ALGO_3DES 2
|
|
#elif CIPHER_ALGO_3DES != 2
|
|
#error CIPHER_ALGO_3DES is defined to a wrong value.
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*
|
|
* Encryption/Decryption context of DES
|
|
*/
|
|
typedef struct _des_ctx
|
|
{
|
|
u32 encrypt_subkeys[32];
|
|
u32 decrypt_subkeys[32];
|
|
}
|
|
des_ctx[1];
|
|
|
|
/*
|
|
* Encryption/Decryption context of Triple-DES
|
|
*/
|
|
typedef struct _tripledes_ctx
|
|
{
|
|
u32 encrypt_subkeys[96];
|
|
u32 decrypt_subkeys[96];
|
|
}
|
|
tripledes_ctx[1];
|
|
|
|
static const char *selftest_failed;
|
|
|
|
static void des_key_schedule (const byte *, u32 *);
|
|
static int des_setkey (struct _des_ctx *, const byte *);
|
|
static int des_ecb_crypt (struct _des_ctx *, const byte *, byte *, int);
|
|
static int tripledes_set2keys (struct _tripledes_ctx *, const byte *, const byte *);
|
|
static int tripledes_set3keys (struct _tripledes_ctx *, const byte *, const byte *, const byte *);
|
|
static int tripledes_ecb_crypt (struct _tripledes_ctx *, const byte *, byte *, int);
|
|
static int is_weak_key ( const byte *key );
|
|
static const char *selftest (void);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
* The s-box values are permuted according to the 'primitive function P'
|
|
* and are rotated one bit to the left.
|
|
*/
|
|
static u32 sbox1[64] =
|
|
{
|
|
0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, 0x00000004, 0x00010000,
|
|
0x00000400, 0x01010400, 0x01010404, 0x00000400, 0x01000404, 0x01010004, 0x01000000, 0x00000004,
|
|
0x00000404, 0x01000400, 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404,
|
|
0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000,
|
|
0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400,
|
|
0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404,
|
|
0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400,
|
|
0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004
|
|
};
|
|
|
|
static u32 sbox2[64] =
|
|
{
|
|
0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020,
|
|
0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020,
|
|
0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000,
|
|
0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020,
|
|
0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000,
|
|
0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000,
|
|
0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020,
|
|
0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000
|
|
};
|
|
|
|
static u32 sbox3[64] =
|
|
{
|
|
0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200,
|
|
0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208,
|
|
0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208,
|
|
0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000,
|
|
0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000,
|
|
0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008,
|
|
0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008,
|
|
0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200
|
|
};
|
|
|
|
static u32 sbox4[64] =
|
|
{
|
|
0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001,
|
|
0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001,
|
|
0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080,
|
|
0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081,
|
|
0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000,
|
|
0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080,
|
|
0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081,
|
|
0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080
|
|
};
|
|
|
|
static u32 sbox5[64] =
|
|
{
|
|
0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000,
|
|
0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000,
|
|
0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100,
|
|
0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100,
|
|
0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100,
|
|
0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000,
|
|
0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000,
|
|
0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100
|
|
};
|
|
|
|
static u32 sbox6[64] =
|
|
{
|
|
0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000,
|
|
0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010,
|
|
0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010,
|
|
0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000,
|
|
0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010,
|
|
0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000,
|
|
0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010,
|
|
0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010
|
|
};
|
|
|
|
static u32 sbox7[64] =
|
|
{
|
|
0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800,
|
|
0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802,
|
|
0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002,
|
|
0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800,
|
|
0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002,
|
|
0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800,
|
|
0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802,
|
|
0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002
|
|
};
|
|
|
|
static u32 sbox8[64] =
|
|
{
|
|
0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000,
|
|
0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040,
|
|
0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000,
|
|
0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000,
|
|
0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040,
|
|
0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040,
|
|
0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000,
|
|
0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000
|
|
};
|
|
|
|
|
|
/*
|
|
* These two tables are part of the 'permuted choice 1' function.
|
|
* In this implementation several speed improvements are done.
|
|
*/
|
|
u32 leftkey_swap[16] =
|
|
{
|
|
0x00000000, 0x00000001, 0x00000100, 0x00000101,
|
|
0x00010000, 0x00010001, 0x00010100, 0x00010101,
|
|
0x01000000, 0x01000001, 0x01000100, 0x01000101,
|
|
0x01010000, 0x01010001, 0x01010100, 0x01010101
|
|
};
|
|
|
|
u32 rightkey_swap[16] =
|
|
{
|
|
0x00000000, 0x01000000, 0x00010000, 0x01010000,
|
|
0x00000100, 0x01000100, 0x00010100, 0x01010100,
|
|
0x00000001, 0x01000001, 0x00010001, 0x01010001,
|
|
0x00000101, 0x01000101, 0x00010101, 0x01010101,
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
* Numbers of left shifts per round for encryption subkeys.
