1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-21 14:47:03 +01:00
gnupg/agent/pksign.c
Werner Koch 6466db10fb Switch to deterministic DSA.
* agent/pksign.c (rfc6979_hash_algo_string): New.
(do_encode_dsa) [Libgcrypt >= 1.6]: Make use of RFC-6979.
--

Now that we have a good (and not NSA/NIST demanded ;-) specification
on how to use DSA without a random nonce, we take advantage of it and
thus avoid pitfalls related to a misbehaving RNG during signature
creation.

Note that OpenPGP has the option of using a longer hash algorithm but
truncated to what is suitable for the used DSA key size.  The hash
used as input to RFC-6979 will also be one with an appropriate digest
length but not a truncated one.  This is allowed by RFC-6979.

Signed-off-by: Werner Koch <wk@gnupg.org>
2013-09-08 11:25:58 +02:00

507 lines
14 KiB
C

/* pksign.c - public key signing (well, actually using a secret key)
* Copyright (C) 2001, 2002, 2003, 2004, 2010 Free Software Foundation, Inc.
* Copyright (C) 2013 Werner Koch
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include <unistd.h>
#include <sys/stat.h>
#include "agent.h"
#include "i18n.h"
static int
do_encode_md (const byte * md, size_t mdlen, int algo, gcry_sexp_t * r_hash,
int raw_value)
{
gcry_sexp_t hash;
int rc;
if (!raw_value)
{
const char *s;
char tmp[16+1];
int i;
s = gcry_md_algo_name (algo);
if (s && strlen (s) < 16)
{
for (i=0; i < strlen (s); i++)
tmp[i] = tolower (s[i]);
tmp[i] = '\0';
}
rc = gcry_sexp_build (&hash, NULL,
"(data (flags pkcs1) (hash %s %b))",
tmp, (int)mdlen, md);
}
else
{
gcry_mpi_t mpi;
rc = gcry_mpi_scan (&mpi, GCRYMPI_FMT_USG, md, mdlen, NULL);
if (! rc)
{
rc = gcry_sexp_build (&hash, NULL,
"(data (flags raw) (value %m))",
mpi);
gcry_mpi_release (mpi);
}
}
*r_hash = hash;
return rc;
}
/* Return the number of bits of the Q parameter from the DSA key
KEY. */
static unsigned int
get_dsa_qbits (gcry_sexp_t key)
{
gcry_sexp_t l1, l2;
gcry_mpi_t q;
unsigned int nbits;
l1 = gcry_sexp_find_token (key, "private-key", 0);
if (!l1)
l1 = gcry_sexp_find_token (key, "protected-private-key", 0);
if (!l1)
l1 = gcry_sexp_find_token (key, "shadowed-private-key", 0);
if (!l1)
l1 = gcry_sexp_find_token (key, "public-key", 0);
if (!l1)
return 0; /* Does not contain a key object. */
l2 = gcry_sexp_cadr (l1);
gcry_sexp_release (l1);
l1 = gcry_sexp_find_token (l2, "q", 1);
gcry_sexp_release (l2);
if (!l1)
return 0; /* Invalid object. */
q = gcry_sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG);
gcry_sexp_release (l1);
if (!q)
return 0; /* Missing value. */
nbits = gcry_mpi_get_nbits (q);
gcry_mpi_release (q);
return nbits;
}
/* Return an appropriate hash algorithm to be used with RFC-6979 for a
message digest of length MDLEN. Although a fallback of SHA-256 is
used the current implementation in Libgcrypt will reject a hash
algorithm which does not match the length of the message. */
static const char *
rfc6979_hash_algo_string (size_t mdlen)
{
switch (mdlen)
{
case 20: return "sha1";
case 28: return "sha224";
case 32: return "sha256";
case 48: return "sha384";
case 64: return "sha512";
default: return "sha256";
}
}
/* Encode a message digest for use with an DSA algorithm. */
static gpg_error_t
do_encode_dsa (const byte *md, size_t mdlen, int dsaalgo, gcry_sexp_t pkey,
gcry_sexp_t *r_hash)
{
gpg_error_t err;
gcry_sexp_t hash;
unsigned int qbits;
int pkalgo;
*r_hash = NULL;
pkalgo = map_pk_openpgp_to_gcry (dsaalgo);
if (pkalgo == GCRY_PK_ECDSA)
qbits = gcry_pk_get_nbits (pkey);
else if (pkalgo == GCRY_PK_DSA)
qbits = get_dsa_qbits (pkey);
else
return gpg_error (GPG_ERR_WRONG_PUBKEY_ALGO);
if (pkalgo == GCRY_PK_DSA && (qbits%8))
{
/* FIXME: We check the QBITS but print a message about the hash
length. */
log_error (_("DSA requires the hash length to be a"
" multiple of 8 bits\n"));
return gpg_error (GPG_ERR_INV_LENGTH);
