mirror of
git://git.gnupg.org/gnupg.git
synced 2024-12-31 11:41:32 +01:00
15d1327234
* README, cipher/cipher.c, cipher/pubkey.c, doc/gpg.texi: replace "allow to" with clearer text In standard English, the normal construction is "${XXX} allows ${YYY} to" -- that is, the subject (${XXX}) of the sentence is allowing the object (${YYY}) to do something. When the object is missing, the phrasing sounds awkward, even if the object is implied by context. There's almost always a better construction that isn't as awkward. These changes should make the language a bit clearer. Signed-off-by: Daniel Kahn Gillmor <dkg@fifthhorseman.net>
591 lines
15 KiB
C
591 lines
15 KiB
C
/* pubkey.c - pubkey dispatcher
|
|
* Copyright (C) 1998, 1999, 2000, 2001, 2003,
|
|
* 2004 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <assert.h>
|
|
#include "util.h"
|
|
#include "errors.h"
|
|
#include "mpi.h"
|
|
#include "cipher.h"
|
|
#include "elgamal.h"
|
|
#include "dsa.h"
|
|
#include "rsa.h"
|
|
|
|
#define TABLE_SIZE 10
|
|
|
|
struct pubkey_table_s {
|
|
const char *name;
|
|
int algo;
|
|
int npkey;
|
|
int nskey;
|
|
int nenc;
|
|
int nsig;
|
|
int use;
|
|
int (*generate)( int algo, unsigned nbits, MPI *skey, MPI **retfactors );
|
|
int (*check_secret_key)( int algo, MPI *skey );
|
|
int (*encrypt)( int algo, MPI *resarr, MPI data, MPI *pkey );
|
|
int (*decrypt)( int algo, MPI *result, MPI *data, MPI *skey );
|
|
int (*sign)( int algo, MPI *resarr, MPI data, MPI *skey );
|
|
int (*verify)( int algo, MPI hash, MPI *data, MPI *pkey );
|
|
unsigned (*get_nbits)( int algo, MPI *pkey );
|
|
};
|
|
|
|
static struct pubkey_table_s pubkey_table[TABLE_SIZE];
|
|
static int disabled_algos[TABLE_SIZE];
|
|
|
|
|
|
#if 0
|
|
static int
|
|
dummy_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
|
|
{ log_bug("no generate() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
|
|
|
static int
|
|
dummy_check_secret_key( int algo, MPI *skey )
|
|
{ log_bug("no check_secret_key() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
|
#endif
|
|
|
|
static int
|
|
dummy_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
|
|
{ log_bug("no encrypt() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
|
|
|
static int
|
|
dummy_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
|
|
{ log_bug("no decrypt() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
|
|
|
static int
|
|
dummy_sign( int algo, MPI *resarr, MPI data, MPI *skey )
|
|
{ log_bug("no sign() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
|
|
|
static int
|
|
dummy_verify( int algo, MPI hash, MPI *data, MPI *pkey )
|
|
{ log_bug("no verify() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
|
|
|
#if 0
|
|
static unsigned
|
|
dummy_get_nbits( int algo, MPI *pkey )
|
|
{ log_bug("no get_nbits() for %d\n", algo ); return 0; }
|
|
#endif
|
|
|
|
/****************
|
|
* Put the static entries into the table.
|
|
* This is out constructor function which fill the table
|
|
* of algorithms with the one we have statically linked.
