mirror of
git://git.gnupg.org/gnupg.git
synced 2025-01-08 12:44:23 +01:00
15d1327234
* README, cipher/cipher.c, cipher/pubkey.c, doc/gpg.texi: replace "allow to" with clearer text In standard English, the normal construction is "${XXX} allows ${YYY} to" -- that is, the subject (${XXX}) of the sentence is allowing the object (${YYY}) to do something. When the object is missing, the phrasing sounds awkward, even if the object is implied by context. There's almost always a better construction that isn't as awkward. These changes should make the language a bit clearer. Signed-off-by: Daniel Kahn Gillmor <dkg@fifthhorseman.net>
822 lines
21 KiB
C
822 lines
21 KiB
C
/* cipher.c - cipher dispatcher
|
|
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
|
|
* 2008 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <assert.h>
|
|
#include "util.h"
|
|
#include "errors.h"
|
|
#include "cipher.h"
|
|
#include "algorithms.h"
|
|
|
|
/* We have support for a DUMMY encryption cipher which comes handy to
|
|
debug MDCs and similar things. Because this is a bit dangerous it
|
|
is not enabled. */
|
|
/*#define ALLOW_DUMMY 1 */
|
|
|
|
#define MAX_BLOCKSIZE 16
|
|
#define TABLE_SIZE 14
|
|
|
|
struct cipher_table_s {
|
|
const char *name;
|
|
int algo;
|
|
size_t blocksize;
|
|
size_t keylen;
|
|
size_t contextsize; /* allocate this amount of context */
|
|
int (*setkey)( void *c, const byte *key, unsigned keylen );
|
|
void (*encrypt)( void *c, byte *outbuf, const byte *inbuf );
|
|
void (*decrypt)( void *c, byte *outbuf, const byte *inbuf );
|
|
};
|
|
|
|
static struct cipher_table_s cipher_table[TABLE_SIZE];
|
|
static int disabled_algos[TABLE_SIZE];
|
|
|
|
|
|
struct cipher_handle_s
|
|
{
|
|
int algo;
|
|
int mode;
|
|
size_t blocksize;
|
|
|
|
/* The initialization vector. To help code optimization we make
|
|
sure that it is aligned on an unsigned long and u32 boundary. */
|
|
union {
|
|
unsigned long dummy_ul_iv;
|
|
u32 dummy_u32_iv;
|
|
unsigned char iv[MAX_BLOCKSIZE];
|
|
} u_iv;
|
|
|
|
byte lastiv[MAX_BLOCKSIZE];
|
|
int unused; /* in IV */
|
|
int (*setkey)( void *c, const byte *key, unsigned keylen );
|
|
void (*encrypt)( void *c, byte *outbuf, const byte *inbuf );
|
|
void (*decrypt)( void *c, byte *outbuf, const byte *inbuf );
|
|
PROPERLY_ALIGNED_TYPE context;
|
|
};
|
|
|
|
|
|
#ifdef ALLOW_DUMMY
|
|
static int
|
|
dummy_setkey( void *c, byte *key, unsigned keylen ) { return 0; }
|
|
static void
|
|
dummy_encrypt_block( void *c, byte *outbuf, byte *inbuf ) { BUG(); }
|
|
static void
|
|
dummy_decrypt_block( void *c, byte *outbuf, byte *inbuf ) { BUG(); }
|
|
#ifdef __GNUC__
|
|
# warning DUMMY cipher module is enabled
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/****************
|
|
* Put the static entries into the table.
