mirror of
git://git.gnupg.org/gnupg.git
synced 2025-01-18 14:17:03 +01:00
27d0f32f77
* include/cipher.h (PUBKEY_USAGE_NONE): New. * g10/getkey.c (parse_key_usage): Set new flag. -- We do not want to use the default capabilities (derived from the algorithm) if any key flags are given in a signature. Thus if key flags are used in any way, the default key capabilities are never used. This allows to create a key with key flags set to all zero so it can't be used. This better reflects common sense. (cherry picked from commit 4bde12206c5bf199dc6e12a74af8da4558ba41bf) (cherry picked from commit 0a805ed1604ef3e9b27f3e22a936a2d439300e9f) Resolved conflicts: include/cipher.h
3103 lines
88 KiB
C
3103 lines
88 KiB
C
/* getkey.c - Get a key from the database
|
||
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
||
* 2006 Free Software Foundation, Inc.
|
||
*
|
||
* This file is part of GnuPG.
|
||
*
|
||
* GnuPG is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* GnuPG is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include <config.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
#include <ctype.h>
|
||
#include "util.h"
|
||
#include "packet.h"
|
||
#include "memory.h"
|
||
#include "iobuf.h"
|
||
#include "keydb.h"
|
||
#include "options.h"
|
||
#include "main.h"
|
||
#include "trustdb.h"
|
||
#include "i18n.h"
|
||
#include "keyserver-internal.h"
|
||
|
||
#define MAX_PK_CACHE_ENTRIES PK_UID_CACHE_SIZE
|
||
#define MAX_UID_CACHE_ENTRIES PK_UID_CACHE_SIZE
|
||
|
||
#if MAX_PK_CACHE_ENTRIES < 2
|
||
#error We need the cache for key creation
|
||
#endif
|
||
|
||
struct getkey_ctx_s {
|
||
int exact;
|
||
KBNODE keyblock;
|
||
KBPOS kbpos;
|
||
KBNODE found_key; /* pointer into some keyblock */
|
||
int last_rc;
|
||
int req_usage;
|
||
int req_algo;
|
||
KEYDB_HANDLE kr_handle;
|
||
int not_allocated;
|
||
int nitems;
|
||
KEYDB_SEARCH_DESC items[1];
|
||
};
|
||
|
||
#if 0
|
||
static struct {
|
||
int any;
|
||
int okay_count;
|
||
int nokey_count;
|
||
int error_count;
|
||
} lkup_stats[21];
|
||
#endif
|
||
|
||
typedef struct keyid_list {
|
||
struct keyid_list *next;
|
||
u32 keyid[2];
|
||
} *keyid_list_t;
|
||
|
||
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
typedef struct pk_cache_entry {
|
||
struct pk_cache_entry *next;
|
||
u32 keyid[2];
|
||
PKT_public_key *pk;
|
||
} *pk_cache_entry_t;
|
||
static pk_cache_entry_t pk_cache;
|
||
static int pk_cache_entries; /* number of entries in pk cache */
|
||
static int pk_cache_disabled;
|
||
#endif
|
||
|
||
#if MAX_UID_CACHE_ENTRIES < 5
|
||
#error we really need the userid cache
|
||
#endif
|
||
typedef struct user_id_db {
|
||
struct user_id_db *next;
|
||
keyid_list_t keyids;
|
||
int len;
|
||
char name[1];
|
||
} *user_id_db_t;
|
||
static user_id_db_t user_id_db;
|
||
static int uid_cache_entries; /* number of entries in uid cache */
|
||
|
||
static void merge_selfsigs( KBNODE keyblock );
|
||
static int lookup( GETKEY_CTX ctx, KBNODE *ret_keyblock, int secmode );
|
||
|
||
#if 0
|
||
static void
|
||
print_stats()
|
||
{
|
||
int i;
|
||
for(i=0; i < DIM(lkup_stats); i++ ) {
|
||
if( lkup_stats[i].any )
|
||
fprintf(stderr,
|
||
"lookup stats: mode=%-2d ok=%-6d nokey=%-6d err=%-6d\n",
|
||
i,
|
||
lkup_stats[i].okay_count,
|
||
lkup_stats[i].nokey_count,
|
||
lkup_stats[i].error_count );
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
void
|
||
cache_public_key( PKT_public_key *pk )
|
||
{
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
pk_cache_entry_t ce;
|
||
u32 keyid[2];
|
||
|
||
if( pk_cache_disabled )
|
||
return;
|
||
|
||
if( pk->dont_cache )
|
||
return;
|
||
|
||
if( is_ELGAMAL(pk->pubkey_algo)
|
||
|| pk->pubkey_algo == PUBKEY_ALGO_DSA
|
||
|| is_RSA(pk->pubkey_algo) ) {
|
||
keyid_from_pk( pk, keyid );
|
||
}
|
||
else
|
||
return; /* don't know how to get the keyid */
|
||
|
||
for( ce = pk_cache; ce; ce = ce->next )
|
||
if( ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1] ) {
|
||
if( DBG_CACHE )
|
||
log_debug("cache_public_key: already in cache\n");
|
||
return;
|
||
}
|
||
|
||
if( pk_cache_entries >= MAX_PK_CACHE_ENTRIES ) {
|
||
/* fixme: use another algorithm to free some cache slots */
|
||
pk_cache_disabled=1;
|
||
if( opt.verbose > 1 )
|
||
log_info(_("too many entries in pk cache - disabled\n"));
|
||
return;
|
||
}
|
||
pk_cache_entries++;
|
||
ce = xmalloc( sizeof *ce );
|
||
ce->next = pk_cache;
|
||
pk_cache = ce;
|
||
ce->pk = copy_public_key( NULL, pk );
|
||
ce->keyid[0] = keyid[0];
|
||
ce->keyid[1] = keyid[1];
|
||
#endif
|
||
}
|
||
|
||
|
||
/* Return a const utf-8 string with the text "[User ID not found]".
|
||
This fucntion is required so that we don't need to switch gettext's
|
||
encoding temporary. */
|
||
static const char *
|
||
user_id_not_found_utf8 (void)
|
||
{
|
||
static char *text;
|
||
|
||
if (!text)
|
||
text = native_to_utf8 (_("[User ID not found]"));
|
||
return text;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
* Return the user ID from the given keyblock.
|
||
* We use the primary uid flag which has been set by the merge_selfsigs
|
||
* function. The returned value is only valid as long as then given
|
||
* keyblock is not changed
|
||
*/
|
||
static const char *
|
||
get_primary_uid ( KBNODE keyblock, size_t *uidlen )
|
||
{
|
||
KBNODE k;
|
||
const char *s;
|
||
|
||
for (k=keyblock; k; k=k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID
|
||
&& !k->pkt->pkt.user_id->attrib_data
|
||
&& k->pkt->pkt.user_id->is_primary ) {
|
||
*uidlen = k->pkt->pkt.user_id->len;
|
||
return k->pkt->pkt.user_id->name;
|
||
}
|
||
}
|
||
s = user_id_not_found_utf8 ();
|
||
*uidlen = strlen (s);
|
||
return s;
|
||
}
|
||
|
||
|
||
static void
|
||
release_keyid_list ( keyid_list_t k )
|
||
{
|
||
while ( k ) {
|
||
keyid_list_t k2 = k->next;
|
||
xfree (k);
|
||
k = k2;
|
||
}
|
||
}
|
||
|
||
/****************
|
||
* Store the association of keyid and userid
|
||
* Feed only public keys to this function.
|
||
*/
|
||
static void
|
||
cache_user_id( KBNODE keyblock )
|
||
{
|
||
user_id_db_t r;
|
||
const char *uid;
|
||
size_t uidlen;
|
||
keyid_list_t keyids = NULL;
|
||
KBNODE k;
|
||
|
||
for (k=keyblock; k; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
keyid_list_t a = xmalloc_clear ( sizeof *a );
|
||
/* Hmmm: For a long list of keyids it might be an advantage
|
||
* to append the keys */
|
||
keyid_from_pk( k->pkt->pkt.public_key, a->keyid );
|
||
/* first check for duplicates */
|
||
for(r=user_id_db; r; r = r->next ) {
|
||
keyid_list_t b = r->keyids;
|
||
for ( b = r->keyids; b; b = b->next ) {
|
||
if( b->keyid[0] == a->keyid[0]
|
||
&& b->keyid[1] == a->keyid[1] ) {
|
||
if( DBG_CACHE )
|
||
log_debug("cache_user_id: already in cache\n");
|
||
release_keyid_list ( keyids );
|
||
xfree ( a );
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
/* now put it into the cache */
|
||
a->next = keyids;
|
||
keyids = a;
|
||
}
|
||
}
|
||
if ( !keyids )
|
||
BUG (); /* No key no fun */
|
||
|
||
|
||
uid = get_primary_uid ( keyblock, &uidlen );
|
||
|
||
if( uid_cache_entries >= MAX_UID_CACHE_ENTRIES ) {
|
||
/* fixme: use another algorithm to free some cache slots */
|
||
r = user_id_db;
|
||
user_id_db = r->next;
|
||
release_keyid_list ( r->keyids );
|
||
xfree(r);
|
||
uid_cache_entries--;
|
||
}
|
||
r = xmalloc( sizeof *r + uidlen-1 );
|
||
r->keyids = keyids;
|
||
r->len = uidlen;
|
||
memcpy(r->name, uid, r->len);
|
||
r->next = user_id_db;
|
||
user_id_db = r;
|
||
uid_cache_entries++;
|
||
}
|
||
|
||
|
||
void
|
||
getkey_disable_caches()
|
||
{
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
{
|
||
pk_cache_entry_t ce, ce2;
|
||
|
||
for( ce = pk_cache; ce; ce = ce2 ) {
|
||
ce2 = ce->next;
|
||
free_public_key( ce->pk );
|
||
xfree( ce );
|
||
}
|
||
pk_cache_disabled=1;
|
||
pk_cache_entries = 0;
|
||
pk_cache = NULL;
|
||
}
|
||
#endif
|
||
/* fixme: disable user id cache ? */
|
||
}
|
||
|
||
|
||
static void
|
||
pk_from_block ( GETKEY_CTX ctx, PKT_public_key *pk, KBNODE keyblock )
|
||
{
|
||
KBNODE a = ctx->found_key ? ctx->found_key : keyblock;
|
||
|
||
assert ( a->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| a->pkt->pkttype == PKT_PUBLIC_SUBKEY );
|
||
|
||
copy_public_key ( pk, a->pkt->pkt.public_key );
|
||
}
|
||
|
||
static void
|
||
sk_from_block ( GETKEY_CTX ctx,
|
||
PKT_secret_key *sk, KBNODE keyblock )
|
||
{
|
||
KBNODE a = ctx->found_key ? ctx->found_key : keyblock;
|
||
|
||
assert ( a->pkt->pkttype == PKT_SECRET_KEY
|
||
|| a->pkt->pkttype == PKT_SECRET_SUBKEY );
|
||
|
||
copy_secret_key( sk, a->pkt->pkt.secret_key);
|
||
}
|
||
|
||
|
||
/****************
|
||
* Get a public key and store it into the allocated pk
|
||
* can be called with PK set to NULL to just read it into some
|
||
* internal structures.
|
||
*/
|
||
int
|
||
get_pubkey( PKT_public_key *pk, u32 *keyid )
|
||
{
|
||
int internal = 0;
|
||
int rc = 0;
|
||
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
if(pk)
|
||
{
|
||
/* Try to get it from the cache. We don't do this when pk is
|
||
NULL as it does not guarantee that the user IDs are
|
||
cached. */
|
||
pk_cache_entry_t ce;
|
||
for( ce = pk_cache; ce; ce = ce->next )
|
||
{
|
||
if( ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1] )
|
||
{
|
||
copy_public_key( pk, ce->pk );
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
/* more init stuff */
|
||
if( !pk ) {
|
||
pk = xmalloc_clear( sizeof *pk );
|
||
internal++;
|
||
}
|
||
|
||
|
||
/* do a lookup */
|
||
{ struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.exact = 1; /* use the key ID exactly as given */
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new (0);
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
ctx.items[0].u.kid[0] = keyid[0];
|
||
ctx.items[0].u.kid[1] = keyid[1];
|
||
ctx.req_algo = pk->req_algo;
|
||
ctx.req_usage = pk->req_usage;
|
||
rc = lookup( &ctx, &kb, 0 );
|
||
if ( !rc ) {
|
||
pk_from_block ( &ctx, pk, kb );
|
||
}
|
||
get_pubkey_end( &ctx );
|
||
release_kbnode ( kb );
|
||
}
|
||
if( !rc )
|
||
goto leave;
|
||
|
||
rc = G10ERR_NO_PUBKEY;
|
||
|
||
leave:
|
||
if( !rc )
|
||
cache_public_key( pk );
|
||
if( internal )
|
||
free_public_key(pk);
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* Get a public key and store it into the allocated pk. This function
|
||
differs from get_pubkey() in that it does not do a check of the key
|
||
to avoid recursion. It should be used only in very certain cases.