|
|
* To calculate the decryption subkeys we just reverse the
|
|
* ordering of the calculated encryption subkeys. So their
|
|
* is no need for a decryption rotate tab.
|
|
*/
|
|
static byte encrypt_rotate_tab[16] =
|
|
{
|
|
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
* Table with weak DES keys sorted in ascending order.
|
|
* In DES their are 64 known keys wich are weak. They are weak
|
|
* because they produce only one, two or four different
|
|
* subkeys in the subkey scheduling process.
|
|
* The keys in this table have all their parity bits cleared.
|
|
*/
|
|
static byte weak_keys[64][8] =
|
|
{
|
|
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e },
|
|
{ 0x00, 0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0 }, { 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe },
|
|
{ 0x00, 0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e }, { 0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00 },
|
|
{ 0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe }, { 0x00, 0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0 },
|
|
{ 0x00, 0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0 }, { 0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe },
|
|
{ 0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00 }, { 0x00, 0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e },
|
|
{ 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe }, { 0x00, 0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0 },
|
|
{ 0x00, 0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e }, { 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00 },
|
|
{ 0x0e, 0x0e, 0x0e, 0x0e, 0xf0, 0xf0, 0xf0, 0xf0 }, { 0x1e, 0x00, 0x00, 0x1e, 0x0e, 0x00, 0x00, 0x0e },
|
|
{ 0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e, 0x00 }, { 0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0, 0xfe },
|
|
{ 0x1e, 0x00, 0xfe, 0xe0, 0x0e, 0x00, 0xfe, 0xf0 }, { 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00, 0x00 },
|
|
{ 0x1e, 0x1e, 0x1e, 0x1e, 0x0e, 0x0e, 0x0e, 0x0e }, { 0x1e, 0x1e, 0xe0, 0xe0, 0x0e, 0x0e, 0xf0, 0xf0 },
|
|
{ 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe, 0xfe }, { 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00, 0xfe },
|
|
{ 0x1e, 0xe0, 0x1e, 0xe0, 0x0e, 0xf0, 0x0e, 0xf0 }, { 0x1e, 0xe0, 0xe0, 0x1e, 0x0e, 0xf0, 0xf0, 0x0e },
|
|
{ 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe, 0x00 }, { 0x1e, 0xfe, 0x00, 0xe0, 0x0e, 0xfe, 0x00, 0xf0 },
|
|
{ 0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e, 0xfe }, { 0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0, 0x00 },
|
|
{ 0x1e, 0xfe, 0xfe, 0x1e, 0x0e, 0xfe, 0xfe, 0x0e }, { 0xe0, 0x00, 0x00, 0xe0, 0xf0, 0x00, 0x00, 0xf0 },
|
|
{ 0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e, 0xfe }, { 0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0, 0x00 },
|
|
{ 0xe0, 0x00, 0xfe, 0x1e, 0xf0, 0x00, 0xfe, 0x0e }, { 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00, 0xfe },
|
|
{ 0xe0, 0x1e, 0x1e, 0xe0, 0xf0, 0x0e, 0x0e, 0xf0 }, { 0xe0, 0x1e, 0xe0, 0x1e, 0xf0, 0x0e, 0xf0, 0x0e },
|
|
{ 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe, 0x00 }, { 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00, 0x00 },
|
|
{ 0xe0, 0xe0, 0x1e, 0x1e, 0xf0, 0xf0, 0x0e, 0x0e }, { 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe, 0xfe },
|
|
{ 0xe0, 0xfe, 0x00, 0x1e, 0xf0, 0xfe, 0x00, 0x0e }, { 0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e, 0x00 },
|
|
{ 0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0, 0xfe }, { 0xe0, 0xfe, 0xfe, 0xe0, 0xf0, 0xfe, 0xfe, 0xf0 },
|
|
{ 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe }, { 0xfe, 0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0 },
|
|
{ 0xfe, 0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e }, { 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00 },
|
|
{ 0xfe, 0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0 }, { 0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe },
|
|
{ 0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00 }, { 0xfe, 0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e },
|
|
{ 0xfe, 0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e }, { 0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00 },
|
|
{ 0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe }, { 0xfe, 0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0 },
|
|
{ 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00 }, { 0xfe, 0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e },
|
|
{ 0xfe, 0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0 }, { 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe }
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
* Macro to swap bits across two words.