|
|
*/
|
|
static void
|
|
setup_cipher_table(void)
|
|
{
|
|
int i=0;
|
|
|
|
#ifdef USE_AES
|
|
cipher_table[i].algo = CIPHER_ALGO_AES;
|
|
cipher_table[i].name = rijndael_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if( !cipher_table[i].name )
|
|
BUG();
|
|
i++;
|
|
cipher_table[i].algo = CIPHER_ALGO_AES192;
|
|
cipher_table[i].name = rijndael_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if( !cipher_table[i].name )
|
|
BUG();
|
|
i++;
|
|
cipher_table[i].algo = CIPHER_ALGO_AES256;
|
|
cipher_table[i].name = rijndael_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if( !cipher_table[i].name )
|
|
BUG();
|
|
i++;
|
|
#endif
|
|
|
|
#ifdef USE_TWOFISH
|
|
cipher_table[i].algo = CIPHER_ALGO_TWOFISH;
|
|
cipher_table[i].name = twofish_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if( !cipher_table[i].name )
|
|
BUG();
|
|
i++;
|
|
#endif
|
|
|
|
#ifdef USE_BLOWFISH
|
|
cipher_table[i].algo = CIPHER_ALGO_BLOWFISH;
|
|
cipher_table[i].name = blowfish_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if( !cipher_table[i].name )
|
|
BUG();
|
|
i++;
|
|
#endif
|
|
|
|
#ifdef USE_CAST5
|
|
cipher_table[i].algo = CIPHER_ALGO_CAST5;
|
|
cipher_table[i].name = cast5_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if( !cipher_table[i].name )
|
|
BUG();
|
|
i++;
|
|
#endif
|
|
|
|
cipher_table[i].algo = CIPHER_ALGO_3DES;
|
|
cipher_table[i].name = des_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if( !cipher_table[i].name )
|
|
BUG();
|
|
i++;
|
|
|
|
#ifdef USE_CAMELLIA
|
|
cipher_table[i].algo = CIPHER_ALGO_CAMELLIA128;
|
|
cipher_table[i].name = camellia_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if( !cipher_table[i].name )
|
|
BUG();
|
|
i++;
|
|
cipher_table[i].algo = CIPHER_ALGO_CAMELLIA192;
|
|
cipher_table[i].name = camellia_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if( !cipher_table[i].name )
|
|
BUG();
|
|
i++;
|
|
cipher_table[i].algo = CIPHER_ALGO_CAMELLIA256;
|
|
cipher_table[i].name = camellia_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if( !cipher_table[i].name )
|
|
BUG();
|
|
i++;
|
|
#endif
|
|
|
|
#ifdef USE_IDEA
|
|
cipher_table[i].algo = CIPHER_ALGO_IDEA;
|
|
cipher_table[i].name = idea_get_info( cipher_table[i].algo,
|
|
&cipher_table[i].keylen,
|
|
&cipher_table[i].blocksize,
|
|
&cipher_table[i].contextsize,
|
|
&cipher_table[i].setkey,
|
|
&cipher_table[i].encrypt,
|
|
&cipher_table[i].decrypt );
|
|
if (cipher_table[i].name)
|
|
i++; /* Note that the loadable IDEA module may not be
|
|
available. */
|
|
#endif
|
|
|
|
#ifdef ALLOW_DUMMY
|
|
cipher_table[i].algo = CIPHER_ALGO_DUMMY;
|
|
cipher_table[i].name = "DUMMY";
|
|
cipher_table[i].blocksize = 8;
|
|
cipher_table[i].keylen = 128;
|
|
cipher_table[i].contextsize = 0;
|
|
cipher_table[i].setkey = dummy_setkey;
|
|
cipher_table[i].encrypt = dummy_encrypt_block;
|
|
cipher_table[i].decrypt = dummy_decrypt_block;
|
|
i++;
|
|
#endif
|
|
|
|
for( ; i < TABLE_SIZE; i++ )
|
|
cipher_table[i].name = NULL;
|
|
}
|
|
|
|
|
|
/****************
|
|
* Try to load all modules and return true if new modules are available
|
|
*/
|
|
static int
|
|
load_cipher_modules(void)
|
|
{
|
|
static int initialized = 0;
|
|
|
|
if (!initialized )
|
|
{
|
|