|
||
It will only retrieve primary keys. */
|
||
int
|
||
get_pubkey_fast (PKT_public_key *pk, u32 *keyid)
|
||
{
|
||
int rc = 0;
|
||
KEYDB_HANDLE hd;
|
||
KBNODE keyblock;
|
||
u32 pkid[2];
|
||
|
||
assert (pk);
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
{ /* Try to get it from the cache */
|
||
pk_cache_entry_t ce;
|
||
|
||
for (ce = pk_cache; ce; ce = ce->next)
|
||
{
|
||
if (ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1])
|
||
{
|
||
if (pk)
|
||
copy_public_key (pk, ce->pk);
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
hd = keydb_new (0);
|
||
rc = keydb_search_kid (hd, keyid);
|
||
if (rc == -1)
|
||
{
|
||
keydb_release (hd);
|
||
return G10ERR_NO_PUBKEY;
|
||
}
|
||
rc = keydb_get_keyblock (hd, &keyblock);
|
||
keydb_release (hd);
|
||
if (rc)
|
||
{
|
||
log_error ("keydb_get_keyblock failed: %s\n", g10_errstr(rc));
|
||
return G10ERR_NO_PUBKEY;
|
||
}
|
||
|
||
assert ( keyblock->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| keyblock->pkt->pkttype == PKT_PUBLIC_SUBKEY );
|
||
|
||
keyid_from_pk(keyblock->pkt->pkt.public_key,pkid);
|
||
if(keyid[0]==pkid[0] && keyid[1]==pkid[1])
|
||
copy_public_key (pk, keyblock->pkt->pkt.public_key );
|
||
else
|
||
rc=G10ERR_NO_PUBKEY;
|
||
|
||
release_kbnode (keyblock);
|
||
|
||
/* Not caching key here since it won't have all of the fields
|
||
properly set. */
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
KBNODE
|
||
get_pubkeyblock( u32 *keyid )
|
||
{
|
||
struct getkey_ctx_s ctx;
|
||
int rc = 0;
|
||
KBNODE keyblock = NULL;
|
||
|
||
memset( &ctx, 0, sizeof ctx );
|
||
/* no need to set exact here because we want the entire block */
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new (0);
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
ctx.items[0].u.kid[0] = keyid[0];
|
||
ctx.items[0].u.kid[1] = keyid[1];
|
||
rc = lookup( &ctx, &keyblock, 0 );
|
||
get_pubkey_end( &ctx );
|
||
|
||
return rc ? NULL : keyblock;
|
||
}
|
||
|
||
|
||
|
||
|
||
/****************
|
||
* Get a secret key and store it into sk
|
||
*/
|
||
int
|
||
get_seckey( PKT_secret_key *sk, u32 *keyid )
|
||
{
|
||
int rc;
|
||
struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.exact = 1; /* use the key ID exactly as given */
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new (1);
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
ctx.items[0].u.kid[0] = keyid[0];
|
||
ctx.items[0].u.kid[1] = keyid[1];
|
||
ctx.req_algo = sk->req_algo;
|
||
ctx.req_usage = sk->req_usage;
|
||
rc = lookup( &ctx, &kb, 1 );
|
||
if ( !rc ) {
|
||
sk_from_block ( &ctx, sk, kb );
|
||
}
|
||
get_seckey_end( &ctx );
|
||
release_kbnode ( kb );
|
||
|
||
if( !rc ) {
|
||
/* check the secret key (this may prompt for a passprase to
|
||
* unlock the secret key
|
||
*/
|
||
rc = check_secret_key( sk, 0 );
|
||
}
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
/****************
|
||
* Check whether the secret key is available. This is just a fast
|
||
* check and does not tell us whether the secret key is valid. It
|
||
* merely tells other whether there is some secret key.
|
||
* Returns: 0 := key is available
|
||
* G10ERR_NO_SECKEY := not availabe
|
||
*/
|
||
int
|
||
seckey_available( u32 *keyid )
|
||
{
|
||
int rc;
|
||
KEYDB_HANDLE hd = keydb_new (1);
|
||
|
||
rc = keydb_search_kid (hd, keyid);
|
||
if ( rc == -1 )
|
||
rc = G10ERR_NO_SECKEY;
|
||
keydb_release (hd);
|
||
return rc;
|
||
}
|
||
|
||
|
||
/****************
|
||
* Return the type of the user id:
|
||
*
|
||
* Please use the constants KEYDB_SERCH_MODE_xxx
|
||
* 0 = Invalid user ID
|
||
* 1 = exact match
|
||
* 2 = match a substring
|
||
* 3 = match an email address
|
||
* 4 = match a substring of an email address
|
||
* 5 = match an email address, but compare from end
|
||
* 6 = word match mode
|
||
* 10 = it is a short KEYID (don't care about keyid[0])
|
||
* 11 = it is a long KEYID
|
||
* 12 = it is a trustdb index (keyid is looked up)
|
||
* 16 = it is a 16 byte fingerprint
|
||
* 20 = it is a 20 byte fingerprint
|
||
* 21 = Unified fingerprint :fpr:pk_algo:
|
||
* (We don't use pk_algo yet)
|
||
*
|
||
* Rules used:
|
||
* - If the username starts with 8,9,16 or 17 hex-digits (the first one
|
||
* must be in the range 0..9), this is considered a keyid; depending
|
||
* on the length a short or complete one.
|
||
* - If the username starts with 32,33,40 or 41 hex-digits (the first one
|
||
* must be in the range 0..9), this is considered a fingerprint.
|
||
* - If the username starts with a left angle, we assume it is a complete
|
||
* email address and look only at this part.
|
||
* - If the username starts with a colon we assume it is a unified
|
||
* key specfification.
|
||
* - If the username starts with a '.', we assume it is the ending
|
||
* part of an email address
|
||
* - If the username starts with an '@', we assume it is a part of an
|
||
* email address
|
||
* - If the userid start with an '=' an exact compare is done.
|
||
* - If the userid starts with a '*' a case insensitive substring search is
|
||
* done (This is the default).
|
||
* - If the userid starts with a '+' we will compare individual words
|
||
* and a match requires that all the words are in the userid.
|
||
* Words are delimited by white space or "()<>[]{}.@-+_,;/&!"
|
||
* (note that you can't search for these characters). Compare
|
||
* is not case sensitive.
|
||
*/
|
||
|
||
int
|
||
classify_user_id( const char *name, KEYDB_SEARCH_DESC *desc )
|
||
{
|
||
const char *s;
|
||
int hexprefix = 0;
|
||
int hexlength;
|
||
int mode = 0;
|
||
KEYDB_SEARCH_DESC dummy_desc;
|
||
|
||
if (!desc)
|
||
desc = &dummy_desc;
|
||
|
||
/* clear the structure so that the mode field is set to zero unless
|
||
* we set it to the correct value right at the end of this function */
|
||
memset (desc, 0, sizeof *desc);
|
||
|
||
/* skip leading spaces. Fixme: what is with trailing spaces? */
|
||
for(s = name; *s && spacep (s); s++ )
|
||
;
|
||
|
||
switch (*s) {
|
||
case 0: /* empty string is an error */
|
||
return 0;
|
||
|
||
#if 0
|
||
case '.': /* an email address, compare from end */
|
||
mode = KEYDB_SEARCH_MODE_MAILEND;
|
||
s++;
|
||
desc->u.name = s;
|
||
break;
|
||
#endif
|
||
|
||
case '<': /* an email address */
|
||
mode = KEYDB_SEARCH_MODE_MAIL;
|
||
desc->u.name = s;
|
||
break;
|
||
|
||
case '@': /* part of an email address */
|
||
mode = KEYDB_SEARCH_MODE_MAILSUB;
|
||
s++;
|
||
desc->u.name = s;
|
||
break;
|
||
|
||
case '=': /* exact compare */
|
||
mode = KEYDB_SEARCH_MODE_EXACT;
|
||
s++;
|
||
desc->u.name = s;
|
||
break;
|
||
|
||
case '*': /* case insensitive substring search */
|
||
mode = KEYDB_SEARCH_MODE_SUBSTR;
|
||
s++;
|
||
desc->u.name = s;
|
||
break;
|
||
|
||
#if 0
|
||
case '+': /* compare individual words */
|
||
mode = KEYDB_SEARCH_MODE_WORDS;
|
||
s++;
|
||
desc->u.name = s;
|
||
break;
|
||
#endif
|
||
|
||
case '#': /* local user id */
|
||
return 0; /* This is now obsolete and van't not be used anymore*/
|
||
|
||
case ':': /*Unified fingerprint */
|
||
{
|
||
const char *se, *si;
|
||
int i;
|
||
|
||
se = strchr( ++s,':');
|
||
if ( !se )
|
||
return 0;
|
||
for (i=0,si=s; si < se; si++, i++ ) {
|
||
if ( !strchr("01234567890abcdefABCDEF", *si ) )
|
||
return 0; /* invalid digit */
|
||
}
|
||
if (i != 32 && i != 40)
|
||
return 0; /* invalid length of fpr*/
|
||
for (i=0,si=s; si < se; i++, si +=2)
|
||
desc->u.fpr[i] = hextobyte(si);
|
||
for ( ; i < 20; i++)
|
||
desc->u.fpr[i]= 0;
|
||
s = se + 1;
|
||
mode = KEYDB_SEARCH_MODE_FPR;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
if (s[0] == '0' && s[1] == 'x') {
|
||
hexprefix = 1;
|
||
s += 2;
|
||
}
|
||
|
||
hexlength = strspn(s, "0123456789abcdefABCDEF");
|
||
if (hexlength >= 8 && s[hexlength] =='!') {
|
||
desc->exact = 1;
|
||
hexlength++; /* just for the following check */
|
||
}
|
||
|
||
/* check if a hexadecimal number is terminated by EOS or blank */
|
||
if (hexlength && s[hexlength] && !spacep(s+hexlength)) {
|
||
if (hexprefix) /* a "0x" prefix without correct */
|
||
return 0; /* termination is an error */
|
||
else /* The first chars looked like */
|
||
hexlength = 0; /* a hex number, but really were not. */
|
||
}
|
||
|
||
if (desc->exact)
|
||
hexlength--;
|
||
|
||
if (hexlength == 8
|
||
|| (!hexprefix && hexlength == 9 && *s == '0')){
|
||
/* short keyid */
|
||
if (hexlength == 9)
|
||
s++;
|
||
desc->u.kid[0] = 0;
|
||
desc->u.kid[1] = strtoul( s, NULL, 16 );
|
||
mode = KEYDB_SEARCH_MODE_SHORT_KID;
|
||
}
|
||
else if (hexlength == 16
|
||
|| (!hexprefix && hexlength == 17 && *s == '0')) {
|
||
/* complete keyid */
|
||
char buf[9];
|
||
if (hexlength == 17)
|
||
s++;
|
||
mem2str(buf, s, 9 );
|
||
desc->u.kid[0] = strtoul( buf, NULL, 16 );
|
||
desc->u.kid[1] = strtoul( s+8, NULL, 16 );
|
||
mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
}
|
||
else if (hexlength == 32 || (!hexprefix && hexlength == 33
|
||
&& *s == '0')) {
|
||
/* md5 fingerprint */
|
||
int i;
|
||
if (hexlength == 33)
|
||
s++;
|
||
memset(desc->u.fpr+16, 0, 4);
|
||
for (i=0; i < 16; i++, s+=2) {
|
||
int c = hextobyte(s);
|
||
if (c == -1)
|
||
return 0;
|
||
desc->u.fpr[i] = c;
|
||
}
|
||
mode = KEYDB_SEARCH_MODE_FPR16;
|
||
}
|
||
else if (hexlength == 40 || (!hexprefix && hexlength == 41
|
||
&& *s == '0')) {
|
||
/* sha1/rmd160 fingerprint */
|
||
int i;
|
||
if (hexlength == 41)
|
||
s++;
|
||
for (i=0; i < 20; i++, s+=2) {
|
||
int c = hextobyte(s);
|
||
if (c == -1)
|
||
return 0;
|
||
desc->u.fpr[i] = c;
|
||
}
|
||
mode = KEYDB_SEARCH_MODE_FPR20;
|
||
}
|
||
else if (!hexprefix) {
|
||
/* No hex indicator; check for a space separated
|
||
OpenPGP v4 fingerprint like:
|
||
8061 5870 F5BA D690 3336 86D0 F2AD 85AC 1E42 B367
|
||
or
|
||
8061 5870 F5BA D690 3336 86D0 F2AD 85AC 1E42 B367
|
||
*/
|
||
mode = 0;
|
||
hexlength = strspn (s, " 0123456789abcdefABCDEF");
|
||
if (s[hexlength] && s[hexlength] != ' ')
|
||
hexlength = 0; /* Followed by non-space. */
|
||
while (hexlength && s[hexlength-1] == ' ')
|
||
hexlength--; /* Trim trailing spaces. */
|
||
if ((hexlength == 49 || hexlength == 50)
|
||
&& (!s[hexlength] || s[hexlength] == ' ')) {
|
||
int i, c;
|
||
|
||
for (i=0; i < 20; i++) {
|
||
if (i && !(i % 2)) {
|
||
if (*s != ' ')
|
||
break;
|
||
s++;
|
||
/* Skip the double space in the middle but
|
||
don't require it to help copying
|
||
fingerprints from sources which fold
|
||
multiple space to one. */
|
||
if (i == 10 && *s == ' ')
|
||
s++;
|
||
}
|
||
|
||
c = hextobyte(s);
|
||
if (c == -1)
|
||
break;
|
||
desc->u.fpr[i] = c;
|
||
s += 2;
|
||
}
|
||
if (i == 20)
|
||
mode = KEYDB_SEARCH_MODE_FPR20;
|
||
}
|
||
|
||
if (!mode) {
|
||
desc->exact = 0;
|
||
desc->u.name = s;
|
||
mode = KEYDB_SEARCH_MODE_SUBSTR; /* default mode */
|
||
}
|
||
}
|
||
else /* This was a hex number with a prefix */
|
||
return 0; /* and a wrong length */
|
||
}
|
||
|
||
desc->mode = mode;
|
||
return mode;
|
||
}
|
||
|
||
|
||
static int
|
||
skip_unusable(void *dummy, u32 *keyid,PKT_user_id *uid)
|
||
{
|
||
int unusable=0;
|
||
KBNODE keyblock;
|
||
|
||
(void)dummy;
|
||
|
||
keyblock=get_pubkeyblock(keyid);
|
||
if(!keyblock)
|
||
{
|
||
log_error("error checking usability status of %s\n",keystr(keyid));
|
||
goto leave;
|
||
}
|
||
|
||
/* Is the user ID in question revoked/expired? */
|
||
if(uid)
|
||
{
|
||
KBNODE node;
|
||
|
||
for(node=keyblock;node;node=node->next)
|
||
{
|
||
if(node->pkt->pkttype==PKT_USER_ID)
|
||
{
|
||
if(cmp_user_ids(uid,node->pkt->pkt.user_id)==0
|
||
&& (node->pkt->pkt.user_id->is_revoked
|
||
|| node->pkt->pkt.user_id->is_expired))
|
||
{
|
||
unusable=1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if(!unusable)
|
||
unusable=pk_is_disabled(keyblock->pkt->pkt.public_key);
|
||
|
||
leave:
|
||
release_kbnode(keyblock);
|
||
return unusable;
|
||
}
|
||
|
||
/****************
|
||
* Try to get the pubkey by the userid. This function looks for the
|
||
* first pubkey certificate which has the given name in a user_id. if
|
||
* pk/sk has the pubkey algo set, the function will only return a
|
||
* pubkey with that algo. If namelist is NULL, the first key is
|
||
* returned. The caller should provide storage for either the pk or
|
||
* the sk. If ret_kb is not NULL the function will return the
|
||
* keyblock there.
