1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-12-23 10:29:58 +01:00
gnupg/cipher/cipher.c
Werner Koch 5a9ea8ff5c Changed keyring handling - saving still does not work.
Added new cipher mode and updated cipher test program.
2000-10-10 12:58:43 +00:00

951 lines
25 KiB
C

/* cipher.c - cipher dispatcher
* Copyright (C) 1998 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include "g10lib.h"
#include "cipher.h"
#include "des.h"
#include "blowfish.h"
#include "cast5.h"
#include "arcfour.h"
#include "dynload.h"
#define MAX_BLOCKSIZE 16
#define TABLE_SIZE 14
#define CTX_MAGIC_NORMAL 0x24091964
#define CTX_MAGIC_SECURE 0x46919042
struct cipher_table_s {
const char *name;
int algo;
size_t blocksize;
size_t keylen;
size_t contextsize; /* allocate this amount of context */
int (*setkey)( void *c, byte *key, unsigned keylen );
void (*encrypt)( void *c, byte *outbuf, byte *inbuf );
void (*decrypt)( void *c, byte *outbuf, byte *inbuf );
void (*stencrypt)( void *c, byte *outbuf, byte *inbuf, unsigned int n );
void (*stdecrypt)( void *c, byte *outbuf, byte *inbuf, unsigned int n );
};
static struct cipher_table_s cipher_table[TABLE_SIZE];
static int disabled_algos[TABLE_SIZE];
struct gcry_cipher_handle {
int magic;
int algo;
int mode;
unsigned int flags;
size_t blocksize;
byte iv[MAX_BLOCKSIZE]; /* (this should be ulong aligned) */
byte lastiv[MAX_BLOCKSIZE];
int unused; /* in IV */
int (*setkey)( void *c, byte *key, unsigned keylen );
void (*encrypt)( void *c, byte *outbuf, byte *inbuf );
void (*decrypt)( void *c, byte *outbuf, byte *inbuf );
void (*stencrypt)( void *c, byte *outbuf, byte *inbuf, unsigned int n );
void (*stdecrypt)( void *c, byte *outbuf, byte *inbuf, unsigned int n );
PROPERLY_ALIGNED_TYPE context;
};
static int
dummy_setkey( void *c, byte *key, unsigned keylen ) { return 0; }
static void
dummy_encrypt_block( void *c, byte *outbuf, byte *inbuf ) { BUG(); }
static void
dummy_decrypt_block( void *c, byte *outbuf, byte *inbuf ) { BUG(); }
static void
dummy_encrypt_stream( void *c, byte *outbuf, byte *inbuf, unsigned int n )
{ BUG(); }
static void
dummy_decrypt_stream( void *c, byte *outbuf, byte *inbuf, unsigned int n )
{ BUG(); }
/****************
* Put the static entries into the table.
*/
static void
setup_cipher_table(void)
{
int i;
for (i=0; i < TABLE_SIZE; i++ ) {
cipher_table[i].encrypt = dummy_encrypt_block;
cipher_table[i].decrypt = dummy_decrypt_block;
cipher_table[i].stencrypt = dummy_encrypt_stream;
cipher_table[i].stdecrypt = dummy_decrypt_stream;
}
i = 0;
cipher_table[i].algo = GCRY_CIPHER_RIJNDAEL;
cipher_table[i].name = rijndael_get_info( cipher_table[i].algo,
&cipher_table[i].keylen,
&cipher_table[i].blocksize,
&cipher_table[i].contextsize,
&cipher_table[i].setkey,
&cipher_table[i].encrypt,
&cipher_table[i].decrypt );
if( !cipher_table[i].name )
BUG();
i++;
cipher_table[i].algo = GCRY_CIPHER_RIJNDAEL192;
cipher_table[i].name = rijndael_get_info( cipher_table[i].algo,
&cipher_table[i].keylen,
&cipher_table[i].blocksize,
&cipher_table[i].contextsize,
&cipher_table[i].setkey,
&cipher_table[i].encrypt,
&cipher_table[i].decrypt );
if( !cipher_table[i].name )
BUG();
i++;
cipher_table[i].algo = GCRY_CIPHER_RIJNDAEL256;
cipher_table[i].name = rijndael_get_info( cipher_table[i].algo,
&cipher_table[i].keylen,
&cipher_table[i].blocksize,
&cipher_table[i].contextsize,
&cipher_table[i].setkey,
&cipher_table[i].encrypt,
&cipher_table[i].decrypt );