|
|
*/
|
|
#define DO_PERMUTATION(a, temp, b, offset, mask) \
|
|
temp = ((a>>offset) ^ b) & mask; \
|
|
b ^= temp; \
|
|
a ^= temp<<offset;
|
|
|
|
|
|
/*
|
|
* This performs the 'initial permutation' of the data to be encrypted
|
|
* or decrypted. Additionally the resulting two words are rotated one bit
|
|
* to the left.
|
|
*/
|
|
#define INITIAL_PERMUTATION(left, temp, right) \
|
|
DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f) \
|
|
DO_PERMUTATION(left, temp, right, 16, 0x0000ffff) \
|
|
DO_PERMUTATION(right, temp, left, 2, 0x33333333) \
|
|
DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff) \
|
|
right = (right << 1) | (right >> 31); \
|
|
temp = (left ^ right) & 0xaaaaaaaa; \
|
|
right ^= temp; \
|
|
left ^= temp; \
|
|
left = (left << 1) | (left >> 31);
|
|
|
|
/*
|
|
* The 'inverse initial permutation'.
|
|
*/
|
|
#define FINAL_PERMUTATION(left, temp, right) \
|
|
left = (left << 31) | (left >> 1); \
|
|
temp = (left ^ right) & 0xaaaaaaaa; \
|
|
left ^= temp; \
|
|
right ^= temp; \
|
|
right = (right << 31) | (right >> 1); \
|
|
DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff) \
|
|
DO_PERMUTATION(right, temp, left, 2, 0x33333333) \
|
|
DO_PERMUTATION(left, temp, right, 16, 0x0000ffff) \
|
|
DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f)
|
|
|
|
|
|
/*
|
|
* A full DES round including 'expansion function', 'sbox substitution'
|
|
* and 'primitive function P' but without swapping the left and right word.
|
|
* Please note: The data in 'from' and 'to' is already rotated one bit to
|
|
* the left, done in the initial permutation.
|
|
*/
|
|
#define DES_ROUND(from, to, work, subkey) \
|
|
work = from ^ *subkey++; \
|
|
to ^= sbox8[ work & 0x3f ]; \
|
|
to ^= sbox6[ (work>>8) & 0x3f ]; \
|
|
to ^= sbox4[ (work>>16) & 0x3f ]; \
|
|
to ^= sbox2[ (work>>24) & 0x3f ]; \
|
|
work = ((from << 28) | (from >> 4)) ^ *subkey++; \
|
|
to ^= sbox7[ work & 0x3f ]; \
|
|
to ^= sbox5[ (work>>8) & 0x3f ]; \
|
|
to ^= sbox3[ (work>>16) & 0x3f ]; \
|
|
to ^= sbox1[ (work>>24) & 0x3f ];
|
|
|
|
/*
|
|
* Macros to convert 8 bytes from/to 32bit words.
|
|
*/
|
|
#define READ_64BIT_DATA(data, left, right) \
|
|
left = (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3]; \
|
|
right = (data[4] << 24) | (data[5] << 16) | (data[6] << 8) | data[7];
|
|
|
|
#define WRITE_64BIT_DATA(data, left, right) \
|
|
data[0] = (left >> 24) &0xff; data[1] = (left >> 16) &0xff; \
|
|
data[2] = (left >> 8) &0xff; data[3] = left &0xff; \
|
|
data[4] = (right >> 24) &0xff; data[5] = (right >> 16) &0xff; \
|
|
data[6] = (right >> 8) &0xff; data[7] = right &0xff;
|
|
|
|
/*
|
|
* Handy macros for encryption and decryption of data
|
|
*/
|
|
#define des_ecb_encrypt(ctx, from, to) des_ecb_crypt(ctx, from, to, 0)
|
|
#define des_ecb_decrypt(ctx, from, to) des_ecb_crypt(ctx, from, to, 1)
|
|
#define tripledes_ecb_encrypt(ctx, from, to) tripledes_ecb_crypt(ctx, from, to, 0)
|
|
#define tripledes_ecb_decrypt(ctx, from, to) tripledes_ecb_crypt(ctx, from, to, 1)
|
|
|
|
|
|
static void
|
|
burn_stack (int bytes)
|
|
{
|
|
char buf[64];
|
|
|
|
memset (buf, 0, sizeof buf);
|
|
bytes -= sizeof buf;
|
|
if (bytes > 0)
|
|
burn_stack (bytes);
|
|
}
|
|
|
|
/*
|
|
* des_key_schedule(): Calculate 16 subkeys pairs (even/odd) for
|
|
* 16 encryption rounds.