|
|
*/
|
|
static void
|
|
setup_pubkey_table(void)
|
|
{
|
|
int i=0;
|
|
|
|
pubkey_table[i].algo = PUBKEY_ALGO_ELGAMAL_E;
|
|
pubkey_table[i].name = elg_get_info( pubkey_table[i].algo,
|
|
&pubkey_table[i].npkey,
|
|
&pubkey_table[i].nskey,
|
|
&pubkey_table[i].nenc,
|
|
&pubkey_table[i].nsig,
|
|
&pubkey_table[i].use );
|
|
pubkey_table[i].generate = elg_generate;
|
|
pubkey_table[i].check_secret_key = elg_check_secret_key;
|
|
pubkey_table[i].encrypt = elg_encrypt;
|
|
pubkey_table[i].decrypt = elg_decrypt;
|
|
pubkey_table[i].sign = dummy_sign;
|
|
pubkey_table[i].verify = dummy_verify;
|
|
pubkey_table[i].get_nbits = elg_get_nbits;
|
|
if( !pubkey_table[i].name )
|
|
BUG();
|
|
i++;
|
|
pubkey_table[i].algo = PUBKEY_ALGO_DSA;
|
|
pubkey_table[i].name = dsa_get_info( pubkey_table[i].algo,
|
|
&pubkey_table[i].npkey,
|
|
&pubkey_table[i].nskey,
|
|
&pubkey_table[i].nenc,
|
|
&pubkey_table[i].nsig,
|
|
&pubkey_table[i].use );
|
|
pubkey_table[i].generate = dsa_generate;
|
|
pubkey_table[i].check_secret_key = dsa_check_secret_key;
|
|
pubkey_table[i].encrypt = dummy_encrypt;
|
|
pubkey_table[i].decrypt = dummy_decrypt;
|
|
pubkey_table[i].sign = dsa_sign;
|
|
pubkey_table[i].verify = dsa_verify;
|
|
pubkey_table[i].get_nbits = dsa_get_nbits;
|
|
if( !pubkey_table[i].name )
|
|
BUG();
|
|
i++;
|
|
|
|
#ifdef USE_RSA
|
|
pubkey_table[i].algo = PUBKEY_ALGO_RSA;
|
|
pubkey_table[i].name = rsa_get_info( pubkey_table[i].algo,
|
|
&pubkey_table[i].npkey,
|
|
&pubkey_table[i].nskey,
|
|
&pubkey_table[i].nenc,
|
|
&pubkey_table[i].nsig,
|
|
&pubkey_table[i].use );
|
|
pubkey_table[i].generate = rsa_generate;
|
|
pubkey_table[i].check_secret_key = rsa_check_secret_key;
|
|
pubkey_table[i].encrypt = rsa_encrypt;
|
|
pubkey_table[i].decrypt = rsa_decrypt;
|
|
pubkey_table[i].sign = rsa_sign;
|
|
pubkey_table[i].verify = rsa_verify;
|
|
pubkey_table[i].get_nbits = rsa_get_nbits;
|
|
if( !pubkey_table[i].name )
|
|
BUG();
|
|
i++;
|
|
pubkey_table[i].algo = PUBKEY_ALGO_RSA_E;
|
|
pubkey_table[i].name = rsa_get_info( pubkey_table[i].algo,
|
|
&pubkey_table[i].npkey,
|
|
&pubkey_table[i].nskey,
|
|
&pubkey_table[i].nenc,
|
|
&pubkey_table[i].nsig,
|
|
&pubkey_table[i].use );
|
|
pubkey_table[i].generate = rsa_generate;
|
|
pubkey_table[i].check_secret_key = rsa_check_secret_key;
|
|
pubkey_table[i].encrypt = rsa_encrypt;
|
|
pubkey_table[i].decrypt = rsa_decrypt;
|
|
pubkey_table[i].sign = dummy_sign;
|
|
pubkey_table[i].verify = dummy_verify;
|
|
pubkey_table[i].get_nbits = rsa_get_nbits;
|
|
if( !pubkey_table[i].name )
|
|
BUG();
|
|
i++;
|
|
pubkey_table[i].algo = PUBKEY_ALGO_RSA_S;
|
|
pubkey_table[i].name = rsa_get_info( pubkey_table[i].algo,
|
|
&pubkey_table[i].npkey,
|
|
&pubkey_table[i].nskey,
|
|
&pubkey_table[i].nenc,
|
|
&pubkey_table[i].nsig,
|
|
&pubkey_table[i].use );
|
|
pubkey_table[i].generate = rsa_generate;
|
|
pubkey_table[i].check_secret_key = rsa_check_secret_key;
|
|
pubkey_table[i].encrypt = dummy_encrypt;
|
|
pubkey_table[i].decrypt = dummy_decrypt;