if( !cipher_table[i].name )
BUG();
i++;
cipher_table[i].algo = GCRY_CIPHER_TWOFISH;
cipher_table[i].name = twofish_get_info( cipher_table[i].algo,
&cipher_table[i].keylen,
&cipher_table[i].blocksize,
&cipher_table[i].contextsize,
&cipher_table[i].setkey,
&cipher_table[i].encrypt,
&cipher_table[i].decrypt );
if( !cipher_table[i].name )
BUG();
i++;
cipher_table[i].algo = GCRY_CIPHER_BLOWFISH;
cipher_table[i].name = blowfish_get_info( cipher_table[i].algo,
&cipher_table[i].keylen,
&cipher_table[i].blocksize,
&cipher_table[i].contextsize,
&cipher_table[i].setkey,
&cipher_table[i].encrypt,
&cipher_table[i].decrypt );
if( !cipher_table[i].name )
BUG();
i++;
cipher_table[i].algo = GCRY_CIPHER_CAST5;
cipher_table[i].name = cast5_get_info( cipher_table[i].algo,
&cipher_table[i].keylen,
&cipher_table[i].blocksize,
&cipher_table[i].contextsize,
&cipher_table[i].setkey,
&cipher_table[i].encrypt,
&cipher_table[i].decrypt );
if( !cipher_table[i].name )
BUG();
i++;
cipher_table[i].algo = GCRY_CIPHER_3DES;
cipher_table[i].name = des_get_info( cipher_table[i].algo,
&cipher_table[i].keylen,
&cipher_table[i].blocksize,
&cipher_table[i].contextsize,
&cipher_table[i].setkey,
&cipher_table[i].encrypt,
&cipher_table[i].decrypt );
if( !cipher_table[i].name )
BUG();
i++;
cipher_table[i].algo = GCRY_CIPHER_ARCFOUR;
cipher_table[i].name = arcfour_get_info( cipher_table[i].algo,
&cipher_table[i].keylen,
&cipher_table[i].blocksize,
&cipher_table[i].contextsize,
&cipher_table[i].setkey,
&cipher_table[i].stencrypt,
&cipher_table[i].stdecrypt );
if( !cipher_table[i].name )
BUG();
i++;
cipher_table[i].algo = CIPHER_ALGO_DUMMY;
cipher_table[i].name = "DUMMY";
cipher_table[i].blocksize = 8;
cipher_table[i].keylen = 128;
cipher_table[i].contextsize = 0;
cipher_table[i].setkey = dummy_setkey;
i++;
for( ; i < TABLE_SIZE; i++ )
cipher_table[i].name = NULL;
}
/****************
* Try to load all modules and return true if new modules are available
*/
static int
load_cipher_modules(void)
{
static int done = 0;
static int initialized = 0;
void *context = NULL;
struct cipher_table_s *ct;
int ct_idx;
int i;
const char *name;
int any = 0;
if( !initialized ) {
cipher_modules_constructor();
setup_cipher_table(); /* load static modules on the first call */
initialized = 1;
return 1;
}
if( done )
return 0;
done = 1;
for(ct_idx=0, ct = cipher_table; ct_idx < TABLE_SIZE; ct_idx++,ct++ ) {
if( !ct->name )
break;
}
if( ct_idx >= TABLE_SIZE-1 )
BUG(); /* table already full */
/* now load all extensions */
while( (name = enum_gnupgext_ciphers( &context, &ct->algo,
&ct->keylen, &ct->blocksize, &ct->contextsize,
&ct->setkey, &ct->encrypt, &ct->decrypt)) ) {
if( ct->blocksize != 8 && ct->blocksize != 16 ) {
log_info("skipping cipher %d: unsupported blocksize\n", ct->algo);
continue;
}
for(i=0; cipher_table[i].name; i++ )
if( cipher_table[i].algo == ct->algo )
break;
if( cipher_table[i].name ) {
log_info("skipping cipher %d: already loaded\n", ct->algo );
continue;
}
/* put it into the table */
if( g10_log_verbosity( 2 ) )
log_info("loaded cipher %d (%s)\n", ct->algo, name);
ct->name = name;
ct_idx++;
ct++;
any = 1;
/* check whether there are more available table slots */
if( ct_idx >= TABLE_SIZE-1 ) {
log_info("cipher table full; ignoring other extensions\n");
break;
}
}
enum_gnupgext_ciphers( &context, NULL, NULL, NULL, NULL,
NULL, NULL, NULL );
return any;
}
/****************
* Map a string to the cipher algo.