setup_cipher_table(); /* load static modules on the first call */
|
|
initialized = 1;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/****************
|
|
* Map a string to the cipher algo
|
|
*/
|
|
int
|
|
string_to_cipher_algo( const char *string )
|
|
{
|
|
int i;
|
|
const char *s;
|
|
|
|
/* kludge to alias RIJNDAEL to AES */
|
|
if ( *string == 'R' || *string == 'r')
|
|
{
|
|
if (!ascii_strcasecmp (string, "RIJNDAEL"))
|
|
string = "AES";
|
|
else if (!ascii_strcasecmp (string, "RIJNDAEL192"))
|
|
string = "AES192";
|
|
else if (!ascii_strcasecmp (string, "RIJNDAEL256"))
|
|
string = "AES256";
|
|
}
|
|
|
|
do
|
|
{
|
|
for(i=0; (s=cipher_table[i].name); i++ )
|
|
{
|
|
if( !ascii_strcasecmp( s, string ) )
|
|
return cipher_table[i].algo;
|
|
}
|
|
} while( load_cipher_modules() );
|
|
|
|
/* Didn't find it, so try the Sx format */
|
|
if(string[0]=='S' || string[0]=='s')
|
|
{
|
|
long val;
|
|
char *endptr;
|
|
|
|
string++;
|
|
|
|
val=strtol(string,&endptr,10);
|
|
if(*string!='\0' && *endptr=='\0' && check_cipher_algo(val)==0)
|
|
return val;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************
|
|
* Map a cipher algo to a string
|
|
*/
|
|
const char *
|
|
cipher_algo_to_string( int algo )
|
|
{
|
|
int i;
|
|
|
|
do {
|
|
for(i=0; cipher_table[i].name; i++ )
|
|
if( cipher_table[i].algo == algo )
|
|
return cipher_table[i].name;
|
|
} while( load_cipher_modules() );
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void
|
|
disable_cipher_algo( int algo )
|
|
{
|
|
int i;
|
|
|
|
for(i=0; i < DIM(disabled_algos); i++ ) {
|
|
if( !disabled_algos[i] || disabled_algos[i] == algo ) {
|
|
disabled_algos[i] = algo;
|
|
return;
|
|
}
|
|
}
|
|
/* fixme: we should use a linked list */
|
|
log_fatal("can't disable cipher algo %d: table full\n", algo );
|
|
}
|
|
|
|
/****************
|
|
* Return 0 if the cipher algo is available
|
|
*/
|
|
int
|
|
check_cipher_algo( int algo )
|
|
{
|
|
int i;
|
|
|
|
do {
|
|
for(i=0; cipher_table[i].name; i++ )
|
|
if( cipher_table[i].algo == algo ) {
|
|
for(i=0; i < DIM(disabled_algos); i++ ) {
|
|
if( disabled_algos[i] == algo )
|
|
return G10ERR_CIPHER_ALGO;
|
|
}
|
|
return 0; /* okay */
|
|
}
|
|
} while( load_cipher_modules() );
|
|
return G10ERR_CIPHER_ALGO;
|
|
}
|
|
|
|
|
|
unsigned
|
|
cipher_get_keylen( int algo )
|
|
{
|
|
int i;
|
|
unsigned len = 0;
|
|
|
|
do {
|
|
for(i=0; cipher_table[i].name; i++ ) {
|
|
if( cipher_table[i].algo == algo ) {
|
|
len = cipher_table[i].keylen;
|
|
if( !len )
|
|
log_bug("cipher %d w/o key length\n", algo );
|
|
return len;
|
|
}
|
|
}
|
|
} while( load_cipher_modules() );
|
|
log_bug("cipher %d not found\n", algo );
|
|
return 0;
|
|
}
|
|
|
|
unsigned
|
|
cipher_get_blocksize( int algo )
|
|
{
|
|
int i;
|
|
unsigned len = 0;
|
|
|
|
do {
|
|
for(i=0; cipher_table[i].name; i++ ) {
|
|
if( cipher_table[i].algo == algo ) {
|
|
len = cipher_table[i].blocksize;
|
|
if( !len )
|
|
log_bug("cipher %d w/o blocksize\n", algo );
|
|
return len;
|
|
}
|
|
}
|
|
} while( load_cipher_modules() );
|
|
log_bug("cipher %d not found\n", algo );
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************
|
|
* Open a cipher handle for use with algorithm ALGO, in mode MODE
|
|
* and put it into secure memory if SECURE is true.
