1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-25 15:27:03 +01:00
gnupg/cipher/pubkey.c

1553 lines
41 KiB
C

/* pubkey.c - pubkey dispatcher
* Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include "g10lib.h"
#include "mpi.h"
#include "cipher.h"
#include "elgamal.h"
#include "dsa.h"
#include "rsa.h"
#include "dynload.h"
/* FIXME: use set_lasterr() */
#define TABLE_SIZE 10
struct pubkey_table_s {
const char *name;
int algo;
int npkey;
int nskey;
int nenc;
int nsig;
int use;
int (*generate)( int algo, unsigned nbits, MPI *skey, MPI **retfactors );
int (*check_secret_key)( int algo, MPI *skey );
int (*encrypt)( int algo, MPI *resarr, MPI data, MPI *pkey );
int (*decrypt)( int algo, MPI *result, MPI *data, MPI *skey );
int (*sign)( int algo, MPI *resarr, MPI data, MPI *skey );
int (*verify)( int algo, MPI hash, MPI *data, MPI *pkey,
int (*cmp)(void *, MPI), void *opaquev );
unsigned (*get_nbits)( int algo, MPI *pkey );
};
static struct pubkey_table_s pubkey_table[TABLE_SIZE];
static int disabled_algos[TABLE_SIZE];
static struct { const char* name; int algo;
const char* common_elements;
const char* public_elements;
const char* secret_elements;
} algo_info_table[] = {
{ "dsa" , PUBKEY_ALGO_DSA , "pqgy", "", "x" },
{ "rsa" , PUBKEY_ALGO_RSA , "ne", "", "dpqu" },
{ "elg" , PUBKEY_ALGO_ELGAMAL , "pgy", "", "x" },
{ "openpgp-dsa" , PUBKEY_ALGO_DSA , "pqgy", "", "x" },
{ "openpgp-rsa" , PUBKEY_ALGO_RSA , "pqgy", "", "x" },
{ "openpgp-elg" , PUBKEY_ALGO_ELGAMAL_E , "pgy", "", "x" },
{ "openpgp-elg-sig", PUBKEY_ALGO_ELGAMAL , "pgy", "", "x" },
{ NULL }};
static struct {
const char* name; int algo;
const char* elements;
} sig_info_table[] = {
{ "dsa" , PUBKEY_ALGO_DSA , "rs" },
{ "rsa" , PUBKEY_ALGO_RSA , "s" },
{ "elg" , PUBKEY_ALGO_ELGAMAL , "rs" },
{ "openpgp-dsa" , PUBKEY_ALGO_DSA , "rs" },
{ "openpgp-rsa" , PUBKEY_ALGO_RSA , "s" },
{ "openpgp-elg-sig", PUBKEY_ALGO_ELGAMAL , "rs" },
{ NULL }};
static struct {
const char* name; int algo;
const char* elements;
} enc_info_table[] = {
{ "elg" , PUBKEY_ALGO_ELGAMAL , "ab" },
{ "rsa" , PUBKEY_ALGO_RSA , "a" },
{ "openpgp-rsa" , PUBKEY_ALGO_RSA , "a" },
{ "openpgp-elg" , PUBKEY_ALGO_ELGAMAL_E , "ab" },
{ "openpgp-elg-sig", PUBKEY_ALGO_ELGAMAL , "ab" },
{ NULL }};
static int pubkey_decrypt( int algo, MPI *result, MPI *data, MPI *skey );
static int pubkey_sign( int algo, MPI *resarr, MPI hash, MPI *skey );
static int pubkey_verify( int algo, MPI hash, MPI *data, MPI *pkey,
int (*cmp)(void *, MPI), void *opaque );
static int
dummy_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
{ log_bug("no generate() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; }
static int
dummy_check_secret_key( int algo, MPI *skey )
{ log_bug("no check_secret_key() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; }
static int
dummy_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
{ log_bug("no encrypt() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; }
static int
dummy_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
{ log_bug("no decrypt() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; }
static int
dummy_sign( int algo, MPI *resarr, MPI data, MPI *skey )
{ log_bug("no sign() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; }
static int
dummy_verify( int algo, MPI hash, MPI *data, MPI *pkey,
int (*cmp)(void *, MPI), void *opaquev )
{ log_bug("no verify() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; }
static unsigned
dummy_get_nbits( int algo, MPI *pkey )
{ log_bug("no get_nbits() for %d\n", algo ); return 0; }
/****************
* Put the static entries into the table.