* Returns: The algo ID of the cipher for the gioven name or
* 0 if the name is not known.
*/
int
gcry_cipher_map_name( const char *string )
{
int i;
const char *s;
do {
for(i=0; (s=cipher_table[i].name); i++ )
if( !stricmp( s, string ) )
return cipher_table[i].algo;
} while( load_cipher_modules() );
return 0;
}
/****************
* Map a cipher algo to a string
*/
static const char *
cipher_algo_to_string( int algo )
{
int i;
do {
for(i=0; cipher_table[i].name; i++ )
if( cipher_table[i].algo == algo )
return cipher_table[i].name;
} while( load_cipher_modules() );
return NULL;
}
/****************
* This function simply returns the name of the algorithm or some constant
* string when there is no algo. It will never return NULL.
*/
const char *
gcry_cipher_algo_name( int algo )
{
const char *s = cipher_algo_to_string( algo );
return s? s: "";
}
static void
disable_cipher_algo( int algo )
{
int i;
for(i=0; i < DIM(disabled_algos); i++ ) {
if( !disabled_algos[i] || disabled_algos[i] == algo ) {
disabled_algos[i] = algo;
return;
}
}
/* fixme: we should use a linked list */
log_fatal("can't disable cipher algo %d: table full\n", algo );
}
/****************
* Return 0 if the cipher algo is available
*/
static int
check_cipher_algo( int algo )
{
int i;
do {
for(i=0; cipher_table[i].name; i++ )
if( cipher_table[i].algo == algo ) {
for(i=0; i < DIM(disabled_algos); i++ ) {
if( disabled_algos[i] == algo )
return GCRYERR_INV_CIPHER_ALGO;
}
return 0; /* okay */
}
} while( load_cipher_modules() );
return GCRYERR_INV_CIPHER_ALGO;
}
static unsigned
cipher_get_keylen( int algo )
{
int i;
unsigned len = 0;
do {
for(i=0; cipher_table[i].name; i++ ) {
if( cipher_table[i].algo == algo ) {
len = cipher_table[i].keylen;
if( !len )
log_bug("cipher %d w/o key length\n", algo );
return len;
}
}
} while( load_cipher_modules() );
log_bug("cipher %d not found\n", algo );
return 0;
}
static unsigned
cipher_get_blocksize( int algo )
{
int i;
unsigned len = 0;
do {
for(i=0; cipher_table[i].name; i++ ) {
if( cipher_table[i].algo == algo ) {
len = cipher_table[i].blocksize;
if( !len )
log_bug("cipher %d w/o blocksize\n", algo );
return len;
}
}
} while( load_cipher_modules() );
log_bug("cipher %d not found\n", algo );
return 0;
}
/****************
* Open a cipher handle for use with algorithm ALGO, in mode MODE
* and return the handle. Return NULL and set the internal error variable
* if something goes wrong.