|
|
* To calculate subkeys for decryption the caller
|
|
* have to reorder the generated subkeys.
|
|
*
|
|
* rawkey: 8 Bytes of key data
|
|
* subkey: Array of at least 32 u32s. Will be filled
|
|
* with calculated subkeys.
|
|
*
|
|
*/
|
|
static void
|
|
des_key_schedule (const byte * rawkey, u32 * subkey)
|
|
{
|
|
u32 left, right, work;
|
|
int round;
|
|
|
|
READ_64BIT_DATA (rawkey, left, right)
|
|
|
|
DO_PERMUTATION (right, work, left, 4, 0x0f0f0f0f)
|
|
DO_PERMUTATION (right, work, left, 0, 0x10101010)
|
|
|
|
left = (leftkey_swap[(left >> 0) & 0xf] << 3) | (leftkey_swap[(left >> 8) & 0xf] << 2)
|
|
| (leftkey_swap[(left >> 16) & 0xf] << 1) | (leftkey_swap[(left >> 24) & 0xf])
|
|
| (leftkey_swap[(left >> 5) & 0xf] << 7) | (leftkey_swap[(left >> 13) & 0xf] << 6)
|
|
| (leftkey_swap[(left >> 21) & 0xf] << 5) | (leftkey_swap[(left >> 29) & 0xf] << 4);
|
|
|
|
left &= 0x0fffffff;
|
|
|
|
right = (rightkey_swap[(right >> 1) & 0xf] << 3) | (rightkey_swap[(right >> 9) & 0xf] << 2)
|
|
| (rightkey_swap[(right >> 17) & 0xf] << 1) | (rightkey_swap[(right >> 25) & 0xf])
|
|
| (rightkey_swap[(right >> 4) & 0xf] << 7) | (rightkey_swap[(right >> 12) & 0xf] << 6)
|
|
| (rightkey_swap[(right >> 20) & 0xf] << 5) | (rightkey_swap[(right >> 28) & 0xf] << 4);
|
|
|
|
right &= 0x0fffffff;
|
|
|
|
for (round = 0; round < 16; ++round)
|
|
{
|
|
left = ((left << encrypt_rotate_tab[round]) | (left >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff;
|
|
right = ((right << encrypt_rotate_tab[round]) | (right >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff;
|
|
|
|
*subkey++ = ((left << 4) & 0x24000000)
|
|
| ((left << 28) & 0x10000000)
|
|
| ((left << 14) & 0x08000000)
|
|
| ((left << 18) & 0x02080000)
|
|
| ((left << 6) & 0x01000000)
|
|
| ((left << 9) & 0x00200000)
|
|
| ((left >> 1) & 0x00100000)
|
|
| ((left << 10) & 0x00040000)
|
|
| ((left << 2) & 0x00020000)
|
|
| ((left >> 10) & 0x00010000)
|
|
| ((right >> 13) & 0x00002000)
|
|
| ((right >> 4) & 0x00001000)
|
|
| ((right << 6) & 0x00000800)
|
|
| ((right >> 1) & 0x00000400)
|
|
| ((right >> 14) & 0x00000200)
|
|
| (right & 0x00000100)
|
|
| ((right >> 5) & 0x00000020)
|
|
| ((right >> 10) & 0x00000010)
|
|
| ((right >> 3) & 0x00000008)
|
|
| ((right >> 18) & 0x00000004)
|
|
| ((right >> 26) & 0x00000002)
|
|
| ((right >> 24) & 0x00000001);
|
|
|
|
*subkey++ = ((left << 15) & 0x20000000)
|
|
| ((left << 17) & 0x10000000)
|
|
| ((left << 10) & 0x08000000)
|
|
| ((left << 22) & 0x04000000)
|
|
| ((left >> 2) & 0x02000000)
|
|
| ((left << 1) & 0x01000000)
|
|
| ((left << 16) & 0x00200000)
|
|
| ((left << 11) & 0x00100000)
|
|
| ((left << 3) & 0x00080000)
|
|
| ((left >> 6) & 0x00040000)
|
|
| ((left << 15) & 0x00020000)
|
|
| ((left >> 4) & 0x00010000)
|
|
| ((right >> 2) & 0x00002000)
|
|
| ((right << 8) & 0x00001000)
|
|
| ((right >> 14) & 0x00000808)
|
|
| ((right >> 9) & 0x00000400)
|
|
| ((right) & 0x00000200)
|
|
| ((right << 7) & 0x00000100)
|
|
| ((right >> 7) & 0x00000020)
|
|
| ((right >> 3) & 0x00000011)
|
|
| ((right << 2) & 0x00000004)
|
|
| ((right >> 21) & 0x00000002);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Fill a DES context with subkeys calculated from a 64bit key.