}
/* Don't allow any Q smaller than 160 bits. We don't want someone
to issue signatures from a key with a 16-bit Q or something like
that, which would look correct but allow trivial forgeries. Yes,
I know this rules out using MD5 with DSA. ;) */
if (qbits < 160)
{
log_error (_("%s key uses an unsafe (%u bit) hash\n"),
gcry_pk_algo_name (pkalgo), qbits);
return gpg_error (GPG_ERR_INV_LENGTH);
}
/* Check if we're too short. Too long is safe as we'll
* automatically left-truncate.
*
* This check would require the use of SHA512 with ECDSA 512. I
* think this is overkill to fail in this case. Therefore, relax
* the check, but only for ECDSA keys. We may need to adjust it
* later for general case. (Note that the check is really a bug for
* ECDSA 521 as the only hash that matches it is SHA 512, but 512 <
* 521 ).
*/
if (mdlen < ((pkalgo==GCRY_PK_ECDSA && qbits > 521) ? 512 : qbits)/8)
{
log_error (_("a %zu bit hash is not valid for a %u bit %s key\n"),
mdlen*8,
gcry_pk_get_nbits (pkey),
gcry_pk_algo_name (pkalgo));
/* FIXME: we need to check the requirements for ECDSA. */
if (mdlen < 20 || pkalgo == GCRY_PK_DSA)
return gpg_error (GPG_ERR_INV_LENGTH);
}
/* Truncate. */
if (mdlen > qbits/8)
mdlen = qbits/8;
/* Create the S-expression. If we are using Libgcrypt 1.6 we make
use of Deterministic DSA. Libgcrypt < 1.6 does not implement
RFC-6979 and also requires us to convert to an MPI because it
expects an unsigned integer. Using %b directly is not possible
because Libgcrypt assumes an MPI and uses GCRYMPI_FMT_STD for
parsing and thus possible yielding a negative value. */
#if GCRYPT_VERSION_NUMBER >= 0x010600 /* Libgcrypt >= 1.6 */
{
err = gcry_sexp_build (&hash, NULL,
"(data (flags rfc6979) (hash %s %b))",
rfc6979_hash_algo_string (mdlen),
(int)mdlen, md);
}
#else /* Libgcrypt < 1.6 */
{
gcry_mpi_t mpi;
err = gcry_mpi_scan (&mpi, GCRYMPI_FMT_USG, md, mdlen, NULL);
if (!err)
{
err = gcry_sexp_build (&hash, NULL,
"(data (flags raw) (value %m))", mpi);
gcry_mpi_release (mpi);
}
}
#endif /* Libgcrypt < 1.6 */
if (!err)
*r_hash = hash;
return err;
}
/* Special version of do_encode_md to take care of pkcs#1 padding.
For TLS-MD5SHA1 we need to do the padding ourself as Libgrypt does
not know about this special scheme. Fixme: We should have a
pkcs1-only-padding flag for Libgcrypt. */
static int
do_encode_raw_pkcs1 (const byte *md, size_t mdlen, unsigned int nbits,
gcry_sexp_t *r_hash)
{
int rc;
gcry_sexp_t hash;
unsigned char *frame;
size_t i, n, nframe;
nframe = (nbits+7) / 8;
if ( !mdlen || mdlen + 8 + 4 > nframe )
{
/* Can't encode this hash into a frame of size NFRAME. */
return gpg_error (GPG_ERR_TOO_SHORT);
}
frame = xtrymalloc (nframe);
if (!frame)
return gpg_error_from_syserror ();
/* Assemble the pkcs#1 block type 1. */
n = 0;
frame[n++] = 0;
frame[n++] = 1; /* Block type. */
i = nframe - mdlen - 3 ;
assert (i >= 8); /* At least 8 bytes of padding. */
memset (frame+n, 0xff, i );
n += i;
frame[n++] = 0;
memcpy (frame+n, md, mdlen );
n += mdlen;
assert (n == nframe);
/* Create the S-expression. */
rc = gcry_sexp_build (&hash, NULL,
"(data (flags raw) (value %b))",
(int)nframe, frame);
xfree (frame);
*r_hash = hash;
return rc;
}
/* SIGN whatever information we have accumulated in CTRL and return
the signature S-expression. LOOKUP is an optional function to
provide a way for lower layers to ask for the caching TTL. If a
CACHE_NONCE is given that cache item is first tried to get a
passphrase. */
int
agent_pksign_do (ctrl_t ctrl, const char *cache_nonce,
const char *desc_text,
gcry_sexp_t *signature_sexp,
cache_mode_t cache_mode, lookup_ttl_t lookup_ttl)
{
gcry_sexp_t s_skey = NULL, s_sig = NULL;
unsigned char *shadow_info = NULL;
unsigned int rc = 0; /* FIXME: gpg-error? */
if (! ctrl->have_keygrip)
return gpg_error (GPG_ERR_NO_SECKEY);
rc = agent_key_from_file (ctrl, cache_nonce, desc_text, ctrl->keygrip,