*/
GCRY_CIPHER_HD
gcry_cipher_open( int algo, int mode, unsigned int flags )
{
GCRY_CIPHER_HD h;
int idx;
int secure = (flags & GCRY_CIPHER_SECURE);
fast_random_poll();
/* check whether the algo is available */
if( check_cipher_algo( algo ) ) {
set_lasterr( GCRYERR_INV_CIPHER_ALGO );
return NULL;
}
/* check flags */
if( (flags & ~(GCRY_CIPHER_SECURE|GCRY_CIPHER_ENABLE_SYNC)) ) {
set_lasterr( GCRYERR_INV_CIPHER_ALGO );
return NULL;
}
/* get the table index of the algo */
for(idx=0; cipher_table[idx].name; idx++ )
if( cipher_table[idx].algo == algo )
break;
if( !cipher_table[idx].name )
BUG(); /* check_cipher_algo() should have loaded the algo */
if( algo == CIPHER_ALGO_DUMMY )
mode = GCRY_CIPHER_MODE_NONE; /* force this mode for dummy algo */
/* check that a valid mode has been requested */
switch( mode ) {
case GCRY_CIPHER_MODE_ECB:
case GCRY_CIPHER_MODE_CBC:
case GCRY_CIPHER_MODE_CFB:
if ( cipher_table[idx].encrypt == dummy_encrypt_block
|| cipher_table[idx].decrypt == dummy_decrypt_block ) {
set_lasterr( GCRYERR_INV_CIPHER_MODE );
return NULL;
}
break;
case GCRY_CIPHER_MODE_STREAM:
if ( cipher_table[idx].stencrypt == dummy_encrypt_stream
|| cipher_table[idx].stdecrypt == dummy_decrypt_stream ) {
set_lasterr( GCRYERR_INV_CIPHER_MODE );
return NULL;
}
break;
case GCRY_CIPHER_MODE_NONE:
/* FIXME: issue a warning when this mode is used */
break;
default:
set_lasterr( GCRYERR_INV_CIPHER_MODE );
return NULL;
}
/* ? perform selftest here and mark this with a flag in cipher_table ? */
h = secure ? g10_calloc_secure( 1, sizeof *h
+ cipher_table[idx].contextsize
- sizeof(PROPERLY_ALIGNED_TYPE) )
: g10_calloc( 1, sizeof *h + cipher_table[idx].contextsize
- sizeof(PROPERLY_ALIGNED_TYPE) );
if( !h ) {
set_lasterr( GCRYERR_NO_MEM );
return NULL;
}
h->magic = secure ? CTX_MAGIC_SECURE : CTX_MAGIC_NORMAL;
h->algo = algo;
h->mode = mode;
h->flags = flags;
h->blocksize = cipher_table[idx].blocksize;
h->setkey = cipher_table[idx].setkey;
h->encrypt = cipher_table[idx].encrypt;
h->decrypt = cipher_table[idx].decrypt;
h->stencrypt = cipher_table[idx].stencrypt;
h->stdecrypt = cipher_table[idx].stdecrypt;
return h;
}
void
gcry_cipher_close( GCRY_CIPHER_HD h )
{
if( !h )
return;
if( h->magic != CTX_MAGIC_SECURE && h->magic != CTX_MAGIC_NORMAL )
g10_fatal_error(GCRYERR_INTERNAL,
"gcry_cipher_close: already closed/invalid handle");
h->magic = 0;
g10_free(h);
}
static int
cipher_setkey( GCRY_CIPHER_HD c, byte *key, unsigned keylen )
{
return (*c->setkey)( &c->context.c, key, keylen );
}
static void
cipher_setiv( GCRY_CIPHER_HD c, const byte *iv, unsigned ivlen )
{
memset( c->iv, 0, c->blocksize );
if( iv ) {
if( ivlen != c->blocksize )
log_info("WARNING: cipher_setiv: ivlen=%u blklen=%u\n",
ivlen, (unsigned)c->blocksize );
if( ivlen > c->blocksize )
ivlen = c->blocksize;
memcpy( c->iv, iv, ivlen );
}
c->unused = 0;
}
static void
do_ecb_encrypt( GCRY_CIPHER_HD c, byte *outbuf, const byte *inbuf, unsigned nblocks )
{
unsigned n;
for(n=0; n < nblocks; n++ ) {
(*c->encrypt)( &c->context.c, outbuf, (byte*)/*arggg*/inbuf );
inbuf += c->blocksize;
outbuf += c->blocksize;
}
}
static void
do_ecb_decrypt( GCRY_CIPHER_HD c, byte *outbuf, const byte *inbuf, unsigned nblocks )
{
unsigned n;
for(n=0; n < nblocks; n++ ) {
(*c->decrypt)( &c->context.c, outbuf, (byte*)/*arggg*/inbuf );
inbuf += c->blocksize;
outbuf += c->blocksize;
}
}
static void
do_cbc_encrypt( GCRY_CIPHER_HD c, byte *outbuf, const byte *inbuf, unsigned nblocks )
{
unsigned int n;
byte *ivp;
int i;
size_t blocksize = c->blocksize;
for(n=0; n < nblocks; n++ ) {
/* fixme: the xor should works on words and not on
* bytes. Maybe it is a good idea to enhance the cipher backend