|
||
*/
|
||
|
||
static int
|
||
key_byname( GETKEY_CTX *retctx, STRLIST namelist,
|
||
PKT_public_key *pk, PKT_secret_key *sk,
|
||
int secmode, int include_unusable,
|
||
KBNODE *ret_kb, KEYDB_HANDLE *ret_kdbhd )
|
||
{
|
||
int rc = 0;
|
||
int n;
|
||
STRLIST r;
|
||
GETKEY_CTX ctx;
|
||
KBNODE help_kb = NULL;
|
||
|
||
if( retctx ) {/* reset the returned context in case of error */
|
||
assert (!ret_kdbhd); /* not allowed because the handle is
|
||
stored in the context */
|
||
*retctx = NULL;
|
||
}
|
||
if (ret_kdbhd)
|
||
*ret_kdbhd = NULL;
|
||
|
||
if(!namelist)
|
||
{
|
||
ctx = xmalloc_clear (sizeof *ctx);
|
||
ctx->nitems = 1;
|
||
ctx->items[0].mode=KEYDB_SEARCH_MODE_FIRST;
|
||
if(!include_unusable)
|
||
ctx->items[0].skipfnc=skip_unusable;
|
||
}
|
||
else
|
||
{
|
||
/* build the search context */
|
||
for(n=0, r=namelist; r; r = r->next )
|
||
n++;
|
||
|
||
ctx = xmalloc_clear (sizeof *ctx + (n-1)*sizeof ctx->items );
|
||
ctx->nitems = n;
|
||
|
||
for(n=0, r=namelist; r; r = r->next, n++ )
|
||
{
|
||
classify_user_id (r->d, &ctx->items[n]);
|
||
|
||
if (ctx->items[n].exact)
|
||
ctx->exact = 1;
|
||
if (!ctx->items[n].mode)
|
||
{
|
||
xfree (ctx);
|
||
return G10ERR_INV_USER_ID;
|
||
}
|
||
if(!include_unusable
|
||
&& ctx->items[n].mode!=KEYDB_SEARCH_MODE_SHORT_KID
|
||
&& ctx->items[n].mode!=KEYDB_SEARCH_MODE_LONG_KID
|
||
&& ctx->items[n].mode!=KEYDB_SEARCH_MODE_FPR16
|
||
&& ctx->items[n].mode!=KEYDB_SEARCH_MODE_FPR20
|
||
&& ctx->items[n].mode!=KEYDB_SEARCH_MODE_FPR)
|
||
ctx->items[n].skipfnc=skip_unusable;
|
||
}
|
||
}
|
||
|
||
ctx->kr_handle = keydb_new (secmode);
|
||
if ( !ret_kb )
|
||
ret_kb = &help_kb;
|
||
|
||
if( secmode ) {
|
||
if (sk) {
|
||
ctx->req_algo = sk->req_algo;
|
||
ctx->req_usage = sk->req_usage;
|
||
}
|
||
rc = lookup( ctx, ret_kb, 1 );
|
||
if ( !rc && sk ) {
|
||
sk_from_block ( ctx, sk, *ret_kb );
|
||
}
|
||
}
|
||
else {
|
||
if (pk) {
|
||
ctx->req_algo = pk->req_algo;
|
||
ctx->req_usage = pk->req_usage;
|
||
}
|
||
rc = lookup( ctx, ret_kb, 0 );
|
||
if ( !rc && pk ) {
|
||
pk_from_block ( ctx, pk, *ret_kb );
|
||
}
|
||
}
|
||
|
||
release_kbnode ( help_kb );
|
||
|
||
if (retctx) /* caller wants the context */
|
||
*retctx = ctx;
|
||
else {
|
||
if (ret_kdbhd) {
|
||
*ret_kdbhd = ctx->kr_handle;
|
||
ctx->kr_handle = NULL;
|
||
}
|
||
get_pubkey_end (ctx);
|
||
}
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
|
||
/* Find a public key from NAME and return the keyblock or the key. If
|
||
ret_kdb is not NULL, the KEYDB handle used to locate this keyblock
|
||
is returned and the caller is responsible for closing it. If a key
|
||
was not found and NAME is a valid RFC822 mailbox and PKA retrieval
|
||
has been enabled, we try to import the pkea via the PKA
|
||
mechanism. */
|
||
int
|
||
get_pubkey_byname (PKT_public_key *pk,
|
||
const char *name, KBNODE *ret_keyblock,
|
||
KEYDB_HANDLE *ret_kdbhd, int include_unusable )
|
||
{
|
||
int rc;
|
||
STRLIST namelist = NULL;
|
||
|
||
add_to_strlist( &namelist, name );
|
||
|
||
rc = key_byname( NULL, namelist, pk, NULL, 0,
|
||
include_unusable, ret_keyblock, ret_kdbhd);
|
||
|
||
/* If the requested name resembles a valid mailbox and automatic
|
||
retrieval has been enabled, we try to import the key. */
|
||
|
||
if (rc == G10ERR_NO_PUBKEY && is_valid_mailbox(name))
|
||
{
|
||
struct akl *akl;
|
||
|
||
for(akl=opt.auto_key_locate;akl;akl=akl->next)
|
||
{
|
||
unsigned char *fpr=NULL;
|
||
size_t fpr_len;
|
||
|
||
switch(akl->type)
|
||
{
|
||
case AKL_CERT:
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc=keyserver_import_cert(name,&fpr,&fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
|
||
if(rc==0)
|
||
log_info(_("automatically retrieved `%s' via %s\n"),
|
||
name,"DNS CERT");
|
||
break;
|
||
|
||
case AKL_PKA:
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc=keyserver_import_pka(name,&fpr,&fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
|
||
if(rc==0)
|
||
log_info(_("automatically retrieved `%s' via %s\n"),
|
||
name,"PKA");
|
||
break;
|
||
|
||
case AKL_LDAP:
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc=keyserver_import_ldap(name,&fpr,&fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
|
||
if(rc==0)
|
||
log_info(_("automatically retrieved `%s' via %s\n"),
|
||
name,"LDAP");
|
||
break;
|
||
|
||
case AKL_KEYSERVER:
|
||
/* Strictly speaking, we don't need to only use a valid
|
||
mailbox for the getname search, but it helps cut down
|
||
on the problem of searching for something like "john"
|
||
and getting a whole lot of keys back. */
|
||
if(opt.keyserver)
|
||
{
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc=keyserver_import_name(name,&fpr,&fpr_len,opt.keyserver);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
|
||
if(rc==0)
|
||
log_info(_("automatically retrieved `%s' via %s\n"),
|
||
name,opt.keyserver->uri);
|
||
}
|
||
break;
|
||
|
||
case AKL_SPEC:
|
||
{
|
||
struct keyserver_spec *keyserver;
|
||
|
||
keyserver=keyserver_match(akl->spec);
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc=keyserver_import_name(name,&fpr,&fpr_len,keyserver);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
|
||
if(rc==0)
|
||
log_info(_("automatically retrieved `%s' via %s\n"),
|
||
name,akl->spec->uri);
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Use the fingerprint of the key that we actually fetched.
|
||
This helps prevent problems where the key that we fetched
|
||
doesn't have the same name that we used to fetch it. In
|
||
the case of CERT and PKA, this is an actual security
|
||
requirement as the URL might point to a key put in by an
|
||
attacker. By forcing the use of the fingerprint, we
|
||
won't use the attacker's key here. */
|
||
if(rc==0 && fpr)
|
||
{
|
||
int i;
|
||
char fpr_string[MAX_FINGERPRINT_LEN*2+1];
|
||
|
||
assert(fpr_len<=MAX_FINGERPRINT_LEN);
|
||
|
||
free_strlist(namelist);
|
||
namelist=NULL;
|
||
|
||
for(i=0;i<fpr_len;i++)
|
||
sprintf(fpr_string+2*i,"%02X",fpr[i]);
|
||
|
||
if(opt.verbose)
|
||
log_info("auto-key-locate found fingerprint %s\n",fpr_string);
|
||
|
||
add_to_strlist( &namelist, fpr_string );
|
||
|
||
xfree(fpr);
|
||
}
|
||
|
||
rc = key_byname( NULL, namelist, pk, NULL, 0,
|
||
include_unusable, ret_keyblock, ret_kdbhd);
|
||
if(rc!=G10ERR_NO_PUBKEY)
|
||
break;
|
||
}
|
||
}
|
||
|
||
free_strlist( namelist );
|
||
return rc;
|
||
}
|
||
|
||
int
|
||
get_pubkey_bynames( GETKEY_CTX *retctx, PKT_public_key *pk,
|
||
STRLIST names, KBNODE *ret_keyblock )
|
||
{
|
||
return key_byname( retctx, names, pk, NULL, 0, 1, ret_keyblock, NULL);
|
||
}
|
||
|
||
int
|
||
get_pubkey_next( GETKEY_CTX ctx, PKT_public_key *pk, KBNODE *ret_keyblock )
|
||
{
|
||
int rc;
|
||
|
||
rc = lookup( ctx, ret_keyblock, 0 );
|
||
if ( !rc && pk && ret_keyblock )
|
||
pk_from_block ( ctx, pk, *ret_keyblock );
|
||
|
||
return rc;
|
||
}
|
||
|
||
void
|
||
get_pubkey_end( GETKEY_CTX ctx )
|
||
{
|
||
if( ctx ) {
|
||
memset (&ctx->kbpos, 0, sizeof ctx->kbpos);
|
||
keydb_release (ctx->kr_handle);
|
||
if( !ctx->not_allocated )
|
||
xfree( ctx );
|
||
}
|
||
}
|
||
|
||
|
||
/****************
|
||
* Search for a key with the given fingerprint.
|
||
* FIXME:
|
||
* We should replace this with the _byname function. Thiscsan be done
|
||
* by creating a userID conforming to the unified fingerprint style.
|
||
*/
|
||
int
|
||
get_pubkey_byfprint( PKT_public_key *pk,
|
||
const byte *fprint, size_t fprint_len)
|
||
{
|
||
int rc;
|
||
|
||
if( fprint_len == 20 || fprint_len == 16 ) {
|
||
struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.exact = 1 ;
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new (0);
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = fprint_len==16? KEYDB_SEARCH_MODE_FPR16
|
||
: KEYDB_SEARCH_MODE_FPR20;
|
||
memcpy( ctx.items[0].u.fpr, fprint, fprint_len );
|
||
rc = lookup( &ctx, &kb, 0 );
|
||
if (!rc && pk )
|
||
pk_from_block ( &ctx, pk, kb );
|
||
release_kbnode ( kb );
|
||
get_pubkey_end( &ctx );
|
||
}
|
||
else
|
||
rc = G10ERR_GENERAL; /* Oops */
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* Get a public key and store it into the allocated pk. This function
|
||
differs from get_pubkey_byfprint() in that it does not do a check
|
||
of the key to avoid recursion. It should be used only in very
|
||
certain cases. PK may be NULL to check just for the existance of
|
||
the key. */
|
||
int
|
||
get_pubkey_byfprint_fast (PKT_public_key *pk,
|
||
const byte *fprint, size_t fprint_len)
|
||
{
|
||
int rc = 0;
|
||
KEYDB_HANDLE hd;
|
||
KBNODE keyblock;
|
||
byte fprbuf[MAX_FINGERPRINT_LEN];
|
||
int i;
|
||
|
||
for (i=0; i < MAX_FINGERPRINT_LEN && i < fprint_len; i++)
|
||
fprbuf[i] = fprint[i];
|
||
while (i < MAX_FINGERPRINT_LEN)
|
||
fprbuf[i++] = 0;
|
||
|
||
hd = keydb_new (0);
|
||
rc = keydb_search_fpr (hd, fprbuf);
|
||
if (rc == -1)
|
||
{
|
||
keydb_release (hd);
|
||
return G10ERR_NO_PUBKEY;
|
||
}
|
||
rc = keydb_get_keyblock (hd, &keyblock);
|
||
keydb_release (hd);
|
||
if (rc)
|
||
{
|
||
log_error ("keydb_get_keyblock failed: %s\n", g10_errstr(rc));
|
||
return G10ERR_NO_PUBKEY;
|
||
}
|
||
|
||
assert ( keyblock->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| keyblock->pkt->pkttype == PKT_PUBLIC_SUBKEY );
|
||
if (pk)
|
||
copy_public_key (pk, keyblock->pkt->pkt.public_key );
|
||
release_kbnode (keyblock);
|
||
|
||
/* Not caching key here since it won't have all of the fields
|
||
properly set. */
|
||
|
||
return 0;
|
||
}
|
||
|
||
/****************
|
||
* Search for a key with the given fingerprint and return the
|
||
* complete keyblock which may have more than only this key.