&shadow_info, cache_mode, lookup_ttl,
&s_skey, NULL);
if (rc)
{
log_error ("failed to read the secret key\n");
goto leave;
}
if (!s_skey)
{
/* Divert operation to the smartcard */
gcry_sexp_t s_pkey, l;
const char *name;
size_t len;
unsigned char *buf = NULL;
int is_RSA = 0;
int is_ECDSA = 0;
/* Check keytype by public key */
rc = agent_public_key_from_file (ctrl, ctrl->keygrip, &s_pkey);
if (rc)
{
log_error ("failed to read the public key\n");
goto leave;
}
l = gcry_sexp_cadr (s_pkey);
name = gcry_sexp_nth_data (l, 0, &len);
if (len == 3 && !memcmp (name, "rsa", 3))
is_RSA = 1;
else if (len == 5 && !memcmp (name, "ecdsa", 5))
is_ECDSA = 1;
gcry_sexp_release (l);
gcry_sexp_release (s_pkey);
rc = divert_pksign (ctrl,
ctrl->digest.value,
ctrl->digest.valuelen,
ctrl->digest.algo,
shadow_info, &buf, &len);
if (rc)
{
log_error ("smartcard signing failed: %s\n", gpg_strerror (rc));
goto leave;
}
if (is_RSA)
{
if (*buf & 0x80)
{
len++;
buf = xtryrealloc (buf, len);
if (!buf)
goto leave;
memmove (buf + 1, buf, len - 1);
*buf = 0;
}
rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(rsa(s%b)))", len, buf);
}
else if (is_ECDSA)
{
unsigned char *r_buf_allocated = NULL;
unsigned char *s_buf_allocated = NULL;
unsigned char *r_buf, *s_buf;
int r_buflen, s_buflen;
r_buflen = s_buflen = len/2;
if (*buf & 0x80)
{
r_buflen++;
r_buf_allocated = xtrymalloc (r_buflen);
if (!r_buf_allocated)
goto leave;
r_buf = r_buf_allocated;
memcpy (r_buf + 1, buf, len/2);
*r_buf = 0;
}
else
r_buf = buf;
if (*(buf + len/2) & 0x80)
{
s_buflen++;
s_buf_allocated = xtrymalloc (s_buflen);
if (!s_buf_allocated)
{
xfree (r_buf_allocated);
goto leave;
}
s_buf = s_buf_allocated;
memcpy (s_buf + 1, buf + len/2, len/2);
*s_buf = 0;
}
else
s_buf = buf + len/2;
rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(ecdsa(r%b)(s%b)))",
r_buflen, r_buf,
s_buflen, s_buf);
xfree (r_buf_allocated);
xfree (s_buf_allocated);
}
else
rc = gpg_error (GPG_ERR_NOT_IMPLEMENTED);
xfree (buf);
if (rc)
{
log_error ("failed to convert sigbuf returned by divert_pksign "
"into S-Exp: %s", gpg_strerror (rc));
goto leave;
}
}
else
{
/* No smartcard, but a private key */
gcry_sexp_t s_hash = NULL;
int dsaalgo;
/* Put the hash into a sexp */
if (ctrl->digest.algo == MD_USER_TLS_MD5SHA1)
rc = do_encode_raw_pkcs1 (ctrl->digest.value,
ctrl->digest.valuelen,
gcry_pk_get_nbits (s_skey),
&s_hash);
else if ( (dsaalgo = agent_is_dsa_key (s_skey)) )
rc = do_encode_dsa (ctrl->digest.value,
ctrl->digest.valuelen,
dsaalgo, s_skey,
&s_hash);
else
rc = do_encode_md (ctrl->digest.value,
ctrl->digest.valuelen,
ctrl->digest.algo,
&s_hash,
ctrl->digest.raw_value);
if (rc)
goto leave;
if (DBG_CRYPTO)
{
log_debug ("skey:\n");
gcry_sexp_dump (s_skey);
log_debug ("hash:\n");
gcry_sexp_dump (s_hash);
}
/* sign */
rc = gcry_pk_sign (&s_sig, s_hash, s_skey);
gcry_sexp_release (s_hash);
if (rc)
{
log_error ("signing failed: %s\n", gpg_strerror (rc));
goto leave;
}
if (DBG_CRYPTO)
{
log_debug ("result:\n");
gcry_sexp_dump (s_sig);
}
}
leave:
*signature_sexp = s_sig;
gcry_sexp_release (s_skey);
xfree (shadow_info);
return rc;
}
/* SIGN whatever information we have accumulated in CTRL and write it
back to OUTFP. If a CACHE_NONCE is given that cache item is first
tried to get a passphrase. */
int
agent_pksign (ctrl_t ctrl, const char *cache_nonce, const char *desc_text,
membuf_t *outbuf, cache_mode_t cache_mode)
{
gcry_sexp_t s_sig = NULL;
char *buf = NULL;
size_t len = 0;
int rc = 0;
rc = agent_pksign_do (ctrl, cache_nonce, desc_text, &s_sig, cache_mode, NULL);
if (rc)
goto leave;
len = gcry_sexp_sprint (s_sig, GCRYSEXP_FMT_CANON, NULL, 0);
assert (len);
buf = xmalloc (len);
len = gcry_sexp_sprint (s_sig, GCRYSEXP_FMT_CANON, buf, len);
assert (len);
put_membuf (outbuf, buf, len);
leave:
gcry_sexp_release (s_sig);
xfree (buf);
return rc;
}