|
|
*/
|
|
CIPHER_HANDLE
|
|
cipher_open( int algo, int mode, int secure )
|
|
{
|
|
CIPHER_HANDLE hd;
|
|
int i;
|
|
|
|
fast_random_poll();
|
|
do {
|
|
for(i=0; cipher_table[i].name; i++ )
|
|
if( cipher_table[i].algo == algo )
|
|
break;
|
|
} while( !cipher_table[i].name && load_cipher_modules() );
|
|
if( !cipher_table[i].name ) {
|
|
log_fatal("cipher_open: algorithm %d not available\n", algo );
|
|
return NULL;
|
|
}
|
|
|
|
/* ? perform selftest here and mark this with a flag in cipher_table ? */
|
|
|
|
hd = secure ? xmalloc_secure_clear( sizeof *hd
|
|
+ cipher_table[i].contextsize
|
|
- sizeof(PROPERLY_ALIGNED_TYPE) )
|
|
: xmalloc_clear( sizeof *hd + cipher_table[i].contextsize
|
|
- sizeof(PROPERLY_ALIGNED_TYPE) );
|
|
hd->algo = algo;
|
|
hd->blocksize = cipher_table[i].blocksize;
|
|
hd->setkey = cipher_table[i].setkey;
|
|
hd->encrypt = cipher_table[i].encrypt;
|
|
hd->decrypt = cipher_table[i].decrypt;
|
|
|
|
if( mode == CIPHER_MODE_AUTO_CFB ) {
|
|
if( algo >= 100 )
|
|
hd->mode = CIPHER_MODE_CFB;
|
|
else
|
|
hd->mode = CIPHER_MODE_PHILS_CFB;
|
|
}
|
|
else
|
|
hd->mode = mode;
|
|
|
|
#ifdef ALLOW_DUMMY
|
|
if( algo == CIPHER_ALGO_DUMMY )
|
|
hd->mode = CIPHER_MODE_DUMMY;
|
|
#endif
|
|
|
|
return hd;
|
|
}
|
|
|
|
|
|
void
|
|
cipher_close( CIPHER_HANDLE c )
|
|
{
|
|
xfree(c);
|
|
}
|
|
|
|
|
|
int
|
|
cipher_setkey( CIPHER_HANDLE c, byte *key, unsigned keylen )
|
|
{
|
|
return (*c->setkey)( &c->context.c, key, keylen );
|
|
}
|
|
|
|
|
|
void
|
|
cipher_setiv( CIPHER_HANDLE c, const byte *iv, unsigned ivlen )
|
|
{
|
|
memset( c->u_iv.iv, 0, c->blocksize );
|
|
if( iv ) {
|
|
if( ivlen != c->blocksize )
|
|
log_info("WARNING: cipher_setiv: ivlen=%u blklen=%u\n",
|
|
ivlen, (unsigned)c->blocksize );
|
|
if( ivlen > c->blocksize )
|
|
ivlen = c->blocksize;
|
|
memcpy( c->u_iv.iv, iv, ivlen );
|
|
}
|
|
c->unused = 0;
|
|
}
|
|
|
|
static void
|
|
do_ecb_encrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nblocks )
|
|
{
|
|
unsigned n;
|
|
|
|
for(n=0; n < nblocks; n++ ) {
|
|
(*c->encrypt)( &c->context.c, outbuf, inbuf );
|
|
inbuf += c->blocksize;
|
|
outbuf += c->blocksize;
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_ecb_decrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nblocks )
|
|
{
|
|
unsigned n;
|
|
|
|
for(n=0; n < nblocks; n++ ) {
|
|
(*c->decrypt)( &c->context.c, outbuf, inbuf );
|
|
inbuf += c->blocksize;
|
|
outbuf += c->blocksize;
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_cbc_encrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nblocks )
|
|
{
|
|
unsigned int n;
|
|
byte *ivp;
|
|
int i;
|
|
size_t blocksize = c->blocksize;
|
|
|
|
for(n=0; n < nblocks; n++ ) {
|
|
/* fixme: the xor should works on words and not on
|
|
* bytes. Maybe it is a good idea to enhance the cipher backend
|
|
* API to allow for CBC handling in the backend */
|
|
for(ivp=c->u_iv.iv,i=0; i < blocksize; i++ )
|
|
outbuf[i] = inbuf[i] ^ *ivp++;
|
|
(*c->encrypt)( &c->context.c, outbuf, outbuf );
|
|
memcpy(c->u_iv.iv, outbuf, blocksize );
|
|