|
||
*/
|
||
int
|
||
get_keyblock_byfprint( KBNODE *ret_keyblock, const byte *fprint,
|
||
size_t fprint_len )
|
||
{
|
||
int rc;
|
||
|
||
if( fprint_len == 20 || fprint_len == 16 ) {
|
||
struct getkey_ctx_s ctx;
|
||
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new (0);
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = fprint_len==16? KEYDB_SEARCH_MODE_FPR16
|
||
: KEYDB_SEARCH_MODE_FPR20;
|
||
memcpy( ctx.items[0].u.fpr, fprint, fprint_len );
|
||
rc = lookup( &ctx, ret_keyblock, 0 );
|
||
get_pubkey_end( &ctx );
|
||
}
|
||
else
|
||
rc = G10ERR_GENERAL; /* Oops */
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
/****************
|
||
* Get a secret key by name and store it into sk
|
||
* If NAME is NULL use the default key
|
||
*/
|
||
static int
|
||
get_seckey_byname2( GETKEY_CTX *retctx,
|
||
PKT_secret_key *sk, const char *name, int unprotect,
|
||
KBNODE *retblock )
|
||
{
|
||
STRLIST namelist = NULL;
|
||
int rc,include_unusable=1;
|
||
|
||
/* If we have no name, try to use the default secret key. If we
|
||
have no default, we'll use the first usable one. */
|
||
|
||
if( !name && opt.def_secret_key && *opt.def_secret_key )
|
||
add_to_strlist( &namelist, opt.def_secret_key );
|
||
else if(name)
|
||
add_to_strlist( &namelist, name );
|
||
else
|
||
include_unusable=0;
|
||
|
||
rc = key_byname( retctx, namelist, NULL, sk, 1, include_unusable,
|
||
retblock, NULL );
|
||
|
||
free_strlist( namelist );
|
||
|
||
if( !rc && unprotect )
|
||
rc = check_secret_key( sk, 0 );
|
||
|
||
return rc;
|
||
}
|
||
|
||
int
|
||
get_seckey_byname( PKT_secret_key *sk, const char *name, int unlock )
|
||
{
|
||
return get_seckey_byname2 ( NULL, sk, name, unlock, NULL );
|
||
}
|
||
|
||
|
||
int
|
||
get_seckey_bynames( GETKEY_CTX *retctx, PKT_secret_key *sk,
|
||
STRLIST names, KBNODE *ret_keyblock )
|
||
{
|
||
return key_byname( retctx, names, NULL, sk, 1, 1, ret_keyblock, NULL );
|
||
}
|
||
|
||
|
||
int
|
||
get_seckey_next( GETKEY_CTX ctx, PKT_secret_key *sk, KBNODE *ret_keyblock )
|
||
{
|
||
int rc;
|
||
|
||
rc = lookup( ctx, ret_keyblock, 1 );
|
||
if ( !rc && sk && ret_keyblock )
|
||
sk_from_block ( ctx, sk, *ret_keyblock );
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
void
|
||
get_seckey_end( GETKEY_CTX ctx )
|
||
{
|
||
get_pubkey_end( ctx );
|
||
}
|
||
|
||
|
||
/****************
|
||
* Search for a key with the given fingerprint.
|
||
* FIXME:
|
||
* We should replace this with the _byname function. Thiscsan be done
|
||
* by creating a userID conforming to the unified fingerprint style.
|
||
*/
|
||
int
|
||
get_seckey_byfprint( PKT_secret_key *sk,
|
||
const byte *fprint, size_t fprint_len)
|
||
{
|
||
int rc;
|
||
|
||
if( fprint_len == 20 || fprint_len == 16 ) {
|
||
struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
|
||
memset( &ctx, 0, sizeof ctx );
|
||
ctx.exact = 1 ;
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new (1);
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = fprint_len==16? KEYDB_SEARCH_MODE_FPR16
|
||
: KEYDB_SEARCH_MODE_FPR20;
|
||
memcpy( ctx.items[0].u.fpr, fprint, fprint_len );
|
||
rc = lookup( &ctx, &kb, 1 );
|
||
if (!rc && sk )
|
||
sk_from_block ( &ctx, sk, kb );
|
||
release_kbnode ( kb );
|
||
get_seckey_end( &ctx );
|
||
}
|
||
else
|
||
rc = G10ERR_GENERAL; /* Oops */
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* Search for a secret key with the given fingerprint and return the
|
||
complete keyblock which may have more than only this key. */
|
||
int
|
||
get_seckeyblock_byfprint (KBNODE *ret_keyblock, const byte *fprint,
|
||
size_t fprint_len )
|
||
{
|
||
int rc;
|
||
struct getkey_ctx_s ctx;
|
||
|
||
if (fprint_len != 20 && fprint_len == 16)
|
||
return G10ERR_GENERAL; /* Oops */
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new (1);
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = (fprint_len==16
|
||
? KEYDB_SEARCH_MODE_FPR16
|
||
: KEYDB_SEARCH_MODE_FPR20);
|
||
memcpy (ctx.items[0].u.fpr, fprint, fprint_len);
|
||
rc = lookup (&ctx, ret_keyblock, 1);
|
||
get_seckey_end (&ctx);
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
|
||
/************************************************
|
||
************* Merging stuff ********************
|
||
************************************************/
|
||
|
||
/****************
|
||
* merge all selfsignatures with the keys.
|
||
* FIXME: replace this at least for the public key parts
|
||
* by merge_selfsigs.
|
||
* It is still used in keyedit.c and
|
||
* at 2 or 3 other places - check whether it is really needed.
|
||
* It might be needed by the key edit and import stuff because
|
||
* the keylock is changed.
|
||
*/
|
||
void
|
||
merge_keys_and_selfsig( KBNODE keyblock )
|
||
{
|
||
PKT_public_key *pk = NULL;
|
||
PKT_secret_key *sk = NULL;
|
||
PKT_signature *sig;
|
||
KBNODE k;
|
||
u32 kid[2] = { 0, 0 };
|
||
u32 sigdate = 0;
|
||
|
||
if (keyblock && keyblock->pkt->pkttype == PKT_PUBLIC_KEY ) {
|
||
/* divert to our new function */
|
||
merge_selfsigs (keyblock);
|
||
return;
|
||
}
|
||
/* still need the old one because the new one can't handle secret keys */
|
||
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
pk = k->pkt->pkt.public_key; sk = NULL;
|
||
if( pk->version < 4 )
|
||
pk = NULL; /* not needed for old keys */
|
||
else if( k->pkt->pkttype == PKT_PUBLIC_KEY )
|
||
keyid_from_pk( pk, kid );
|
||
else if( !pk->expiredate ) { /* and subkey */
|
||
/* insert the expiration date here */
|
||
/*FIXME!!! pk->expiredate = subkeys_expiretime( k, kid );*/
|
||
}
|
||
sigdate = 0;
|
||
}
|
||
else if( k->pkt->pkttype == PKT_SECRET_KEY
|
||
|| k->pkt->pkttype == PKT_SECRET_SUBKEY ) {
|
||
pk = NULL; sk = k->pkt->pkt.secret_key;
|
||
if( sk->version < 4 )
|
||
sk = NULL;
|
||
else if( k->pkt->pkttype == PKT_SECRET_KEY )
|
||
keyid_from_sk( sk, kid );
|
||
sigdate = 0;
|
||
}
|
||
else if( (pk || sk ) && k->pkt->pkttype == PKT_SIGNATURE
|
||
&& (sig=k->pkt->pkt.signature)->sig_class >= 0x10
|
||
&& sig->sig_class <= 0x30 && sig->version > 3
|
||
&& !(sig->sig_class == 0x18 || sig->sig_class == 0x28)
|
||
&& sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1] ) {
|
||
/* okay this is a self-signature which can be used.
|
||
* This is not used for subkey binding signature, becuase this
|
||
* is done above.
|
||
* FIXME: We should only use this if the signature is valid
|
||
* but this is time consuming - we must provide another
|
||
* way to handle this
|
||
*/
|
||
const byte *p;
|
||
u32 ed;
|
||
|
||
p = parse_sig_subpkt( sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL );
|
||
if( pk ) {
|
||
ed = p? pk->timestamp + buffer_to_u32(p):0;
|
||
if( sig->timestamp > sigdate ) {
|
||
pk->expiredate = ed;
|
||
sigdate = sig->timestamp;
|
||
}
|
||
}
|
||
else {
|
||
ed = p? sk->timestamp + buffer_to_u32(p):0;
|
||
if( sig->timestamp > sigdate ) {
|
||
sk->expiredate = ed;
|
||
sigdate = sig->timestamp;
|
||
}
|
||
}
|
||
}
|
||
|
||
if(pk && (pk->expiredate==0 ||
|
||
(pk->max_expiredate && pk->expiredate>pk->max_expiredate)))
|
||
pk->expiredate=pk->max_expiredate;
|
||
|
||
if(sk && (sk->expiredate==0 ||
|
||
(sk->max_expiredate && sk->expiredate>sk->max_expiredate)))
|
||
sk->expiredate=sk->max_expiredate;
|
||
}
|
||
}
|
||
|
||
static int
|
||
parse_key_usage(PKT_signature *sig)
|
||
{
|
||
int key_usage=0;
|
||
const byte *p;
|
||
size_t n;
|
||
byte flags;
|
||
|
||
p=parse_sig_subpkt(sig->hashed,SIGSUBPKT_KEY_FLAGS,&n);
|
||
if(p && n)
|
||
{
|
||
/* first octet of the keyflags */
|
||
flags=*p;
|
||
|
||
if(flags & 1)
|
||
{
|
||
key_usage |= PUBKEY_USAGE_CERT;
|
||
flags&=~1;
|
||
}
|
||
|
||
if(flags & 2)
|
||
{
|
||
key_usage |= PUBKEY_USAGE_SIG;
|
||
flags&=~2;
|
||
}
|
||
|
||
/* We do not distinguish between encrypting communications and
|
||
encrypting storage. */
|
||
if(flags & (0x04|0x08))
|
||
{
|
||
key_usage |= PUBKEY_USAGE_ENC;
|
||
flags&=~(0x04|0x08);
|
||
}
|
||
|
||
if(flags & 0x20)
|
||
{
|
||
key_usage |= PUBKEY_USAGE_AUTH;
|
||
flags&=~0x20;
|
||
}
|
||
|
||
if(flags)
|
||
key_usage |= PUBKEY_USAGE_UNKNOWN;
|
||
|
||
if (!key_usage)
|
||
key_usage |= PUBKEY_USAGE_NONE;
|
||
}
|
||
else if (p) /* Key flags of length zero. */
|
||
key_usage |= PUBKEY_USAGE_NONE;
|
||
|
||
/* We set PUBKEY_USAGE_UNKNOWN to indicate that this key has a
|
||
capability that we do not handle. This serves to distinguish
|
||
between a zero key usage which we handle as the default
|
||
capabilities for that algorithm, and a usage that we do not
|
||
handle. Likewise we use PUBKEY_USAGE_NONE to indicate that
|
||
key_flags have been given but they do not specify any usage. */
|
||
|
||
return key_usage;
|
||
}
|
||
|
||
/*
|
||
* Apply information from SIGNODE (which is the valid self-signature
|
||
* associated with that UID) to the UIDNODE:
|
||
* - wether the UID has been revoked
|
||
* - assumed creation date of the UID
|
||
* - temporary store the keyflags here
|
||
* - temporary store the key expiration time here
|
||
* - mark whether the primary user ID flag hat been set.
|
||
* - store the preferences
|
||
*/
|
||
static void
|
||
fixup_uidnode ( KBNODE uidnode, KBNODE signode, u32 keycreated )
|
||
{
|
||
PKT_user_id *uid = uidnode->pkt->pkt.user_id;
|
||
PKT_signature *sig = signode->pkt->pkt.signature;
|
||
const byte *p, *sym, *hash, *zip;
|
||
size_t n, nsym, nhash, nzip;
|
||
|
||
sig->flags.chosen_selfsig = 1; /* we chose this one */
|
||
uid->created = 0; /* not created == invalid */
|
||
if ( IS_UID_REV ( sig ) )
|
||
{
|
||
uid->is_revoked = 1;
|
||
return; /* has been revoked */
|
||
}
|
||
else
|
||
uid->is_revoked=0;
|
||
|
||
uid->expiredate = sig->expiredate;
|
||
|
||
if(sig->flags.expired)
|
||
{
|
||
uid->is_expired = 1;
|
||
return; /* has expired */
|
||
}
|
||
else
|
||
uid->is_expired=0;
|
||
|
||
uid->created = sig->timestamp; /* this one is okay */
|
||
uid->selfsigversion = sig->version;
|
||
/* If we got this far, it's not expired :) */
|
||
uid->is_expired = 0;
|
||
|
||
/* store the key flags in the helper variable for later processing */
|
||
uid->help_key_usage=parse_key_usage(sig);
|
||
|
||
/* ditto for the key expiration */
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if( p && buffer_to_u32(p) )
|
||
uid->help_key_expire = keycreated + buffer_to_u32(p);
|
||
else
|
||
uid->help_key_expire = 0;
|
||
|
||
/* Set the primary user ID flag - we will later wipe out some
|
||
* of them to only have one in our keyblock */
|
||
uid->is_primary = 0;
|
||
p = parse_sig_subpkt ( sig->hashed, SIGSUBPKT_PRIMARY_UID, NULL );
|
||
if ( p && *p )
|
||
uid->is_primary = 2;
|
||
/* We could also query this from the unhashed area if it is not in
|
||
* the hased area and then later try to decide which is the better
|
||
* there should be no security problem with this.
|
||
* For now we only look at the hashed one.