|
|
* Does not check parity bits, but simply ignore them.
|
|
* Does not check for weak keys.
|
|
*/
|
|
static int
|
|
des_setkey (struct _des_ctx *ctx, const byte * key)
|
|
{
|
|
int i;
|
|
|
|
if( selftest_failed )
|
|
return G10ERR_SELFTEST_FAILED;
|
|
|
|
des_key_schedule (key, ctx->encrypt_subkeys);
|
|
burn_stack (32);
|
|
|
|
for(i=0; i<32; i+=2)
|
|
{
|
|
ctx->decrypt_subkeys[i] = ctx->encrypt_subkeys[30-i];
|
|
ctx->decrypt_subkeys[i+1] = ctx->encrypt_subkeys[31-i];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Electronic Codebook Mode DES encryption/decryption of data according
|
|
* to 'mode'.
|
|
*/
|
|
static int
|
|
des_ecb_crypt (struct _des_ctx *ctx, const byte * from, byte * to, int mode)
|
|
{
|
|
u32 left, right, work;
|
|
u32 *keys;
|
|
|
|
keys = mode ? ctx->decrypt_subkeys : ctx->encrypt_subkeys;
|
|
|
|
READ_64BIT_DATA (from, left, right)
|
|
INITIAL_PERMUTATION (left, work, right)
|
|
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
|
|
FINAL_PERMUTATION (right, work, left)
|
|
WRITE_64BIT_DATA (to, right, left)
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Fill a Triple-DES context with subkeys calculated from two 64bit keys.
|
|
* Does not check the parity bits of the keys, but simply ignore them.
|
|
* Does not check for weak keys.
|
|
*/
|
|
static int
|
|
tripledes_set2keys (struct _tripledes_ctx *ctx,
|
|
const byte * key1,
|
|
const byte * key2)
|
|
{
|
|
int i;
|
|
|
|
des_key_schedule (key1, ctx->encrypt_subkeys);
|
|
des_key_schedule (key2, &(ctx->decrypt_subkeys[32]));
|
|
burn_stack (32);
|
|
|
|
for(i=0; i<32; i+=2)
|
|
{
|
|
ctx->decrypt_subkeys[i] = ctx->encrypt_subkeys[30-i];
|
|
ctx->decrypt_subkeys[i+1] = ctx->encrypt_subkeys[31-i];
|
|
|
|
ctx->encrypt_subkeys[i+32] = ctx->decrypt_subkeys[62-i];
|
|
ctx->encrypt_subkeys[i+33] = ctx->decrypt_subkeys[63-i];
|
|
|
|
ctx->encrypt_subkeys[i+64] = ctx->encrypt_subkeys[i];
|
|
ctx->encrypt_subkeys[i+65] = ctx->encrypt_subkeys[i+1];
|
|
|
|
ctx->decrypt_subkeys[i+64] = ctx->decrypt_subkeys[i];
|
|
ctx->decrypt_subkeys[i+65] = ctx->decrypt_subkeys[i+1];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Fill a Triple-DES context with subkeys calculated from three 64bit keys.
|
|
* Does not check the parity bits of the keys, but simply ignore them.
|
|
* Does not check for weak keys.