|
|
pubkey_table[i].sign = rsa_sign;
|
|
pubkey_table[i].verify = rsa_verify;
|
|
pubkey_table[i].get_nbits = rsa_get_nbits;
|
|
if( !pubkey_table[i].name )
|
|
BUG();
|
|
i++;
|
|
#endif /* USE_RSA */
|
|
|
|
for( ; i < TABLE_SIZE; i++ )
|
|
pubkey_table[i].name = NULL;
|
|
}
|
|
|
|
|
|
/****************
|
|
* Try to load all modules and return true if new modules are available
|
|
*/
|
|
static int
|
|
load_pubkey_modules(void)
|
|
{
|
|
static int initialized = 0;
|
|
|
|
if( !initialized ) {
|
|
setup_pubkey_table();
|
|
initialized = 1;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************
|
|
* Map a string to the pubkey algo
|
|
*/
|
|
int
|
|
string_to_pubkey_algo( const char *string )
|
|
{
|
|
int i;
|
|
const char *s;
|
|
|
|
do {
|
|
for(i=0; (s=pubkey_table[i].name); i++ )
|
|
if( !ascii_strcasecmp( s, string ) )
|
|
return pubkey_table[i].algo;
|
|
} while( load_pubkey_modules() );
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************
|
|
* Map a pubkey algo to a string
|
|
*/
|
|
const char *
|
|
pubkey_algo_to_string( int algo )
|
|
{
|
|
int i;
|
|
|
|
if (algo == PUBKEY_ALGO_ELGAMAL)
|
|
return "ELG";
|
|
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo )
|
|
return pubkey_table[i].name;
|
|
} while( load_pubkey_modules() );
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void
|
|
disable_pubkey_algo( int algo )
|
|
{
|
|
int i;
|
|
|
|
for(i=0; i < DIM(disabled_algos); i++ ) {
|
|
if( !disabled_algos[i] || disabled_algos[i] == algo ) {
|
|
disabled_algos[i] = algo;
|
|
return;
|
|
}
|
|
}
|
|
log_fatal("can't disable pubkey algo %d: table full\n", algo );
|
|
}
|
|
|
|
|
|
int
|
|
check_pubkey_algo( int algo )
|
|
{
|
|
return check_pubkey_algo2( algo, 0 );
|
|
}
|
|
|
|
/****************
|
|
* a use of 0 means: don't care
|
|
*/
|
|
int
|
|
check_pubkey_algo2( int algo, unsigned use )
|
|
{
|
|
int i;
|
|
|
|
/* Map type 20 Elgamal algorithm to type 16 if it is used for
|
|
decryption. This allows use of legacy type 20 Elgamal keys for
|
|
decryption. */
|
|
if (algo == PUBKEY_ALGO_ELGAMAL && use == PUBKEY_USAGE_ENC)
|
|
algo = PUBKEY_ALGO_ELGAMAL_E;
|
|
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo ) {
|
|
if( (use & PUBKEY_USAGE_SIG)
|
|
&& !(pubkey_table[i].use & PUBKEY_USAGE_SIG) )
|
|
return G10ERR_WR_PUBKEY_ALGO;
|
|
if( (use & PUBKEY_USAGE_ENC)
|
|
&& !(pubkey_table[i].use & PUBKEY_USAGE_ENC) )
|
|
return G10ERR_WR_PUBKEY_ALGO;
|
|
|
|
for(i=0; i < DIM(disabled_algos); i++ ) {
|
|
if( disabled_algos[i] == algo )
|
|
return G10ERR_PUBKEY_ALGO;
|
|
}
|
|
return 0; /* okay */
|
|
}
|
|
} while( load_pubkey_modules() );
|
|
return G10ERR_PUBKEY_ALGO;
|
|
}
|
|
|
|
|
|
|
|
|
|
/****************
|
|
* Return the number of public key material numbers
|
|
*/
|
|
int
|
|
pubkey_get_npkey( int algo )
|
|
{
|
|
int i;
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo )
|
|
return pubkey_table[i].npkey;
|
|
} while( load_pubkey_modules() );
|
|
|
|
#ifndef USE_RSA
|
|