|
||
*/
|
||
|
||
/* Now build the preferences list. These must come from the
|
||
hashed section so nobody can modify the ciphers a key is
|
||
willing to accept. */
|
||
p = parse_sig_subpkt ( sig->hashed, SIGSUBPKT_PREF_SYM, &n );
|
||
sym = p; nsym = p?n:0;
|
||
p = parse_sig_subpkt ( sig->hashed, SIGSUBPKT_PREF_HASH, &n );
|
||
hash = p; nhash = p?n:0;
|
||
p = parse_sig_subpkt ( sig->hashed, SIGSUBPKT_PREF_COMPR, &n );
|
||
zip = p; nzip = p?n:0;
|
||
if (uid->prefs)
|
||
xfree (uid->prefs);
|
||
n = nsym + nhash + nzip;
|
||
if (!n)
|
||
uid->prefs = NULL;
|
||
else {
|
||
uid->prefs = xmalloc (sizeof (*uid->prefs) * (n+1));
|
||
n = 0;
|
||
for (; nsym; nsym--, n++) {
|
||
uid->prefs[n].type = PREFTYPE_SYM;
|
||
uid->prefs[n].value = *sym++;
|
||
}
|
||
for (; nhash; nhash--, n++) {
|
||
uid->prefs[n].type = PREFTYPE_HASH;
|
||
uid->prefs[n].value = *hash++;
|
||
}
|
||
for (; nzip; nzip--, n++) {
|
||
uid->prefs[n].type = PREFTYPE_ZIP;
|
||
uid->prefs[n].value = *zip++;
|
||
}
|
||
uid->prefs[n].type = PREFTYPE_NONE; /* end of list marker */
|
||
uid->prefs[n].value = 0;
|
||
}
|
||
|
||
/* see whether we have the MDC feature */
|
||
uid->flags.mdc = 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES, &n);
|
||
if (p && n && (p[0] & 0x01))
|
||
uid->flags.mdc = 1;
|
||
|
||
/* and the keyserver modify flag */
|
||
uid->flags.ks_modify = 1;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KS_FLAGS, &n);
|
||
if (p && n && (p[0] & 0x80))
|
||
uid->flags.ks_modify = 0;
|
||
}
|
||
|
||
static void
|
||
sig_to_revoke_info(PKT_signature *sig,struct revoke_info *rinfo)
|
||
{
|
||
rinfo->date = sig->timestamp;
|
||
rinfo->algo = sig->pubkey_algo;
|
||
rinfo->keyid[0] = sig->keyid[0];
|
||
rinfo->keyid[1] = sig->keyid[1];
|
||
}
|
||
|
||
static void
|
||
merge_selfsigs_main(KBNODE keyblock, int *r_revoked, struct revoke_info *rinfo)
|
||
{
|
||
PKT_public_key *pk = NULL;
|
||
KBNODE k;
|
||
u32 kid[2];
|
||
u32 sigdate, uiddate, uiddate2;
|
||
KBNODE signode, uidnode, uidnode2;
|
||
u32 curtime = make_timestamp ();
|
||
unsigned int key_usage = 0;
|
||
u32 keytimestamp = 0;
|
||
u32 key_expire = 0;
|
||
int key_expire_seen = 0;
|
||
byte sigversion = 0;
|
||
|
||
*r_revoked = 0;
|
||
memset(rinfo,0,sizeof(*rinfo));
|
||
|
||
if ( keyblock->pkt->pkttype != PKT_PUBLIC_KEY )
|
||
BUG ();
|
||
pk = keyblock->pkt->pkt.public_key;
|
||
keytimestamp = pk->timestamp;
|
||
|
||
keyid_from_pk( pk, kid );
|
||
pk->main_keyid[0] = kid[0];
|
||
pk->main_keyid[1] = kid[1];
|
||
|
||
if ( pk->version < 4 ) {
|
||
/* before v4 the key packet itself contains the expiration
|
||
* date and there was no way to change it, so we start with
|
||
* the one from the key packet */
|
||
key_expire = pk->max_expiredate;
|
||
key_expire_seen = 1;
|
||
}
|
||
|
||
/* first pass: find the latest direct key self-signature.
|
||
* We assume that the newest one overrides all others
|
||
*/
|
||
|
||
/* In case this key was already merged */
|
||
xfree(pk->revkey);
|
||
pk->revkey=NULL;
|
||
pk->numrevkeys=0;
|
||
|
||
signode = NULL;
|
||
sigdate = 0; /* helper to find the latest signature */
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_USER_ID; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_SIGNATURE ) {
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
if ( sig->keyid[0] == kid[0] && sig->keyid[1]==kid[1] ) {
|
||
if ( check_key_signature( keyblock, k, NULL ) )
|
||
; /* signature did not verify */
|
||
else if ( IS_KEY_REV (sig) ){
|
||
/* key has been revoked - there is no way to override
|
||
* such a revocation, so we theoretically can stop now.
|
||
* We should not cope with expiration times for revocations
|
||
* here because we have to assume that an attacker can
|
||
* generate all kinds of signatures. However due to the
|
||
* fact that the key has been revoked it does not harm
|
||
* either and by continuing we gather some more info on
|
||
* that key.
|
||
*/
|
||
*r_revoked = 1;
|
||
sig_to_revoke_info(sig,rinfo);
|
||
}
|
||
else if ( IS_KEY_SIG (sig) ) {
|
||
/* Add any revocation keys onto the pk. This is
|
||
particularly interesting since we normally only
|
||
get data from the most recent 1F signature, but
|
||
you need multiple 1F sigs to properly handle
|
||
revocation keys (PGP does it this way, and a
|
||
revocation key could be sensitive and hence in a
|
||
different signature). */
|
||
if(sig->revkey) {
|
||
int i;
|
||
|
||
pk->revkey=
|
||
xrealloc(pk->revkey,sizeof(struct revocation_key)*
|
||
(pk->numrevkeys+sig->numrevkeys));
|
||
|
||
for(i=0;i<sig->numrevkeys;i++)
|
||
memcpy(&pk->revkey[pk->numrevkeys++],
|
||
sig->revkey[i],
|
||
sizeof(struct revocation_key));
|
||
}
|
||
|
||
if( sig->timestamp >= sigdate ) {
|
||
if(sig->flags.expired)
|
||
; /* signature has expired - ignore it */
|
||
else {
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
if( sig->version > sigversion )
|
||
sigversion = sig->version;
|
||
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove dupes from the revocation keys */
|
||
|
||
if(pk->revkey)
|
||
{
|
||
int i,j,x,changed=0;
|
||
|
||
for(i=0;i<pk->numrevkeys;i++)
|
||
{
|
||
for(j=i+1;j<pk->numrevkeys;j++)
|
||
{
|
||
if(memcmp(&pk->revkey[i],&pk->revkey[j],
|
||
sizeof(struct revocation_key))==0)
|
||
{
|
||
/* remove j */
|
||
|
||
for(x=j;x<pk->numrevkeys-1;x++)
|
||
pk->revkey[x]=pk->revkey[x+1];
|
||
|
||
pk->numrevkeys--;
|
||
j--;
|
||
changed=1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if(changed)
|
||
pk->revkey=xrealloc(pk->revkey,
|
||
pk->numrevkeys*sizeof(struct revocation_key));
|
||
}
|
||
|
||
if ( signode )
|
||
{
|
||
/* some information from a direct key signature take precedence
|
||
* over the same information given in UID sigs.
|
||
*/
|
||
PKT_signature *sig = signode->pkt->pkt.signature;
|
||
const byte *p;
|
||
|
||
key_usage=parse_key_usage(sig);
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if( p && buffer_to_u32(p) )
|
||
{
|
||
key_expire = keytimestamp + buffer_to_u32(p);
|
||
key_expire_seen = 1;
|
||
}
|
||
|
||
/* mark that key as valid: one direct key signature should
|
||
* render a key as valid */
|
||
pk->is_valid = 1;
|
||
}
|
||
|
||
/* pass 1.5: look for key revocation signatures that were not made
|
||
by the key (i.e. did a revocation key issue a revocation for
|
||
us?). Only bother to do this if there is a revocation key in
|
||
the first place and we're not revoked already. */
|
||
|
||
if(!*r_revoked && pk->revkey)
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_USER_ID; k = k->next )
|
||
{
|
||
if ( k->pkt->pkttype == PKT_SIGNATURE )
|
||
{
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
|
||
if(IS_KEY_REV(sig) &&
|
||
(sig->keyid[0]!=kid[0] || sig->keyid[1]!=kid[1]))
|
||
{
|
||
int rc=check_revocation_keys(pk,sig);
|
||
if(rc==0)
|
||
{
|
||
*r_revoked=2;
|
||
sig_to_revoke_info(sig,rinfo);
|
||
/* don't continue checking since we can't be any
|
||
more revoked than this */
|
||
break;
|
||
}
|
||
else if(rc==G10ERR_NO_PUBKEY)
|
||
pk->maybe_revoked=1;
|
||
|
||
/* A failure here means the sig did not verify, was
|
||
not issued by a revocation key, or a revocation
|
||
key loop was broken. If a revocation key isn't
|
||
findable, however, the key might be revoked and
|
||
we don't know it. */
|
||
|
||
/* TODO: In the future handle subkey and cert
|
||
revocations? PGP doesn't, but it's in 2440. */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* second pass: look at the self-signature of all user IDs */
|
||
signode = uidnode = NULL;
|
||
sigdate = 0; /* helper to find the latest signature in one user ID */
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID ) {
|
||
if ( uidnode && signode )
|
||
{
|
||
fixup_uidnode ( uidnode, signode, keytimestamp );
|
||
pk->is_valid=1;
|
||
}
|
||
uidnode = k;
|
||
signode = NULL;
|
||
sigdate = 0;
|
||
}
|
||
else if ( k->pkt->pkttype == PKT_SIGNATURE && uidnode ) {
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
if ( sig->keyid[0] == kid[0] && sig->keyid[1]==kid[1] ) {
|
||
if ( check_key_signature( keyblock, k, NULL ) )
|
||
; /* signature did not verify */
|
||
else if ( (IS_UID_SIG (sig) || IS_UID_REV (sig))
|
||
&& sig->timestamp >= sigdate )
|
||
{
|
||
/* Note: we allow to invalidate cert revocations
|
||
* by a newer signature. An attacker can't use this
|
||
* because a key should be revoced with a key revocation.
|
||
* The reason why we have to allow for that is that at
|
||
* one time an email address may become invalid but later
|
||
* the same email address may become valid again (hired,
|
||
* fired, hired again).
|
||
*/
|
||
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
signode->pkt->pkt.signature->flags.chosen_selfsig=0;
|
||
if( sig->version > sigversion )
|
||
sigversion = sig->version;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if ( uidnode && signode ) {
|
||
fixup_uidnode ( uidnode, signode, keytimestamp );
|
||
pk->is_valid = 1;
|
||
}
|
||
|
||
/* If the key isn't valid yet, and we have
|
||
--allow-non-selfsigned-uid set, then force it valid. */
|
||
if(!pk->is_valid && opt.allow_non_selfsigned_uid)
|
||
{
|
||
if(opt.verbose)
|
||
log_info(_("Invalid key %s made valid by"
|
||
" --allow-non-selfsigned-uid\n"),keystr_from_pk(pk));
|
||
pk->is_valid = 1;
|
||
}
|
||
|
||
/* The key STILL isn't valid, so try and find an ultimately
|
||
trusted signature. */
|
||
if(!pk->is_valid)
|
||
{
|
||
uidnode=NULL;
|
||
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k=k->next)
|
||
{
|
||
if ( k->pkt->pkttype == PKT_USER_ID )
|
||
uidnode = k;
|
||
else if ( k->pkt->pkttype == PKT_SIGNATURE && uidnode )
|
||
{
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
|
||
if(sig->keyid[0] != kid[0] || sig->keyid[1]!=kid[1])
|
||
{
|
||
PKT_public_key *ultimate_pk;
|
||
|
||
ultimate_pk=xmalloc_clear(sizeof(*ultimate_pk));
|
||
|
||
/* We don't want to use the full get_pubkey to
|
||
avoid infinite recursion in certain cases.
|
||
There is no reason to check that an ultimately
|
||
trusted key is still valid - if it has been
|
||
revoked or the user should also renmove the
|
||
ultimate trust flag. */
|
||
if(get_pubkey_fast(ultimate_pk,sig->keyid)==0
|
||
&& check_key_signature2(keyblock,k,ultimate_pk,
|
||
NULL,NULL,NULL,NULL)==0
|
||
&& get_ownertrust(ultimate_pk)==TRUST_ULTIMATE)
|
||
{
|
||
free_public_key(ultimate_pk);
|
||
pk->is_valid=1;
|
||
break;
|
||
}
|
||
|
||
free_public_key(ultimate_pk);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Record the highest selfsig version so we know if this is a v3
|
||
key through and through, or a v3 key with a v4 selfsig
|
||
somewhere. This is useful in a few places to know if the key
|
||
must be treated as PGP2-style or OpenPGP-style. Note that a
|
||
selfsig revocation with a higher version number will also raise
|
||
this value. This is okay since such a revocation must be
|
||
issued by the user (i.e. it cannot be issued by someone else to
|
||
modify the key behavior.) */
|
||
|
||
pk->selfsigversion=sigversion;
|
||
|
||
/* Now that we had a look at all user IDs we can now get some information
|
||
* from those user IDs.