|
|
*/
|
|
static int
|
|
tripledes_set3keys (struct _tripledes_ctx *ctx,
|
|
const byte * key1,
|
|
const byte * key2,
|
|
const byte * key3)
|
|
{
|
|
int i;
|
|
|
|
des_key_schedule (key1, ctx->encrypt_subkeys);
|
|
des_key_schedule (key2, &(ctx->decrypt_subkeys[32]));
|
|
des_key_schedule (key3, &(ctx->encrypt_subkeys[64]));
|
|
burn_stack (32);
|
|
|
|
for(i=0; i<32; i+=2)
|
|
{
|
|
ctx->decrypt_subkeys[i] = ctx->encrypt_subkeys[94-i];
|
|
ctx->decrypt_subkeys[i+1] = ctx->encrypt_subkeys[95-i];
|
|
|
|
ctx->encrypt_subkeys[i+32] = ctx->decrypt_subkeys[62-i];
|
|
ctx->encrypt_subkeys[i+33] = ctx->decrypt_subkeys[63-i];
|
|
|
|
ctx->decrypt_subkeys[i+64] = ctx->encrypt_subkeys[30-i];
|
|
ctx->decrypt_subkeys[i+65] = ctx->encrypt_subkeys[31-i];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Electronic Codebook Mode Triple-DES encryption/decryption of data according to 'mode'.
|
|
* Sometimes this mode is named 'EDE' mode (Encryption-Decryption-Encryption).
|
|
*/
|
|
static int
|
|
tripledes_ecb_crypt (struct _tripledes_ctx *ctx, const byte * from, byte * to, int mode)
|
|
{
|
|
u32 left, right, work;
|
|
u32 *keys;
|
|
|
|
keys = mode ? ctx->decrypt_subkeys : ctx->encrypt_subkeys;
|
|
|
|
READ_64BIT_DATA (from, left, right)
|
|
INITIAL_PERMUTATION (left, work, right)
|
|
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
|
|
DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
|
|
DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
|
|
DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
|
|
DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
|
|
DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
|
|
DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
|
|
DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
|
|
DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
|
|
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
|
|
|
|
FINAL_PERMUTATION (right, work, left)
|
|
WRITE_64BIT_DATA (to, right, left)
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
* Check whether the 8 byte key is weak.
|
|
* Dose not check the parity bits of the key but simple ignore them.
|
|
*/
|
|
static int
|
|
is_weak_key ( const byte *key )
|
|
{
|
|
byte work[8];
|
|
int i, left, right, middle, cmp_result;
|
|
|
|
/* clear parity bits */
|
|
for(i=0; i<8; ++i)
|
|
work[i] = key[i] & 0xfe;
|
|
|
|
/* binary search in the weak key table */
|
|
left = 0;
|
|
right = 63;
|
|
while(left <= right)
|
|
{
|
|
middle = (left + right) / 2;
|
|
|
|
if ( !(cmp_result=working_memcmp(work, weak_keys[middle], 8)) )
|
|
return -1;
|
|
|
|
if ( cmp_result > 0 )
|
|
left = middle + 1;
|
|
else
|
|
right = middle - 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Performs a selftest of this DES/Triple-DES implementation.
|
|
* Returns an string with the error text on failure.
|
|
* Returns NULL if all is ok.
|
|
*/
|
|
static const char *
|
|
selftest (void)
|
|
{
|
|
/*
|
|
* Check if 'u32' is really 32 bits wide. This DES / 3DES implementation
|
|
* need this.
|
|
*/
|
|
if (sizeof (u32) != 4)
|
|
return "Wrong word size for DES configured.";
|
|
|
|
/*
|
|
* DES Maintenance Test
|
|
*/
|
|
{
|
|
int i;
|
|
byte key[8] =
|
|
{0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55};
|
|
byte input[8] =
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
|
|
byte result[8] =
|
|
{0x24, 0x6e, 0x9d, 0xb9, 0xc5, 0x50, 0x38, 0x1a};
|
|
byte temp1[8], temp2[8], temp3[8];
|
|
des_ctx des;
|
|
|
|
for (i = 0; i < 64; ++i)
|
|
{
|
|
des_setkey (des, key);
|
|
des_ecb_encrypt (des, input, temp1);
|
|
des_ecb_encrypt (des, temp1, temp2);
|
|
des_setkey (des, temp2);
|
|
des_ecb_decrypt (des, temp1, temp3);
|
|
memcpy (key, temp3, 8);
|
|
memcpy (input, temp1, 8);
|
|
}
|
|
if (memcmp (temp3, result, 8))
|
|
return "DES maintenance test failed.";
|
|
}
|
|
|
|
|
|
/*
|
|
* Self made Triple-DES test (Does somebody known an official test?)