inbuf += c->blocksize;
|
|
outbuf += c->blocksize;
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_cbc_decrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nblocks )
|
|
{
|
|
unsigned int n;
|
|
byte *ivp;
|
|
int i;
|
|
size_t blocksize = c->blocksize;
|
|
|
|
for(n=0; n < nblocks; n++ ) {
|
|
/* because outbuf and inbuf might be the same, we have
|
|
* to save the original ciphertext block. We use lastiv
|
|
* for this here because it is not used otherwise */
|
|
memcpy(c->lastiv, inbuf, blocksize );
|
|
(*c->decrypt)( &c->context.c, outbuf, inbuf );
|
|
for(ivp=c->u_iv.iv,i=0; i < blocksize; i++ )
|
|
outbuf[i] ^= *ivp++;
|
|
memcpy(c->u_iv.iv, c->lastiv, blocksize );
|
|
inbuf += c->blocksize;
|
|
outbuf += c->blocksize;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
do_cfb_encrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
|
|
{
|
|
byte *ivp;
|
|
size_t blocksize = c->blocksize;
|
|
size_t blocksize_x_2 = blocksize + blocksize;
|
|
|
|
if ( nbytes <= c->unused )
|
|
{
|
|
/* Short enough to be encoded by the remaining XOR mask. XOR
|
|
the input with the IV and store input into IV. */
|
|
for (ivp=c->u_iv.iv+c->blocksize - c->unused; nbytes;
|
|
nbytes--, c->unused-- )
|
|
*outbuf++ = (*ivp++ ^= *inbuf++);
|
|
return;
|
|
}
|
|
|
|
if ( c->unused )
|
|
{
|
|
/* XOR the input with the IV and store input into IV. */
|
|
nbytes -= c->unused;
|
|
for (ivp=c->u_iv.iv+blocksize - c->unused; c->unused; c->unused-- )
|
|
*outbuf++ = (*ivp++ ^= *inbuf++);
|
|
}
|
|
|
|
/* Now we can process complete blocks. We use a loop as long as we
|
|
have at least 2 blocks and use conditions for the rest. This
|
|
also allows use of a bulk encryption function if available. */
|
|
#ifdef USE_AES
|
|
if (nbytes >= blocksize_x_2
|
|
&& (c->algo == CIPHER_ALGO_AES
|
|
|| c->algo == CIPHER_ALGO_AES256
|
|
|| c->algo == CIPHER_ALGO_AES192))
|
|
{
|
|
unsigned int nblocks = nbytes / blocksize;
|
|
rijndael_cfb_enc (&c->context.c, c->u_iv.iv, outbuf, inbuf, nblocks);
|
|
outbuf += nblocks * blocksize;
|
|
inbuf += nblocks * blocksize;
|
|
nbytes -= nblocks * blocksize;
|
|
}
|
|
else
|
|
#endif /*USE_AES*/
|
|
{
|
|
while ( nbytes >= blocksize_x_2 )
|
|
{
|
|
int i;
|
|
/* Encrypt the IV. */
|
|
c->encrypt ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
|
|
/* XOR the input with the IV and store input into IV. */
|
|
for(ivp=c->u_iv.iv,i=0; i < blocksize; i++ )
|
|
*outbuf++ = (*ivp++ ^= *inbuf++);
|
|
nbytes -= blocksize;
|
|
}
|
|
}
|
|
|
|
if ( nbytes >= blocksize )
|
|
{
|
|
int i;
|
|
/* Save the current IV and then encrypt the IV. */
|
|
memcpy( c->lastiv, c->u_iv.iv, blocksize );
|
|
c->encrypt ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
|
|
/* XOR the input with the IV and store input into IV */
|
|
for(ivp=c->u_iv.iv,i=0; i < blocksize; i++ )
|
|
*outbuf++ = (*ivp++ ^= *inbuf++);
|
|
nbytes -= blocksize;
|
|
}
|
|
if ( nbytes )
|
|
{
|
|
/* Save the current IV and then encrypt the IV. */
|
|
memcpy (c->lastiv, c->u_iv.iv, blocksize );
|
|
c->encrypt ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