|
||
*/
|
||
|
||
if ( !key_usage ) {
|
||
/* find the latest user ID with key flags set */
|
||
uiddate = 0; /* helper to find the latest user ID */
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID ) {
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if ( uid->help_key_usage && uid->created > uiddate ) {
|
||
key_usage = uid->help_key_usage;
|
||
uiddate = uid->created;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if ( !key_usage ) { /* no key flags at all: get it from the algo */
|
||
key_usage = openpgp_pk_algo_usage ( pk->pubkey_algo );
|
||
}
|
||
else { /* check that the usage matches the usage as given by the algo */
|
||
int x = openpgp_pk_algo_usage ( pk->pubkey_algo );
|
||
if ( x ) /* mask it down to the actual allowed usage */
|
||
key_usage &= x;
|
||
}
|
||
|
||
/* Whatever happens, it's a primary key, so it can certify. */
|
||
pk->pubkey_usage = key_usage|PUBKEY_USAGE_CERT;
|
||
|
||
if ( !key_expire_seen ) {
|
||
/* find the latest valid user ID with a key expiration set
|
||
* Note, that this may be a different one from the above because
|
||
* some user IDs may have no expiration date set */
|
||
uiddate = 0;
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID ) {
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if ( uid->help_key_expire && uid->created > uiddate ) {
|
||
key_expire = uid->help_key_expire;
|
||
uiddate = uid->created;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Currently only v3 keys have a maximum expiration date, but I'll
|
||
bet v5 keys get this feature again. */
|
||
if(key_expire==0 || (pk->max_expiredate && key_expire>pk->max_expiredate))
|
||
key_expire=pk->max_expiredate;
|
||
|
||
pk->has_expired = key_expire >= curtime? 0 : key_expire;
|
||
pk->expiredate = key_expire;
|
||
|
||
/* Fixme: we should see how to get rid of the expiretime fields but
|
||
* this needs changes at other places too. */
|
||
|
||
/* and now find the real primary user ID and delete all others */
|
||
uiddate = uiddate2 = 0;
|
||
uidnode = uidnode2 = NULL;
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID &&
|
||
!k->pkt->pkt.user_id->attrib_data) {
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if (uid->is_primary)
|
||
{
|
||
if(uid->created > uiddate)
|
||
{
|
||
uiddate = uid->created;
|
||
uidnode = k;
|
||
}
|
||
else if(uid->created==uiddate && uidnode)
|
||
{
|
||
/* The dates are equal, so we need to do a
|
||
different (and arbitrary) comparison. This
|
||
should rarely, if ever, happen. It's good to
|
||
try and guarantee that two different GnuPG
|
||
users with two different keyrings at least pick
|
||
the same primary. */
|
||
if(cmp_user_ids(uid,uidnode->pkt->pkt.user_id)>0)
|
||
uidnode=k;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if(uid->created > uiddate2)
|
||
{
|
||
uiddate2 = uid->created;
|
||
uidnode2 = k;
|
||
}
|
||
else if(uid->created==uiddate2 && uidnode2)
|
||
{
|
||
if(cmp_user_ids(uid,uidnode2->pkt->pkt.user_id)>0)
|
||
uidnode2=k;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if ( uidnode ) {
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_USER_ID &&
|
||
!k->pkt->pkt.user_id->attrib_data) {
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if ( k != uidnode )
|
||
uid->is_primary = 0;
|
||
}
|
||
}
|
||
}
|
||
else if( uidnode2 ) {
|
||
/* none is flagged primary - use the latest user ID we have,
|
||
and disambiguate with the arbitrary packet comparison. */
|
||
uidnode2->pkt->pkt.user_id->is_primary = 1;
|
||
}
|
||
else
|
||
{
|
||
/* None of our uids were self-signed, so pick the one that
|
||
sorts first to be the primary. This is the best we can do
|
||
here since there are no self sigs to date the uids. */
|
||
|
||
uidnode = NULL;
|
||
|
||
for(k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next )
|
||
{
|
||
if(k->pkt->pkttype==PKT_USER_ID
|
||
&& !k->pkt->pkt.user_id->attrib_data)
|
||
{
|
||
if(!uidnode)
|
||
{
|
||
uidnode=k;
|
||
uidnode->pkt->pkt.user_id->is_primary=1;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
if(cmp_user_ids(k->pkt->pkt.user_id,
|
||
uidnode->pkt->pkt.user_id)>0)
|
||
{
|
||
uidnode->pkt->pkt.user_id->is_primary=0;
|
||
uidnode=k;
|
||
uidnode->pkt->pkt.user_id->is_primary=1;
|
||
}
|
||
else
|
||
k->pkt->pkt.user_id->is_primary=0; /* just to be
|
||
safe */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Convert a buffer to a signature. Useful for 0x19 embedded sigs.
|
||
Caller must free the signature when they are done. */
|
||
static PKT_signature *
|
||
buf_to_sig(const byte *buf,size_t len)
|
||
{
|
||
PKT_signature *sig=xmalloc_clear(sizeof(PKT_signature));
|
||
IOBUF iobuf=iobuf_temp_with_content(buf,len);
|
||
int save_mode=set_packet_list_mode(0);
|
||
|
||
if(parse_signature(iobuf,PKT_SIGNATURE,len,sig)!=0)
|
||
{
|
||
xfree(sig);
|
||
sig=NULL;
|
||
}
|
||
|
||
set_packet_list_mode(save_mode);
|
||
iobuf_close(iobuf);
|
||
|
||
return sig;
|
||
}
|
||
|
||
static void
|
||
merge_selfsigs_subkey( KBNODE keyblock, KBNODE subnode )
|
||
{
|
||
PKT_public_key *mainpk = NULL, *subpk = NULL;
|
||
PKT_signature *sig;
|
||
KBNODE k;
|
||
u32 mainkid[2];
|
||
u32 sigdate = 0;
|
||
KBNODE signode;
|
||
u32 curtime = make_timestamp ();
|
||
unsigned int key_usage = 0;
|
||
u32 keytimestamp = 0;
|
||
u32 key_expire = 0;
|
||
const byte *p;
|
||
|
||
if ( subnode->pkt->pkttype != PKT_PUBLIC_SUBKEY )
|
||
BUG ();
|
||
mainpk = keyblock->pkt->pkt.public_key;
|
||
if ( mainpk->version < 4 )
|
||
return; /* (actually this should never happen) */
|
||
keyid_from_pk( mainpk, mainkid );
|
||
subpk = subnode->pkt->pkt.public_key;
|
||
keytimestamp = subpk->timestamp;
|
||
|
||
subpk->is_valid = 0;
|
||
subpk->main_keyid[0] = mainpk->main_keyid[0];
|
||
subpk->main_keyid[1] = mainpk->main_keyid[1];
|
||
|
||
/* find the latest key binding self-signature. */
|
||
signode = NULL;
|
||
sigdate = 0; /* helper to find the latest signature */
|
||
for(k=subnode->next; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_SIGNATURE ) {
|
||
sig = k->pkt->pkt.signature;
|
||
if ( sig->keyid[0] == mainkid[0] && sig->keyid[1]==mainkid[1] ) {
|
||
if ( check_key_signature( keyblock, k, NULL ) )
|
||
; /* signature did not verify */
|
||
else if ( IS_SUBKEY_REV (sig) ) {
|
||
/* Note that this means that the date on a
|
||
revocation sig does not matter - even if the
|
||
binding sig is dated after the revocation sig,
|
||
the subkey is still marked as revoked. This
|
||
seems ok, as it is just as easy to make new
|
||
subkeys rather than re-sign old ones as the
|
||
problem is in the distribution. Plus, PGP (7)
|
||
does this the same way. */
|
||
subpk->is_revoked = 1;
|
||
sig_to_revoke_info(sig,&subpk->revoked);
|
||
/* although we could stop now, we continue to
|
||
* figure out other information like the old expiration
|
||
* time */
|
||
}
|
||
else if ( IS_SUBKEY_SIG (sig) && sig->timestamp >= sigdate )
|
||
{
|
||
if(sig->flags.expired)
|
||
; /* signature has expired - ignore it */
|
||
else
|
||
{
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
signode->pkt->pkt.signature->flags.chosen_selfsig=0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* no valid key binding */
|
||
if ( !signode )
|
||
return;
|
||
|
||
sig = signode->pkt->pkt.signature;
|
||
sig->flags.chosen_selfsig=1; /* so we know which selfsig we chose later */
|
||
|
||
key_usage=parse_key_usage(sig);
|
||
if ( !key_usage )
|
||
{
|
||
/* no key flags at all: get it from the algo */
|
||
key_usage = openpgp_pk_algo_usage ( subpk->pubkey_algo );
|
||
}
|
||
else
|
||
{
|
||
/* check that the usage matches the usage as given by the algo */
|
||
int x = openpgp_pk_algo_usage ( subpk->pubkey_algo );
|
||
if ( x ) /* mask it down to the actual allowed usage */
|
||
key_usage &= x;
|
||
}
|
||
|
||
subpk->pubkey_usage = key_usage;
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if ( p && buffer_to_u32(p) )
|
||
key_expire = keytimestamp + buffer_to_u32(p);
|
||
else
|
||
key_expire = 0;
|
||
subpk->has_expired = key_expire >= curtime? 0 : key_expire;
|
||
subpk->expiredate = key_expire;
|
||
|
||
/* Check that algo exists. Elgamal sign+encrypt are only allowed
|
||
with option --rfc2440. */
|
||
if (RFC2440 && subpk->pubkey_algo == PUBKEY_ALGO_ELGAMAL)
|
||
;
|
||
else if(check_pubkey_algo(subpk->pubkey_algo))
|
||
return;
|
||
|
||
subpk->is_valid = 1;
|
||
|
||
/* Find the most recent 0x19 embedded signature on our self-sig. */
|
||
if(subpk->backsig==0)
|
||
{
|
||
int seq=0;
|
||
size_t n;
|
||
PKT_signature *backsig=NULL;
|
||
|
||
sigdate=0;
|
||
|
||
/* We do this while() since there may be other embedded
|
||
signatures in the future. We only want 0x19 here. */
|
||
|
||
while((p=enum_sig_subpkt(sig->hashed,
|
||
SIGSUBPKT_SIGNATURE,&n,&seq,NULL)))
|
||
if(n>3 && ((p[0]==3 && p[2]==0x19) || (p[0]==4 && p[1]==0x19)))
|
||
{
|
||
PKT_signature *tempsig=buf_to_sig(p,n);
|
||
if(tempsig)
|
||
{
|
||
if(tempsig->timestamp>sigdate)
|
||
{
|
||
if(backsig)
|
||
free_seckey_enc(backsig);
|
||
|
||
backsig=tempsig;
|
||
sigdate=backsig->timestamp;
|
||
}
|
||
else
|
||
free_seckey_enc(tempsig);
|
||
}
|
||
}
|
||
|
||
seq=0;
|
||
|
||
/* It is safe to have this in the unhashed area since the 0x19
|
||
is located on the selfsig for convenience, not security. */
|
||
|
||
while((p=enum_sig_subpkt(sig->unhashed,SIGSUBPKT_SIGNATURE,
|
||
&n,&seq,NULL)))
|
||
if(n>3 && ((p[0]==3 && p[2]==0x19) || (p[0]==4 && p[1]==0x19)))
|
||
{
|
||
PKT_signature *tempsig=buf_to_sig(p,n);
|
||
if(tempsig)
|
||
{
|
||
if(tempsig->timestamp>sigdate)
|
||
{
|
||
if(backsig)
|
||
free_seckey_enc(backsig);
|
||
|
||
backsig=tempsig;
|
||
sigdate=backsig->timestamp;
|
||
}
|
||
else
|
||
free_seckey_enc(tempsig);
|
||
}
|
||
}
|
||
|
||
if(backsig)
|
||
{
|
||
/* At ths point, backsig contains the most recent 0x19 sig.
|
||
Let's see if it is good. */
|
||
|
||
/* 2==valid, 1==invalid, 0==didn't check */
|
||
if(check_backsig(mainpk,subpk,backsig)==0)
|
||
subpk->backsig=2;
|
||
else
|
||
subpk->backsig=1;
|
||
|
||
free_seckey_enc(backsig);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
* Merge information from the self-signatures with the key, so that
|
||
* we can later use them more easy.
|
||
* The function works by first applying the self signatures to the
|
||
* primary key and the to each subkey.
|
||
* Here are the rules we use to decide which inormation from which
|
||
* self-signature is used:
|
||
* We check all self signatures or validity and ignore all invalid signatures.
|
||
* All signatures are then ordered by their creation date ....
|
||
* For the primary key:
|
||
* FIXME the docs
|
||
*/
|
||
static void
|
||
merge_selfsigs( KBNODE keyblock )
|
||
{
|
||
KBNODE k;
|
||
int revoked;
|
||
struct revoke_info rinfo;
|
||
PKT_public_key *main_pk;
|
||
prefitem_t *prefs;
|
||
int mdc_feature;
|
||
|
||
if ( keyblock->pkt->pkttype != PKT_PUBLIC_KEY ) {
|
||
if (keyblock->pkt->pkttype == PKT_SECRET_KEY ) {
|
||
log_error ("expected public key but found secret key "
|
||
"- must stop\n");
|
||
/* we better exit here becuase a public key is expected at
|
||
other places too. FIXME: Figure this out earlier and
|
||
don't get to here at all */
|
||
g10_exit (1);
|
||
}
|
||
BUG ();
|
||
}
|
||
|
||
merge_selfsigs_main ( keyblock, &revoked, &rinfo );
|
||
|
||
/* now merge in the data from each of the subkeys */
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
merge_selfsigs_subkey ( keyblock, k );
|
||
}
|
||
}
|
||
|
||
main_pk = keyblock->pkt->pkt.public_key;
|
||
if ( revoked || main_pk->has_expired || !main_pk->is_valid ) {
|
||
/* if the primary key is revoked, expired, or invalid we
|
||
* better set the appropriate flags on that key and all
|
||
* subkeys */
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
PKT_public_key *pk = k->pkt->pkt.public_key;
|
||
if(!main_pk->is_valid)
|
||
pk->is_valid = 0;
|
||
if(revoked && !pk->is_revoked)
|
||
{
|
||
pk->is_revoked = revoked;
|
||
memcpy(&pk->revoked,&rinfo,sizeof(rinfo));
|
||
}
|
||
if(main_pk->has_expired)
|
||
pk->has_expired = main_pk->has_expired;
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* set the preference list of all keys to those of the primary real
|
||
* user ID. Note: we use these preferences when we don't know by
|
||
* which user ID the key has been selected.