|
|
*/
|
|
{
|
|
int i;
|
|
byte input[8] =
|
|
{0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10};
|
|
byte key1[8] =
|
|
{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0};
|
|
byte key2[8] =
|
|
{0x11, 0x22, 0x33, 0x44, 0xff, 0xaa, 0xcc, 0xdd};
|
|
byte result[8] =
|
|
{0x7b, 0x38, 0x3b, 0x23, 0xa2, 0x7d, 0x26, 0xd3};
|
|
|
|
tripledes_ctx des3;
|
|
|
|
for (i = 0; i < 16; ++i)
|
|
{
|
|
tripledes_set2keys (des3, key1, key2);
|
|
tripledes_ecb_encrypt (des3, input, key1);
|
|
tripledes_ecb_decrypt (des3, input, key2);
|
|
tripledes_set3keys (des3, key1, input, key2);
|
|
tripledes_ecb_encrypt (des3, input, input);
|
|
}
|
|
if (memcmp (input, result, 8))
|
|
return "Triple-DES test failed.";
|
|
}
|
|
|
|
/*
|
|
* More Triple-DES test. These are testvectors as used by SSLeay,
|
|
* thanks to Jeroen C. van Gelderen.
|
|
*/
|
|
{ struct { byte key[24]; byte plain[8]; byte cipher[8]; } testdata[] = {
|
|
{ { 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
|
|
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
|
|
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 },
|
|
{ 0x95,0xF8,0xA5,0xE5,0xDD,0x31,0xD9,0x00 },
|
|
{ 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }
|
|
},
|
|
|
|
{ { 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
|
|
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
|
|
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 },
|
|
{ 0x9D,0x64,0x55,0x5A,0x9A,0x10,0xB8,0x52, },
|
|
{ 0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x00 }
|
|
},
|
|
{ { 0x38,0x49,0x67,0x4C,0x26,0x02,0x31,0x9E,
|
|
0x38,0x49,0x67,0x4C,0x26,0x02,0x31,0x9E,
|
|
0x38,0x49,0x67,0x4C,0x26,0x02,0x31,0x9E },
|
|
{ 0x51,0x45,0x4B,0x58,0x2D,0xDF,0x44,0x0A },
|
|
{ 0x71,0x78,0x87,0x6E,0x01,0xF1,0x9B,0x2A }
|
|
},
|
|
{ { 0x04,0xB9,0x15,0xBA,0x43,0xFE,0xB5,0xB6,
|
|
0x04,0xB9,0x15,0xBA,0x43,0xFE,0xB5,0xB6,
|
|
0x04,0xB9,0x15,0xBA,0x43,0xFE,0xB5,0xB6 },
|
|
{ 0x42,0xFD,0x44,0x30,0x59,0x57,0x7F,0xA2 },
|
|
{ 0xAF,0x37,0xFB,0x42,0x1F,0x8C,0x40,0x95 }
|
|
},
|
|
{ { 0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
|
|
0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
|
|
0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF },
|
|
{ 0x73,0x6F,0x6D,0x65,0x64,0x61,0x74,0x61 },
|
|
{ 0x3D,0x12,0x4F,0xE2,0x19,0x8B,0xA3,0x18 }
|
|
},
|
|
{ { 0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
|
|
0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,
|
|
0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF },
|
|
{ 0x73,0x6F,0x6D,0x65,0x64,0x61,0x74,0x61 },
|
|
{ 0xFB,0xAB,0xA1,0xFF,0x9D,0x05,0xE9,0xB1 }
|
|
},
|
|
{ { 0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
|
|
0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,
|
|
0xFE,0xDC,0xBA,0x98,0x76,0x54,0x32,0x10 },
|
|
{ 0x73,0x6F,0x6D,0x65,0x64,0x61,0x74,0x61 },
|
|
{ 0x18,0xd7,0x48,0xe5,0x63,0x62,0x05,0x72 }
|
|
},
|
|
{ { 0x03,0x52,0x02,0x07,0x67,0x20,0x82,0x17,
|
|
0x86,0x02,0x87,0x66,0x59,0x08,0x21,0x98,
|
|
0x64,0x05,0x6A,0xBD,0xFE,0xA9,0x34,0x57 },
|
|
{ 0x73,0x71,0x75,0x69,0x67,0x67,0x6C,0x65 },
|
|
{ 0xc0,0x7d,0x2a,0x0f,0xa5,0x66,0xfa,0x30 }
|
|
},
|
|
{ { 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
|
|
0x80,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
|
|
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x02 },
|
|
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
|
|
{ 0xe6,0xe6,0xdd,0x5b,0x7e,0x72,0x29,0x74 }
|
|
},
|
|