* API to allow for CBC handling in the backend */
for(ivp=c->iv,i=0; i < blocksize; i++ )
outbuf[i] = inbuf[i] ^ *ivp++;
(*c->encrypt)( &c->context.c, outbuf, outbuf );
memcpy(c->iv, outbuf, blocksize );
inbuf += c->blocksize;
outbuf += c->blocksize;
}
}
static void
do_cbc_decrypt( GCRY_CIPHER_HD c, byte *outbuf, const byte *inbuf, unsigned nblocks )
{
unsigned int n;
byte *ivp;
int i;
size_t blocksize = c->blocksize;
for(n=0; n < nblocks; n++ ) {
/* because outbuf and inbuf might be the same, we have
* to save the original ciphertext block. We use lastiv
* for this here because it is not used otherwise */
memcpy(c->lastiv, inbuf, blocksize );
(*c->decrypt)( &c->context.c, outbuf, (char*)/*argggg*/inbuf );
for(ivp=c->iv,i=0; i < blocksize; i++ )
outbuf[i] ^= *ivp++;
memcpy(c->iv, c->lastiv, blocksize );
inbuf += c->blocksize;
outbuf += c->blocksize;
}
}
static void
do_cfb_encrypt( GCRY_CIPHER_HD c,
byte *outbuf, const byte *inbuf, unsigned nbytes )
{
byte *ivp;
size_t blocksize = c->blocksize;
if( nbytes <= c->unused ) {
/* short enough to be encoded by the remaining XOR mask */
/* XOR the input with the IV and store input into IV */
for(ivp=c->iv+c->blocksize - c->unused; nbytes; nbytes--, c->unused-- )
*outbuf++ = (*ivp++ ^= *inbuf++);
return;
}
if( c->unused ) {
/* XOR the input with the IV and store input into IV */
nbytes -= c->unused;
for(ivp=c->iv+blocksize - c->unused; c->unused; c->unused-- )
*outbuf++ = (*ivp++ ^= *inbuf++);
}
/* now we can process complete blocks */
while( nbytes >= blocksize ) {
int i;
/* encrypt the IV (and save the current one) */
memcpy( c->lastiv, c->iv, blocksize );
(*c->encrypt)( &c->context.c, c->iv, c->iv );
/* XOR the input with the IV and store input into IV */
for(ivp=c->iv,i=0; i < blocksize; i++ )
*outbuf++ = (*ivp++ ^= *inbuf++);
nbytes -= blocksize;
}
if( nbytes ) { /* process the remaining bytes */
/* encrypt the IV (and save the current one) */
memcpy( c->lastiv, c->iv, blocksize );
(*c->encrypt)( &c->context.c, c->iv, c->iv );
c->unused = blocksize;
/* and apply the xor */
c->unused -= nbytes;
for(ivp=c->iv; nbytes; nbytes-- )
*outbuf++ = (*ivp++ ^= *inbuf++);
}
}
static void
do_cfb_decrypt( GCRY_CIPHER_HD c,
byte *outbuf, const byte *inbuf, unsigned nbytes )
{
byte *ivp;
ulong temp;
size_t blocksize = c->blocksize;
if( nbytes <= c->unused ) {
/* short enough to be encoded by the remaining XOR mask */
/* XOR the input with the IV and store input into IV */
for(ivp=c->iv+blocksize - c->unused; nbytes; nbytes--,c->unused--){
temp = *inbuf++;
*outbuf++ = *ivp ^ temp;
*ivp++ = temp;
}
return;
}
if( c->unused ) {
/* XOR the input with the IV and store input into IV */
nbytes -= c->unused;
for(ivp=c->iv+blocksize - c->unused; c->unused; c->unused-- ) {
temp = *inbuf++;
*outbuf++ = *ivp ^ temp;
*ivp++ = temp;
}
}
/* now we can process complete blocks */
while( nbytes >= blocksize ) {
int i;
/* encrypt the IV (and save the current one) */
memcpy( c->lastiv, c->iv, blocksize );
(*c->encrypt)( &c->context.c, c->iv, c->iv );
/* XOR the input with the IV and store input into IV */
for(ivp=c->iv,i=0; i < blocksize; i++ ) {
temp = *inbuf++;
*outbuf++ = *ivp ^ temp;
*ivp++ = temp;
}
nbytes -= blocksize;
}
if( nbytes ) { /* process the remaining bytes */
/* encrypt the IV (and save the current one) */
memcpy( c->lastiv, c->iv, blocksize );
(*c->encrypt)( &c->context.c, c->iv, c->iv );
c->unused = blocksize;
/* and apply the xor */
c->unused -= nbytes;
for(ivp=c->iv; nbytes; nbytes-- ) {
temp = *inbuf++;
*outbuf++ = *ivp ^ temp;
*ivp++ = temp;
}
}
}
/****************
* Encrypt INBUF to OUTBUF with the mode selected at open.