|
||
* fixme: we should keep atoms of commonly used preferences or
|
||
* use reference counting to optimize the preference lists storage.
|
||
* FIXME: it might be better to use the intersection of
|
||
* all preferences.
|
||
* Do a similar thing for the MDC feature flag.
|
||
*/
|
||
prefs = NULL;
|
||
mdc_feature = 0;
|
||
for (k=keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next) {
|
||
if (k->pkt->pkttype == PKT_USER_ID
|
||
&& !k->pkt->pkt.user_id->attrib_data
|
||
&& k->pkt->pkt.user_id->is_primary) {
|
||
prefs = k->pkt->pkt.user_id->prefs;
|
||
mdc_feature = k->pkt->pkt.user_id->flags.mdc;
|
||
break;
|
||
}
|
||
}
|
||
for(k=keyblock; k; k = k->next ) {
|
||
if ( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
PKT_public_key *pk = k->pkt->pkt.public_key;
|
||
if (pk->prefs)
|
||
xfree (pk->prefs);
|
||
pk->prefs = copy_prefs (prefs);
|
||
pk->mdc_feature = mdc_feature;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
* Merge the secret keys from secblock into the pubblock thereby
|
||
* replacing the public (sub)keys with their secret counterparts Hmmm:
|
||
* It might be better to get away from the concept of entire secret
|
||
* keys at all and have a way to store just the real secret parts
|
||
* from the key.
|
||
*/
|
||
static void
|
||
merge_public_with_secret ( KBNODE pubblock, KBNODE secblock )
|
||
{
|
||
KBNODE pub;
|
||
|
||
assert ( pubblock->pkt->pkttype == PKT_PUBLIC_KEY );
|
||
assert ( secblock->pkt->pkttype == PKT_SECRET_KEY );
|
||
|
||
for (pub=pubblock; pub; pub = pub->next ) {
|
||
if ( pub->pkt->pkttype == PKT_PUBLIC_KEY ) {
|
||
PKT_public_key *pk = pub->pkt->pkt.public_key;
|
||
PKT_secret_key *sk = secblock->pkt->pkt.secret_key;
|
||
assert ( pub == pubblock ); /* only in the first node */
|
||
/* there is nothing to compare in this case, so just replace
|
||
* some information */
|
||
copy_public_parts_to_secret_key ( pk, sk );
|
||
free_public_key ( pk );
|
||
pub->pkt->pkttype = PKT_SECRET_KEY;
|
||
pub->pkt->pkt.secret_key = copy_secret_key (NULL, sk);
|
||
}
|
||
else if ( pub->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
KBNODE sec;
|
||
PKT_public_key *pk = pub->pkt->pkt.public_key;
|
||
|
||
/* this is more complicated: it may happen that the sequence
|
||
* of the subkeys dosn't match, so we have to find the
|
||
* appropriate secret key */
|
||
for (sec=secblock->next; sec; sec = sec->next ) {
|
||
if ( sec->pkt->pkttype == PKT_SECRET_SUBKEY ) {
|
||
PKT_secret_key *sk = sec->pkt->pkt.secret_key;
|
||
if ( !cmp_public_secret_key ( pk, sk ) ) {
|
||
copy_public_parts_to_secret_key ( pk, sk );
|
||
free_public_key ( pk );
|
||
pub->pkt->pkttype = PKT_SECRET_SUBKEY;
|
||
pub->pkt->pkt.secret_key = copy_secret_key (NULL, sk);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if ( !sec )
|
||
BUG(); /* already checked in premerge */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function checks that for every public subkey a corresponding
|
||
* secret subkey is available and deletes the public subkey otherwise.
|
||
* We need this function because we can't delete it later when we
|
||
* actually merge the secret parts into the pubring.
|
||
* The function also plays some games with the node flags.
|
||
*/
|
||
static void
|
||
premerge_public_with_secret ( KBNODE pubblock, KBNODE secblock )
|
||
{
|
||
KBNODE last, pub;
|
||
|
||
assert ( pubblock->pkt->pkttype == PKT_PUBLIC_KEY );
|
||
assert ( secblock->pkt->pkttype == PKT_SECRET_KEY );
|
||
|
||
for (pub=pubblock,last=NULL; pub; last = pub, pub = pub->next ) {
|
||
pub->flag &= ~3; /* reset bits 0 and 1 */
|
||
if ( pub->pkt->pkttype == PKT_PUBLIC_SUBKEY ) {
|
||
KBNODE sec;
|
||
PKT_public_key *pk = pub->pkt->pkt.public_key;
|
||
|
||
for (sec=secblock->next; sec; sec = sec->next ) {
|
||
if ( sec->pkt->pkttype == PKT_SECRET_SUBKEY ) {
|
||
PKT_secret_key *sk = sec->pkt->pkt.secret_key;
|
||
if ( !cmp_public_secret_key ( pk, sk ) ) {
|
||
if ( sk->protect.s2k.mode == 1001 ) {
|
||
/* The secret parts are not available so
|
||
we can't use that key for signing etc.
|
||
Fix the pubkey usage */
|
||
pk->pubkey_usage &= ~(PUBKEY_USAGE_SIG
|
||
|PUBKEY_USAGE_AUTH);
|
||
}
|
||
/* transfer flag bits 0 and 1 to the pubblock */
|
||
pub->flag |= (sec->flag &3);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if ( !sec ) {
|
||
KBNODE next, ll;
|
||
|
||
if (opt.verbose)
|
||
log_info (_("no secret subkey"
|
||
" for public subkey %s - ignoring\n"),
|
||
keystr_from_pk (pk));
|
||
/* we have to remove the subkey in this case */
|
||
assert ( last );
|
||
/* find the next subkey */
|
||
for (next=pub->next,ll=pub;
|
||
next && next->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
ll = next, next = next->next )
|
||
;
|
||
/* make new link */
|
||
last->next = next;
|
||
/* release this public subkey with all sigs */
|
||
ll->next = NULL;
|
||
release_kbnode( pub );
|
||
/* let the loop continue */
|
||
pub = last;
|
||
}
|
||
}
|
||
}
|
||
/* We need to copy the found bits (0 and 1) from the secret key to
|
||
the public key. This has already been done for the subkeys but
|
||
got lost on the primary key - fix it here *. */
|
||
pubblock->flag |= (secblock->flag & 3);
|
||
}
|
||
|
||
|
||
|
||
|
||
/* See see whether the key fits
|
||
* our requirements and in case we do not
|
||
* request the primary key, we should select
|
||
* a suitable subkey.
|
||
* FIXME: Check against PGP 7 whether we still need a kludge
|
||
* to favor type 16 keys over type 20 keys when type 20
|
||
* has not been explitely requested.
|
||
* Returns: True when a suitable key has been found.
|
||
*
|
||
* We have to distinguish four cases: FIXME!
|
||
* 1. No usage and no primary key requested
|
||
* Examples for this case are that we have a keyID to be used
|
||
* for decrytion or verification.
|
||
* 2. No usage but primary key requested
|
||
* This is the case for all functions which work on an
|
||
* entire keyblock, e.g. for editing or listing
|
||
* 3. Usage and primary key requested
|
||
* FXME
|
||
* 4. Usage but no primary key requested
|
||
* FIXME
|
||
* FIXME: Tell what is going to happen here and something about the rationale
|
||
* Note: We don't use this function if no specific usage is requested;
|
||
* This way the getkey functions can be used for plain key listings.
|
||
*
|
||
* CTX ist the keyblock we are investigating, if FOUNDK is not NULL this
|
||
* is the key we actually found by looking at the keyid or a fingerprint and
|
||
* may eitehr point to the primary or one of the subkeys.
|
||
*/
|
||
|
||
static int
|
||
finish_lookup (GETKEY_CTX ctx)
|
||
{
|
||
KBNODE keyblock = ctx->keyblock;
|
||
KBNODE k;
|
||
KBNODE foundk = NULL;
|
||
PKT_user_id *foundu = NULL;
|
||
#define USAGE_MASK (PUBKEY_USAGE_SIG|PUBKEY_USAGE_ENC|PUBKEY_USAGE_CERT)
|
||
unsigned int req_usage = ( ctx->req_usage & USAGE_MASK );
|
||
/* Request the primary if we're certifying another key, and also
|
||
if signing data while --pgp6 or --pgp7 is on since pgp 6 and 7
|
||
do not understand signatures made by a signing subkey. PGP 8
|
||
does. */
|
||
int req_prim = (ctx->req_usage & PUBKEY_USAGE_CERT) ||
|
||
((PGP6 || PGP7) && (ctx->req_usage & PUBKEY_USAGE_SIG));
|
||
u32 latest_date;
|
||
KBNODE latest_key;
|
||
u32 curtime = make_timestamp ();
|
||
|
||
assert( keyblock->pkt->pkttype == PKT_PUBLIC_KEY );
|
||
|
||
ctx->found_key = NULL;
|
||
|
||
if (ctx->exact) {
|
||
for (k=keyblock; k; k = k->next) {
|
||
if ( (k->flag & 1) ) {
|
||
assert ( k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY );
|
||
foundk = k;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (k=keyblock; k; k = k->next) {
|
||
if ( (k->flag & 2) ) {
|
||
assert (k->pkt->pkttype == PKT_USER_ID);
|
||
foundu = k->pkt->pkt.user_id;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if ( DBG_CACHE )
|
||
log_debug( "finish_lookup: checking key %08lX (%s)(req_usage=%x)\n",
|
||
(ulong)keyid_from_pk( keyblock->pkt->pkt.public_key, NULL),
|
||
foundk? "one":"all", req_usage);
|
||
|
||
if (!req_usage) {
|
||
latest_key = foundk? foundk:keyblock;
|
||
goto found;
|
||
}
|
||
|
||
latest_date = 0;
|
||
latest_key = NULL;
|
||
/* do not look at subkeys if a certification key is requested */
|
||
if ((!foundk || foundk->pkt->pkttype == PKT_PUBLIC_SUBKEY) && !req_prim) {
|
||
KBNODE nextk;
|
||
/* either start a loop or check just this one subkey */
|
||
for (k=foundk?foundk:keyblock; k; k = nextk ) {
|
||
PKT_public_key *pk;
|
||
nextk = k->next;
|
||
if ( k->pkt->pkttype != PKT_PUBLIC_SUBKEY )
|
||
continue;
|
||
if ( foundk )
|
||
nextk = NULL; /* what a hack */
|
||
pk = k->pkt->pkt.public_key;
|
||
if (DBG_CACHE)
|
||
log_debug( "\tchecking subkey %08lX\n",
|
||
(ulong)keyid_from_pk( pk, NULL));
|
||
if ( !pk->is_valid ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tsubkey not valid\n");
|
||
continue;
|
||
}
|
||
if ( pk->is_revoked ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tsubkey has been revoked\n");
|
||
continue;
|
||
}
|
||
if ( pk->has_expired ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tsubkey has expired\n");
|
||
continue;
|
||
}
|
||
if ( pk->timestamp > curtime && !opt.ignore_valid_from ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tsubkey not yet valid\n");
|
||
continue;
|
||
}
|
||
|
||
if ( !((pk->pubkey_usage&USAGE_MASK) & req_usage) ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tusage does not match: want=%x have=%x\n",
|
||
req_usage, pk->pubkey_usage );
|
||
continue;
|
||
}
|
||
|
||
if (DBG_CACHE)
|
||
log_debug( "\tsubkey looks fine\n");
|
||
if ( pk->timestamp > latest_date ) {
|
||
latest_date = pk->timestamp;
|
||
latest_key = k;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Okay now try the primary key unless we want an exact
|
||
* key ID match on a subkey */
|
||
if ((!latest_key && !(ctx->exact && foundk != keyblock)) || req_prim) {
|
||
PKT_public_key *pk;
|
||
if (DBG_CACHE && !foundk && !req_prim )
|
||
log_debug( "\tno suitable subkeys found - trying primary\n");
|
||
pk = keyblock->pkt->pkt.public_key;
|
||
if ( !pk->is_valid ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tprimary key not valid\n");
|
||
}
|
||
else if ( pk->is_revoked ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tprimary key has been revoked\n");
|
||
}
|
||
else if ( pk->has_expired ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tprimary key has expired\n");
|
||
}
|
||
else if ( !((pk->pubkey_usage&USAGE_MASK) & req_usage) ) {
|
||
if (DBG_CACHE)
|
||
log_debug( "\tprimary key usage does not match: "
|
||
"want=%x have=%x\n",
|
||
req_usage, pk->pubkey_usage );
|
||
}
|
||
else { /* okay */
|
||
if (DBG_CACHE)
|
||
log_debug( "\tprimary key may be used\n");
|
||
latest_key = keyblock;
|
||
latest_date = pk->timestamp;
|
||
}
|
||
}
|
||
|
||
if ( !latest_key ) {
|
||
if (DBG_CACHE)
|
||
log_debug("\tno suitable key found - giving up\n");
|
||
return 0;
|
||
}
|
||
|
||
found:
|
||
if (DBG_CACHE)
|
||
log_debug( "\tusing key %08lX\n",
|
||
(ulong)keyid_from_pk( latest_key->pkt->pkt.public_key, NULL) );
|
||
|
||
if (latest_key) {
|
||
PKT_public_key *pk = latest_key->pkt->pkt.public_key;
|
||
if (pk->user_id)
|
||
free_user_id (pk->user_id);
|
||
pk->user_id = scopy_user_id (foundu);
|
||
}
|
||
|
||
ctx->found_key = latest_key;
|
||
|
||
if (latest_key != keyblock && opt.verbose)
|
||
{
|
||
char *tempkeystr=
|
||
xstrdup(keystr_from_pk(latest_key->pkt->pkt.public_key));
|
||
log_info(_("using subkey %s instead of primary key %s\n"),
|
||
tempkeystr, keystr_from_pk(keyblock->pkt->pkt.public_key));
|
||
xfree(tempkeystr);
|
||
}
|
||
|
||
cache_user_id( keyblock );
|
||
|
||
return 1; /* found */
|
||
}
|
||
|
||
|
||
static int
|
||
lookup( GETKEY_CTX ctx, KBNODE *ret_keyblock, int secmode )
|
||
{
|
||
int rc;
|
||
KBNODE secblock = NULL; /* helper */
|
||
int no_suitable_key = 0;
|
||
|
||
rc = 0;
|
||
while (!(rc = keydb_search (ctx->kr_handle, ctx->items, ctx->nitems))) {
|
||
/* If we are searching for the first key we have to make sure
|
||
that the next interation does not no an implicit reset.