{ { 0x10,0x46,0x10,0x34,0x89,0x98,0x80,0x20,
|
|
0x91,0x07,0xD0,0x15,0x89,0x19,0x01,0x01,
|
|
0x19,0x07,0x92,0x10,0x98,0x1A,0x01,0x01 },
|
|
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
|
|
{ 0xe1,0xef,0x62,0xc3,0x32,0xfe,0x82,0x5b }
|
|
}
|
|
};
|
|
|
|
byte result[8];
|
|
int i;
|
|
static char error[80];
|
|
tripledes_ctx des3;
|
|
|
|
for (i=0; i<sizeof(testdata)/sizeof(*testdata); ++i) {
|
|
tripledes_set3keys (des3, testdata[i].key, testdata[i].key + 8, testdata[i].key + 16);
|
|
|
|
tripledes_ecb_encrypt (des3, testdata[i].plain, result);
|
|
if (memcmp (testdata[i].cipher, result, 8)) {
|
|
sprintf (error, "Triple-DES SSLeay test pattern no. %d failend on encryption.", i+1);
|
|
return error;
|
|
}
|
|
|
|
tripledes_ecb_decrypt (des3, testdata[i].cipher, result);
|
|
if (memcmp (testdata[i].plain, result, 8)) {
|
|
sprintf (error, "Triple-DES SSLeay test pattern no. %d failend on decryption.", i+1);
|
|
return error;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the weak key detection. We simply assume that the table
|
|
* with weak keys is ok and check every key in the table if it is
|
|
* detected... (This test is a little bit stupid)
|
|
*/
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 64; ++i)
|
|
if (!is_weak_key(weak_keys[i]))
|
|
return "DES weak key detection failed";
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
do_tripledes_setkey ( struct _tripledes_ctx *ctx, byte *key, unsigned keylen )
|
|
{
|
|
if( selftest_failed )
|
|
return G10ERR_SELFTEST_FAILED;
|
|
if( keylen != 24 )
|
|
return G10ERR_WRONG_KEYLEN;
|
|
|
|
tripledes_set3keys ( ctx, key, key+8, key+16);
|
|
|
|
if( is_weak_key( key ) || is_weak_key( key+8 ) || is_weak_key( key+16 ) ) {
|
|
burn_stack (64);
|
|
return G10ERR_WEAK_KEY;
|
|
}
|
|
burn_stack (64);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
do_tripledes_encrypt( struct _tripledes_ctx *ctx, byte *outbuf, byte *inbuf )
|
|
{
|
|
tripledes_ecb_encrypt ( ctx, inbuf, outbuf );
|
|
burn_stack (32);
|
|
}
|
|
|
|
static void
|
|
do_tripledes_decrypt( struct _tripledes_ctx *ctx, byte *outbuf, byte *inbuf )
|
|
{
|
|
tripledes_ecb_decrypt ( ctx, inbuf, outbuf );
|
|
burn_stack (32);
|
|
}
|
|
|
|
|
|
/****************
|
|
* Return some information about the algorithm. We need algo here to
|
|
* distinguish different flavors of the algorithm.
|
|
* Returns: A pointer to string describing the algorithm or NULL if
|
|
* the ALGO is invalid.
|
|
*/
|
|
const char *
|
|
des_get_info( int algo, size_t *keylen,
|
|
size_t *blocksize, size_t *contextsize,
|
|
int (**r_setkey)( void *c, byte *key, unsigned keylen ),
|
|
void (**r_encrypt)( void *c, byte *outbuf, byte *inbuf ),
|
|
void (**r_decrypt)( void *c, byte *outbuf, byte *inbuf )
|
|
)
|
|
{
|
|
static int did_selftest = 0;
|
|
|
|
if( !did_selftest ) {
|
|
const char *s = selftest();
|
|
did_selftest = 1;
|
|
if( s ) {
|
|
fprintf(stderr,"%s\n", s );
|
|
selftest_failed = s;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if( algo == CIPHER_ALGO_3DES ) {
|
|
*keylen = 192;
|
|
*blocksize = 8;
|
|
*contextsize = sizeof(struct _tripledes_ctx);
|
|
*(int (**)(struct _tripledes_ctx*, byte*, unsigned))r_setkey
|
|
= do_tripledes_setkey;
|
|
*(void (**)(struct _tripledes_ctx*, byte*, byte*))r_encrypt
|
|
= do_tripledes_encrypt;
|
|
*(void (**)(struct _tripledes_ctx*, byte*, byte*))r_decrypt
|
|
= do_tripledes_decrypt;
|
|
return "3DES";
|
|
}
|
|
return NULL;
|
|
}
|
|
|