if( is_RSA(algo) ) /* special hack, so that we are able to */
|
|
return 2; /* see the RSA keyids */
|
|
#endif /* USE_RSA */
|
|
|
|
if(algo==PUBKEY_ALGO_ELGAMAL)
|
|
return 3;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************
|
|
* Return the number of secret key material numbers
|
|
*/
|
|
int
|
|
pubkey_get_nskey( int algo )
|
|
{
|
|
int i;
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo )
|
|
return pubkey_table[i].nskey;
|
|
} while( load_pubkey_modules() );
|
|
|
|
#ifndef USE_RSA
|
|
if( is_RSA(algo) ) /* special hack, so that we are able to */
|
|
return 6; /* see the RSA keyids */
|
|
#endif /* USE_RSA */
|
|
|
|
if(algo==PUBKEY_ALGO_ELGAMAL)
|
|
return 4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************
|
|
* Return the number of signature material numbers
|
|
*/
|
|
int
|
|
pubkey_get_nsig( int algo )
|
|
{
|
|
int i;
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo )
|
|
return pubkey_table[i].nsig;
|
|
} while( load_pubkey_modules() );
|
|
|
|
#ifndef USE_RSA
|
|
if( is_RSA(algo) ) /* special hack, so that we are able to */
|
|
return 1; /* see the RSA keyids */
|
|
#endif /* USE_RSA */
|
|
|
|
if(algo==PUBKEY_ALGO_ELGAMAL)
|
|
return 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************
|
|
* Return the number of encryption material numbers
|
|
*/
|
|
int
|
|
pubkey_get_nenc( int algo )
|
|
{
|
|
int i;
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo )
|
|
return pubkey_table[i].nenc;
|
|
} while( load_pubkey_modules() );
|
|
|
|
#ifndef USE_RSA
|
|
if( is_RSA(algo) ) /* special hack, so that we are able to */
|
|
return 1; /* see the RSA keyids */
|
|
#endif /* USE_RSA */
|
|
|
|
if(algo==PUBKEY_ALGO_ELGAMAL)
|
|
return 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************
|
|
* Get the number of nbits from the public key
|
|
*/
|
|
unsigned
|
|
pubkey_nbits( int algo, MPI *pkey )
|
|
{
|
|
int i;
|
|
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo )
|
|
return (*pubkey_table[i].get_nbits)( algo, pkey );
|
|
} while( load_pubkey_modules() );
|
|
|
|
#ifndef USE_RSA
|
|
if( is_RSA(algo) ) /* we always wanna see the length of a key :-) */
|
|
return mpi_get_nbits( pkey[0] );
|
|
#endif /* USE_RSA */
|
|
|
|
if(algo==PUBKEY_ALGO_ELGAMAL)
|
|
return mpi_get_nbits(pkey[0]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
pubkey_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
|
|
{
|
|
int i;
|
|
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo )
|
|
return (*pubkey_table[i].generate)( algo, nbits,
|
|
skey, retfactors );
|
|
} while( load_pubkey_modules() );
|
|
return G10ERR_PUBKEY_ALGO;
|
|
}
|
|
|
|
|
|
int
|
|
pubkey_check_secret_key( int algo, MPI *skey )
|
|
{
|
|
int i;
|
|
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo )
|
|
return (*pubkey_table[i].check_secret_key)( algo, skey );
|
|
} while( load_pubkey_modules() );
|
|
return G10ERR_PUBKEY_ALGO;
|
|
}
|
|
|
|
|
|
/****************
|
|
* This is the interface to the public key encryption.