|
|
c->unused = blocksize;
|
|
/* Apply the XOR. */
|
|
c->unused -= nbytes;
|
|
for(ivp=c->u_iv.iv; nbytes; nbytes-- )
|
|
*outbuf++ = (*ivp++ ^= *inbuf++);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
do_cfb_decrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
|
|
{
|
|
unsigned char *ivp;
|
|
unsigned long temp;
|
|
int i;
|
|
size_t blocksize = c->blocksize;
|
|
size_t blocksize_x_2 = blocksize + blocksize;
|
|
|
|
if (nbytes <= c->unused)
|
|
{
|
|
/* Short enough to be encoded by the remaining XOR mask. */
|
|
/* XOR the input with the IV and store input into IV. */
|
|
for (ivp=c->u_iv.iv+blocksize - c->unused;
|
|
nbytes;
|
|
nbytes--, c->unused--)
|
|
{
|
|
temp = *inbuf++;
|
|
*outbuf++ = *ivp ^ temp;
|
|
*ivp++ = temp;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (c->unused)
|
|
{
|
|
/* XOR the input with the IV and store input into IV. */
|
|
nbytes -= c->unused;
|
|
for (ivp=c->u_iv.iv+blocksize - c->unused; c->unused; c->unused-- )
|
|
{
|
|
temp = *inbuf++;
|
|
*outbuf++ = *ivp ^ temp;
|
|
*ivp++ = temp;
|
|
}
|
|
}
|
|
|
|
/* Now we can process complete blocks. We use a loop as long as we
|
|
have at least 2 blocks and use conditions for the rest. This
|
|
also allows use of a bulk encryption function if available. */
|
|
#ifdef USE_AES
|
|
if (nbytes >= blocksize_x_2
|
|
&& (c->algo == CIPHER_ALGO_AES
|
|
|| c->algo == CIPHER_ALGO_AES256
|
|
|| c->algo == CIPHER_ALGO_AES192))
|
|
{
|
|
unsigned int nblocks = nbytes / blocksize;
|
|
rijndael_cfb_dec (&c->context.c, c->u_iv.iv, outbuf, inbuf, nblocks);
|
|
outbuf += nblocks * blocksize;
|
|
inbuf += nblocks * blocksize;
|
|
nbytes -= nblocks * blocksize;
|
|
}
|
|
else
|
|
#endif /*USE_AES*/
|
|
{
|
|
while (nbytes >= blocksize_x_2 )
|
|
{
|
|
/* Encrypt the IV. */
|
|
c->encrypt ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
|
|
/* XOR the input with the IV and store input into IV. */
|
|
for (ivp=c->u_iv.iv,i=0; i < blocksize; i++ )
|
|
{
|
|
temp = *inbuf++;
|
|
*outbuf++ = *ivp ^ temp;
|
|
*ivp++ = temp;
|
|
}
|
|
nbytes -= blocksize;
|
|
}
|
|
}
|
|
|
|
if (nbytes >= blocksize )
|
|
{
|
|
/* Save the current IV and then encrypt the IV. */
|
|
memcpy ( c->lastiv, c->u_iv.iv, blocksize);
|
|
c->encrypt ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
|
|
/* XOR the input with the IV and store input into IV */
|
|
for (ivp=c->u_iv.iv,i=0; i < blocksize; i++ )
|
|
{
|
|
temp = *inbuf++;
|
|
*outbuf++ = *ivp ^ temp;
|
|
*ivp++ = temp;
|
|
}
|
|
nbytes -= blocksize;
|
|
}
|
|
|
|
if (nbytes)
|
|
{
|
|
/* Save the current IV and then encrypt the IV. */
|
|
memcpy ( c->lastiv, c->u_iv.iv, blocksize );
|
|
c->encrypt ( &c->context.c, c->u_iv.iv, c->u_iv.iv );
|
|
c->unused = blocksize;
|
|
/* Apply the XOR. */
|
|
c->unused -= nbytes;
|
|
for (ivp=c->u_iv.iv; nbytes; nbytes-- )
|
|
{
|
|
temp = *inbuf++;
|
|
*outbuf++ = *ivp ^ temp;
|
|
*ivp++ = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/****************
|
|
* Encrypt INBUF to OUTBUF with the mode selected at open.