* inbuf and outbuf may overlap or be the same.
* Depending on the mode some contraints apply to NBYTES.
*/
static void
cipher_encrypt( GCRY_CIPHER_HD c, byte *outbuf,
const byte *inbuf, unsigned int nbytes )
{
switch( c->mode ) {
case GCRY_CIPHER_MODE_ECB:
assert(!(nbytes%8));
do_ecb_encrypt(c, outbuf, inbuf, nbytes/8 );
break;
case GCRY_CIPHER_MODE_CBC:
assert(!(nbytes%8)); /* fixme: should be blocksize */
do_cbc_encrypt(c, outbuf, inbuf, nbytes/8 );
break;
case GCRY_CIPHER_MODE_CFB:
do_cfb_encrypt(c, outbuf, inbuf, nbytes );
break;
case GCRY_CIPHER_MODE_STREAM:
(*c->stencrypt)( &c->context.c,
outbuf, (byte*)/*arggg*/inbuf, nbytes );
break;
case GCRY_CIPHER_MODE_NONE:
if( inbuf != outbuf )
memmove( outbuf, inbuf, nbytes );
break;
default: log_fatal("cipher_encrypt: invalid mode %d\n", c->mode );
}
}
/****************
* Encrypt IN and write it to OUT. If IN is NULL, in-place encryption has
* been requested,
*/
int
gcry_cipher_encrypt( GCRY_CIPHER_HD h, byte *out, size_t outsize,
const byte *in, size_t inlen )
{
if( !in ) {
/* caller requested in-place encryption */
/* actullay cipher_encrypt() does not need to know about it, but
* we may chnage this to get better performace */
cipher_encrypt( h, out, out, outsize );
}
else {
if( outsize < inlen )
return set_lasterr( GCRYERR_TOO_SHORT );
/* fixme: check that the inlength is a multipe of the blocksize
* if a blockoriented mode is used, or modify cipher_encrypt to
* return an error in this case */
cipher_encrypt( h, out, in, inlen );
}
return 0;
}
/****************
* Decrypt INBUF to OUTBUF with the mode selected at open.
* inbuf and outbuf may overlap or be the same.
* Depending on the mode some some contraints apply to NBYTES.
*/
static void
cipher_decrypt( GCRY_CIPHER_HD c, byte *outbuf, const byte *inbuf,
unsigned nbytes )
{
switch( c->mode ) {
case GCRY_CIPHER_MODE_ECB:
assert(!(nbytes%8));
do_ecb_decrypt(c, outbuf, inbuf, nbytes/8 );
break;
case GCRY_CIPHER_MODE_CBC:
assert(!(nbytes%8)); /* fixme: should assert on blocksize */
do_cbc_decrypt(c, outbuf, inbuf, nbytes/8 );
break;
case GCRY_CIPHER_MODE_CFB:
do_cfb_decrypt(c, outbuf, inbuf, nbytes );
break;
case GCRY_CIPHER_MODE_STREAM:
(*c->stdecrypt)( &c->context.c,
outbuf, (byte*)/*arggg*/inbuf, nbytes );
break;
case GCRY_CIPHER_MODE_NONE:
if( inbuf != outbuf )
memmove( outbuf, inbuf, nbytes );
break;
default: log_fatal("cipher_decrypt: invalid mode %d\n", c->mode );
}
}
int
gcry_cipher_decrypt( GCRY_CIPHER_HD h, byte *out, size_t outsize,
const byte *in, size_t inlen )
{
if( !in ) {
/* caller requested in-place encryption */
/* actullay cipher_encrypt() does not need to know about it, but
* we may chnage this to get better performace */
cipher_decrypt( h, out, out, outsize );
}
else {
if( outsize < inlen )
return set_lasterr( GCRYERR_TOO_SHORT );
/* fixme: check that the inlength is a multipe of the blocksize
* if a blockoriented mode is used, or modify cipher_encrypt to
* return an error in this case */
cipher_decrypt( h, out, in, inlen );
}
return 0;
}
/****************
* Used for PGP's somewhat strange CFB mode. Only works if
* the corresponding flag is set.