|
|
* Encrypt DATA with PKEY and put it into RESARR which
|
|
* should be an array of MPIs of size PUBKEY_MAX_NENC (or less if the
|
|
* algorithm allows this - check with pubkey_get_nenc() )
|
|
*/
|
|
int
|
|
pubkey_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
|
|
{
|
|
int i, rc;
|
|
|
|
if( DBG_CIPHER ) {
|
|
log_debug("pubkey_encrypt: algo=%d\n", algo );
|
|
for(i=0; i < pubkey_get_npkey(algo); i++ )
|
|
log_mpidump(" pkey:", pkey[i] );
|
|
log_mpidump(" data:", data );
|
|
}
|
|
|
|
if (algo == PUBKEY_ALGO_ELGAMAL)
|
|
algo = PUBKEY_ALGO_ELGAMAL_E;
|
|
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo ) {
|
|
rc = (*pubkey_table[i].encrypt)( algo, resarr, data, pkey );
|
|
goto ready;
|
|
}
|
|
} while( load_pubkey_modules() );
|
|
rc = G10ERR_PUBKEY_ALGO;
|
|
ready:
|
|
if( !rc && DBG_CIPHER ) {
|
|
for(i=0; i < pubkey_get_nenc(algo); i++ )
|
|
log_mpidump(" encr:", resarr[i] );
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
|
|
/****************
|
|
* This is the interface to the public key decryption.
|
|
* ALGO gives the algorithm to use and this implicitly determines
|
|
* the size of the arrays.
|
|
* result is a pointer to a mpi variable which will receive a
|
|
* newly allocated mpi or NULL in case of an error.
|
|
*/
|
|
int
|
|
pubkey_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
|
|
{
|
|
int i, rc;
|
|
|
|
*result = NULL; /* so the caller can always do an mpi_free */
|
|
if( DBG_CIPHER ) {
|
|
log_debug("pubkey_decrypt: algo=%d\n", algo );
|
|
for(i=0; i < pubkey_get_nskey(algo); i++ )
|
|
log_mpidump(" skey:", skey[i] );
|
|
for(i=0; i < pubkey_get_nenc(algo); i++ )
|
|
log_mpidump(" data:", data[i] );
|
|
}
|
|
|
|
if (algo == PUBKEY_ALGO_ELGAMAL)
|
|
algo = PUBKEY_ALGO_ELGAMAL_E;
|
|
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo ) {
|
|
rc = (*pubkey_table[i].decrypt)( algo, result, data, skey );
|
|
goto ready;
|
|
}
|
|
} while( load_pubkey_modules() );
|
|
rc = G10ERR_PUBKEY_ALGO;
|
|
ready:
|
|
if( !rc && DBG_CIPHER ) {
|
|
log_mpidump(" plain:", *result );
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/****************
|
|
* This is the interface to the public key signing.
|
|
* Sign data with skey and put the result into resarr which
|
|
* should be an array of MPIs of size PUBKEY_MAX_NSIG (or less if the
|
|
* algorithm allows this - check with pubkey_get_nsig() )
|
|
*/
|
|
int
|
|
pubkey_sign( int algo, MPI *resarr, MPI data, MPI *skey )
|
|
{
|
|
int i, rc;
|
|
|
|
if( DBG_CIPHER ) {
|
|
log_debug("pubkey_sign: algo=%d\n", algo );
|
|
for(i=0; i < pubkey_get_nskey(algo); i++ )
|
|
log_mpidump(" skey:", skey[i] );
|
|
log_mpidump(" data:", data );
|
|
}
|
|
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo ) {
|
|
rc = (*pubkey_table[i].sign)( algo, resarr, data, skey );
|
|
goto ready;
|
|
}
|
|
} while( load_pubkey_modules() );
|
|
rc = G10ERR_PUBKEY_ALGO;
|
|
ready:
|
|
if( !rc && DBG_CIPHER ) {
|
|
for(i=0; i < pubkey_get_nsig(algo); i++ )
|
|
log_mpidump(" sig:", resarr[i] );
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/****************
|
|
* Verify a public key signature.
|
|
* Return 0 if the signature is good
|
|
*/
|
|
int
|
|
pubkey_verify( int algo, MPI hash, MPI *data, MPI *pkey )
|
|
{
|
|
int i, rc;
|
|
|
|
do {
|
|
for(i=0; pubkey_table[i].name; i++ )
|
|
if( pubkey_table[i].algo == algo ) {
|
|
rc = (*pubkey_table[i].verify)( algo, hash, data, pkey );
|
|
goto ready;
|
|
}
|
|
} while( load_pubkey_modules() );
|
|
rc = G10ERR_PUBKEY_ALGO;
|
|
ready:
|
|
return rc;
|
|
}
|