|
||
This can be triggered by an empty key ring. */
|
||
if (ctx->nitems && ctx->items->mode == KEYDB_SEARCH_MODE_FIRST)
|
||
ctx->items->mode = KEYDB_SEARCH_MODE_NEXT;
|
||
|
||
rc = keydb_get_keyblock (ctx->kr_handle, &ctx->keyblock);
|
||
if (rc) {
|
||
log_error ("keydb_get_keyblock failed: %s\n", g10_errstr(rc));
|
||
rc = 0;
|
||
goto skip;
|
||
}
|
||
|
||
if ( secmode ) {
|
||
/* find the correspondig public key and use this
|
||
* this one for the selection process */
|
||
u32 aki[2];
|
||
KBNODE k = ctx->keyblock;
|
||
|
||
if (k->pkt->pkttype != PKT_SECRET_KEY)
|
||
BUG();
|
||
|
||
keyid_from_sk (k->pkt->pkt.secret_key, aki);
|
||
k = get_pubkeyblock (aki);
|
||
if( !k )
|
||
{
|
||
if (!opt.quiet)
|
||
log_info(_("key %s: secret key without public key"
|
||
" - skipped\n"), keystr(aki));
|
||
goto skip;
|
||
}
|
||
secblock = ctx->keyblock;
|
||
ctx->keyblock = k;
|
||
|
||
premerge_public_with_secret ( ctx->keyblock, secblock );
|
||
}
|
||
|
||
/* warning: node flag bits 0 and 1 should be preserved by
|
||
* merge_selfsigs. For secret keys, premerge did tranfer the
|
||
* keys to the keyblock */
|
||
merge_selfsigs ( ctx->keyblock );
|
||
if ( finish_lookup (ctx) ) {
|
||
no_suitable_key = 0;
|
||
if ( secmode ) {
|
||
merge_public_with_secret ( ctx->keyblock,
|
||
secblock);
|
||
release_kbnode (secblock);
|
||
secblock = NULL;
|
||
}
|
||
goto found;
|
||
}
|
||
else
|
||
no_suitable_key = 1;
|
||
|
||
skip:
|
||
/* release resources and continue search */
|
||
if ( secmode ) {
|
||
release_kbnode( secblock );
|
||
secblock = NULL;
|
||
}
|
||
release_kbnode( ctx->keyblock );
|
||
ctx->keyblock = NULL;
|
||
}
|
||
|
||
found:
|
||
if( rc && rc != -1 )
|
||
log_error("keydb_search failed: %s\n", g10_errstr(rc));
|
||
|
||
if( !rc ) {
|
||
*ret_keyblock = ctx->keyblock; /* return the keyblock */
|
||
ctx->keyblock = NULL;
|
||
}
|
||
else if (rc == -1 && no_suitable_key)
|
||
rc = secmode ? G10ERR_UNU_SECKEY : G10ERR_UNU_PUBKEY;
|
||
else if( rc == -1 )
|
||
rc = secmode ? G10ERR_NO_SECKEY : G10ERR_NO_PUBKEY;
|
||
|
||
if ( secmode ) {
|
||
release_kbnode( secblock );
|
||
secblock = NULL;
|
||
}
|
||
release_kbnode( ctx->keyblock );
|
||
ctx->keyblock = NULL;
|
||
|
||
ctx->last_rc = rc;
|
||
return rc;
|
||
}
|
||
|
||
|
||
|
||
|
||
/****************
|
||
* FIXME: Replace by the generic function
|
||
* It does not work as it is right now - it is used at
|
||
* 2 places: a) to get the key for an anonyous recipient
|
||
* b) to get the ultimately trusted keys.
|
||
* The a) usage might have some problems.
|
||
*
|
||
* set with_subkeys true to include subkeys
|
||
* set with_spm true to include secret-parts-missing keys
|
||
*
|
||
* Enumerate all primary secret keys. Caller must use these procedure:
|
||
* 1) create a void pointer and initialize it to NULL
|
||
* 2) pass this void pointer by reference to this function
|
||
* and provide space for the secret key (pass a buffer for sk)
|
||
* 3) call this function as long as it does not return -1
|
||
* to indicate EOF.
|
||
* 4) Always call this function a last time with SK set to NULL,
|
||
* so that can free it's context.
|
||
*/
|
||
int
|
||
enum_secret_keys( void **context, PKT_secret_key *sk,
|
||
int with_subkeys, int with_spm )
|
||
{
|
||
int rc=0;
|
||
struct {
|
||
int eof;
|
||
int first;
|
||
KEYDB_HANDLE hd;
|
||
KBNODE keyblock;
|
||
KBNODE node;
|
||
} *c = *context;
|
||
|
||
|
||
if( !c ) { /* make a new context */
|
||
c = xmalloc_clear( sizeof *c );
|
||
*context = c;
|
||
c->hd = keydb_new (1);
|
||
c->first = 1;
|
||
c->keyblock = NULL;
|
||
c->node = NULL;
|
||
}
|
||
|
||
if( !sk ) { /* free the context */
|
||
keydb_release (c->hd);
|
||
release_kbnode (c->keyblock);
|
||
xfree( c );
|
||
*context = NULL;
|
||
return 0;
|
||
}
|
||
|
||
if( c->eof )
|
||
return -1;
|
||
|
||
do {
|
||
/* get the next secret key from the current keyblock */
|
||
for (; c->node; c->node = c->node->next) {
|
||
if ((c->node->pkt->pkttype == PKT_SECRET_KEY
|
||
|| (with_subkeys
|
||
&& c->node->pkt->pkttype == PKT_SECRET_SUBKEY) )
|
||
&& !(c->node->pkt->pkt.secret_key->protect.s2k.mode==1001
|
||
&& !with_spm)) {
|
||
copy_secret_key (sk, c->node->pkt->pkt.secret_key );
|
||
c->node = c->node->next;
|
||
return 0; /* found */
|
||
}
|
||
}
|
||
release_kbnode (c->keyblock);
|
||
c->keyblock = c->node = NULL;
|
||
|
||
rc = c->first? keydb_search_first (c->hd) : keydb_search_next (c->hd);
|
||
c->first = 0;
|
||
if (rc) {
|
||
keydb_release (c->hd); c->hd = NULL;
|
||
c->eof = 1;
|
||
return -1; /* eof */
|
||
}
|
||
|
||
rc = keydb_get_keyblock (c->hd, &c->keyblock);
|
||
c->node = c->keyblock;
|
||
} while (!rc);
|
||
|
||
return rc; /* error */
|
||
}
|
||
|
||
|
||
|
||
/*********************************************
|
||
*********** user ID printing helpers *******
|
||
*********************************************/
|
||
|
||
/****************
|
||
* Return a string with a printable representation of the user_id.
|
||
* this string must be freed by xfree.
|
||
*/
|
||
char*
|
||
get_user_id_string( u32 *keyid )
|
||
{
|
||
user_id_db_t r;
|
||
char *p;
|
||
int pass=0;
|
||
/* try it two times; second pass reads from key resources */
|
||
do
|
||
{
|
||
for(r=user_id_db; r; r = r->next )
|
||
{
|
||
keyid_list_t a;
|
||
for (a=r->keyids; a; a= a->next )
|
||
{
|
||
if( a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1] )
|
||
{
|
||
p = xmalloc( keystrlen() + 1 + r->len + 1 );
|
||
sprintf(p, "%s %.*s", keystr(keyid), r->len, r->name );
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
} while( ++pass < 2 && !get_pubkey( NULL, keyid ) );
|
||
p = xmalloc( keystrlen() + 5 );
|
||
sprintf(p, "%s [?]", keystr(keyid));
|
||
return p;
|
||
}
|
||
|
||
|
||
char*
|
||
get_user_id_string_native ( u32 *keyid )
|
||
{
|
||
char *p = get_user_id_string( keyid );
|
||
char *p2 = utf8_to_native( p, strlen(p), 0 );
|
||
xfree(p);
|
||
return p2;
|
||
}
|
||
|
||
|
||
char*
|
||
get_long_user_id_string( u32 *keyid )
|
||
{
|
||
user_id_db_t r;
|
||
char *p;
|
||
int pass=0;
|
||
/* try it two times; second pass reads from key resources */
|
||
do {
|
||
for(r=user_id_db; r; r = r->next ) {
|
||
keyid_list_t a;
|
||
for (a=r->keyids; a; a= a->next ) {
|
||
if( a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1] ) {
|
||
p = xmalloc( r->len + 20 );
|
||
sprintf(p, "%08lX%08lX %.*s",
|
||
(ulong)keyid[0], (ulong)keyid[1],
|
||
r->len, r->name );
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
} while( ++pass < 2 && !get_pubkey( NULL, keyid ) );
|
||
p = xmalloc( 25 );
|
||
sprintf(p, "%08lX%08lX [?]", (ulong)keyid[0], (ulong)keyid[1] );
|
||
return p;
|
||
}
|
||
|
||
char*
|
||
get_user_id( u32 *keyid, size_t *rn )
|
||
{
|
||
user_id_db_t r;
|
||
char *p;
|
||
int pass=0;
|
||
|
||
/* try it two times; second pass reads from key resources */
|
||
do {
|
||
for(r=user_id_db; r; r = r->next ) {
|
||
keyid_list_t a;
|
||
for (a=r->keyids; a; a= a->next ) {
|
||
if( a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1] ) {
|
||
p = xmalloc( r->len );
|
||
memcpy(p, r->name, r->len );
|
||
*rn = r->len;
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
} while( ++pass < 2 && !get_pubkey( NULL, keyid ) );
|
||
p = xstrdup( user_id_not_found_utf8 () );
|
||
*rn = strlen(p);
|
||
return p;
|
||
}
|
||
|
||
char*
|
||
get_user_id_native( u32 *keyid )
|
||
{
|
||
size_t rn;
|
||
char *p = get_user_id( keyid, &rn );
|
||
char *p2 = utf8_to_native( p, rn, 0 );
|
||
xfree(p);
|
||
return p2;
|
||
}
|
||
|
||
KEYDB_HANDLE
|
||
get_ctx_handle(GETKEY_CTX ctx)
|
||
{
|
||
return ctx->kr_handle;
|
||
}
|
||
|
||
static void
|
||
free_akl(struct akl *akl)
|
||
{
|
||
if(akl->spec)
|
||
free_keyserver_spec(akl->spec);
|
||
|
||
xfree(akl);
|
||
}
|
||
|
||
void
|
||
release_akl(void)
|
||
{
|
||
while(opt.auto_key_locate)
|
||
{
|
||
struct akl *akl2=opt.auto_key_locate;
|
||
opt.auto_key_locate=opt.auto_key_locate->next;
|
||
free_akl(akl2);
|
||
}
|
||
}
|
||
|
||
int
|
||
parse_auto_key_locate(char *options)
|
||
{
|
||
char *tok;
|
||
|
||
while((tok=optsep(&options)))
|
||
{
|
||
struct akl *akl,*check,*last=NULL;
|
||
int dupe=0;
|
||
|
||
if(tok[0]=='\0')
|
||
continue;
|
||
|
||
/* For now we silently ignore the new methods introduced with
|
||
2.0.10. */
|
||
if (!ascii_strcasecmp (tok,"nodefault")
|
||
|| !ascii_strcasecmp (tok,"local"))
|
||
continue;
|
||
|
||
akl=xmalloc_clear(sizeof(*akl));
|
||
|
||
if(ascii_strcasecmp(tok,"ldap")==0)
|
||
akl->type=AKL_LDAP;
|
||
else if(ascii_strcasecmp(tok,"keyserver")==0)
|
||
akl->type=AKL_KEYSERVER;
|
||
#ifdef USE_DNS_CERT
|
||
else if(ascii_strcasecmp(tok,"cert")==0)
|
||
akl->type=AKL_CERT;
|
||
#endif
|
||
#ifdef USE_DNS_PKA
|
||
else if(ascii_strcasecmp(tok,"pka")==0)
|
||
akl->type=AKL_PKA;
|
||
#endif
|
||
else if((akl->spec=parse_keyserver_uri(tok,1,NULL,0)))
|
||
akl->type=AKL_SPEC;
|
||
else
|
||
{
|
||
free_akl(akl);
|
||
return 0;
|
||
}
|
||
|
||
/* We must maintain the order the user gave us */
|
||
for(check=opt.auto_key_locate;check;last=check,check=check->next)
|
||
{
|
||
/* Check for duplicates */
|
||
if(check->type==akl->type
|
||
&& (akl->type!=AKL_SPEC
|
||
|| (akl->type==AKL_SPEC
|
||
&& strcmp(check->spec->uri,akl->spec->uri)==0)))
|
||
{
|
||
dupe=1;
|
||
free_akl(akl);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if(!dupe)
|
||
{
|
||
if(last)
|
||
last->next=akl;
|
||
else
|
||
opt.auto_key_locate=akl;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|