|
|
* inbuf and outbuf may overlap or be the same.
|
|
* Depending on the mode some some contraints apply to NBYTES.
|
|
*/
|
|
void
|
|
cipher_encrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
|
|
{
|
|
switch( c->mode ) {
|
|
case CIPHER_MODE_ECB:
|
|
assert(!(nbytes%c->blocksize));
|
|
do_ecb_encrypt(c, outbuf, inbuf, nbytes/c->blocksize );
|
|
break;
|
|
case CIPHER_MODE_CBC:
|
|
assert(!(nbytes%c->blocksize));
|
|
do_cbc_encrypt(c, outbuf, inbuf, nbytes/c->blocksize );
|
|
break;
|
|
case CIPHER_MODE_CFB:
|
|
case CIPHER_MODE_PHILS_CFB:
|
|
do_cfb_encrypt(c, outbuf, inbuf, nbytes );
|
|
break;
|
|
#ifdef ALLOW_DUMMY
|
|
case CIPHER_MODE_DUMMY:
|
|
if( inbuf != outbuf )
|
|
memmove( outbuf, inbuf, nbytes );
|
|
break;
|
|
#endif
|
|
default: log_fatal("cipher_encrypt: invalid mode %d\n", c->mode );
|
|
}
|
|
}
|
|
|
|
|
|
/****************
|
|
* Decrypt INBUF to OUTBUF with the mode selected at open.
|
|
* inbuf and outbuf may overlap or be the same.
|
|
* Depending on the mode some some contraints apply to NBYTES.
|
|
*/
|
|
void
|
|
cipher_decrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
|
|
{
|
|
switch( c->mode ) {
|
|
case CIPHER_MODE_ECB:
|
|
assert(!(nbytes%c->blocksize));
|
|
do_ecb_decrypt(c, outbuf, inbuf, nbytes/c->blocksize );
|
|
break;
|
|
case CIPHER_MODE_CBC:
|
|
assert(!(nbytes%c->blocksize));
|
|
do_cbc_decrypt(c, outbuf, inbuf, nbytes/c->blocksize );
|
|
break;
|
|
case CIPHER_MODE_CFB:
|
|
case CIPHER_MODE_PHILS_CFB:
|
|
do_cfb_decrypt(c, outbuf, inbuf, nbytes );
|
|
break;
|
|
#ifdef ALLOW_DUMMY
|
|
case CIPHER_MODE_DUMMY:
|
|
if( inbuf != outbuf )
|
|
memmove( outbuf, inbuf, nbytes );
|
|
break;
|
|
#endif
|
|
default: log_fatal("cipher_decrypt: invalid mode %d\n", c->mode );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/****************
|
|
* Used for PGP's somewhat strange CFB mode. Only works if
|
|
* the handle is in PHILS_CFB mode
|
|
*/
|
|
void
|
|
cipher_sync( CIPHER_HANDLE c )
|
|
{
|
|
if( c->mode == CIPHER_MODE_PHILS_CFB && c->unused ) {
|
|
memmove(c->u_iv.iv + c->unused, c->u_iv.iv, c->blocksize - c->unused );
|
|
memcpy(c->u_iv.iv, c->lastiv + c->blocksize - c->unused, c->unused);
|
|
c->unused = 0;
|
|
}
|
|
}
|