*/
static void
cipher_sync( GCRY_CIPHER_HD c )
{
if( (c->flags & GCRY_CIPHER_ENABLE_SYNC) && c->unused ) {
memmove(c->iv + c->unused, c->iv, c->blocksize - c->unused );
memcpy(c->iv, c->lastiv + c->blocksize - c->unused, c->unused);
c->unused = 0;
}
}
int
gcry_cipher_ctl( GCRY_CIPHER_HD h, int cmd, void *buffer, size_t buflen)
{
switch( cmd ) {
case GCRYCTL_SET_KEY:
cipher_setkey( h, buffer, buflen );
break;
case GCRYCTL_SET_IV:
cipher_setiv( h, buffer, buflen );
break;
case GCRYCTL_CFB_SYNC:
cipher_sync( h );
break;
case GCRYCTL_DISABLE_ALGO:
/* this one expects a NULL handle and buffer pointing to an
* integer with the algo number.
*/
if( h || !buffer || buflen != sizeof(int) )
return set_lasterr( GCRYERR_INV_CIPHER_ALGO );
disable_cipher_algo( *(int*)buffer );
break;
default:
return set_lasterr( GCRYERR_INV_OP );
}
return 0;
}
/****************
* Return information about the cipher handle.
* -1 is returned on error and gcry_errno() may be used to get more information
* about the error.
*/
int
gcry_cipher_info( GCRY_CIPHER_HD h, int cmd, void *buffer, size_t *nbytes)
{
switch( cmd ) {
default:
set_lasterr( GCRYERR_INV_OP );
return -1;
}
return 0;
}
/****************
* Return information about the given cipher algorithm
* WHAT select the kind of information returned:
* GCRYCTL_GET_KEYLEN:
* Return the length of the key, if the algorithm
* supports multiple key length, the maximum supported value
* is returnd. The length is return as number of octets.
* buffer and nbytes must be zero.
* The keylength is returned in _bytes_.
* GCRYCTL_GET_BLKLEN:
* Return the blocklength of the algorithm counted in octets.
* buffer and nbytes must be zero.
* GCRYCTL_TEST_ALGO:
* Returns 0 when the specified algorithm is available for use.
* buffer and nbytes must be zero.
*
* On error the value -1 is returned and the error reason may be
* retrieved by gcry_errno().
* Note: Because this function is in most caes used to return an
* integer value, we can make it easier for the caller to just look at
* the return value. The caller will in all cases consult the value
* and thereby detecting whether a error occured or not (i.e. while checking
* the block size)
*/
int
gcry_cipher_algo_info( int algo, int what, void *buffer, size_t *nbytes)
{
unsigned int ui;
switch( what ) {
case GCRYCTL_GET_KEYLEN:
if( buffer || nbytes ) {
set_lasterr( GCRYERR_INV_CIPHER_ALGO );
break;
}
ui = cipher_get_keylen( algo );
if( ui > 0 && ui <= 512 )
return (int)ui/8;
/* the only reason is an invalid algo or a strange blocksize */
set_lasterr( GCRYERR_INV_CIPHER_ALGO );
break;
case GCRYCTL_GET_BLKLEN:
if( buffer || nbytes ) {
set_lasterr( GCRYERR_INV_CIPHER_ALGO );
break;
}
ui = cipher_get_blocksize( algo );
if( ui > 0 && ui < 10000 )
return (int)ui;
/* the only reason is an invalid algo or a strange blocksize */
set_lasterr( GCRYERR_INV_CIPHER_ALGO );
break;
case GCRYCTL_TEST_ALGO:
if( buffer || nbytes ) {
set_lasterr( GCRYERR_INV_ARG );
break;
}
if( check_cipher_algo( algo ) ) {
set_lasterr( GCRYERR_INV_CIPHER_ALGO );
break;
}
return 0;
default:
set_lasterr( GCRYERR_INV_OP );
}
return -1;
}