* This is out constructor function which fill the table
* of algorithms with the one we have statically linked.
*/
static void
setup_pubkey_table(void)
{
int i;
i = 0;
pubkey_table[i].algo = PUBKEY_ALGO_ELGAMAL;
pubkey_table[i].name = elg_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = elg_generate;
pubkey_table[i].check_secret_key = elg_check_secret_key;
pubkey_table[i].encrypt = elg_encrypt;
pubkey_table[i].decrypt = elg_decrypt;
pubkey_table[i].sign = elg_sign;
pubkey_table[i].verify = elg_verify;
pubkey_table[i].get_nbits = elg_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
pubkey_table[i].algo = PUBKEY_ALGO_ELGAMAL_E;
pubkey_table[i].name = elg_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = elg_generate;
pubkey_table[i].check_secret_key = elg_check_secret_key;
pubkey_table[i].encrypt = elg_encrypt;
pubkey_table[i].decrypt = elg_decrypt;
pubkey_table[i].sign = elg_sign;
pubkey_table[i].verify = elg_verify;
pubkey_table[i].get_nbits = elg_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
pubkey_table[i].algo = PUBKEY_ALGO_DSA;
pubkey_table[i].name = dsa_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = dsa_generate;
pubkey_table[i].check_secret_key = dsa_check_secret_key;
pubkey_table[i].encrypt = dummy_encrypt;
pubkey_table[i].decrypt = dummy_decrypt;
pubkey_table[i].sign = dsa_sign;
pubkey_table[i].verify = dsa_verify;
pubkey_table[i].get_nbits = dsa_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
pubkey_table[i].algo = PUBKEY_ALGO_RSA;
pubkey_table[i].name = rsa_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = rsa_generate;
pubkey_table[i].check_secret_key = rsa_check_secret_key;
pubkey_table[i].encrypt = rsa_encrypt;
pubkey_table[i].decrypt = rsa_decrypt;
pubkey_table[i].sign = rsa_sign;
pubkey_table[i].verify = rsa_verify;
pubkey_table[i].get_nbits = rsa_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
pubkey_table[i].algo = PUBKEY_ALGO_RSA_E;
pubkey_table[i].name = rsa_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = rsa_generate;
pubkey_table[i].check_secret_key = rsa_check_secret_key;
pubkey_table[i].encrypt = rsa_encrypt;
pubkey_table[i].decrypt = rsa_decrypt;
pubkey_table[i].sign = dummy_sign;
pubkey_table[i].verify = dummy_verify;
pubkey_table[i].get_nbits = rsa_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
pubkey_table[i].algo = PUBKEY_ALGO_RSA_S;
pubkey_table[i].name = rsa_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = rsa_generate;
pubkey_table[i].check_secret_key = rsa_check_secret_key;
pubkey_table[i].encrypt = dummy_encrypt;
pubkey_table[i].decrypt = dummy_decrypt;
pubkey_table[i].sign = rsa_sign;
pubkey_table[i].verify = rsa_verify;
pubkey_table[i].get_nbits = rsa_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
for( ; i < TABLE_SIZE; i++ )
pubkey_table[i].name = NULL;
}
static void
release_mpi_array( MPI *array )
{
for( ; *array; array++ ) {
mpi_free(*array);
*array = NULL;
}
}
/****************
* Try to load all modules and return true if new modules are available
*/
static int
load_pubkey_modules(void)
{
static int initialized = 0;
static int done = 0;
void *context = NULL;
struct pubkey_table_s *ct;
int ct_idx;
int i;
const char *name;
int any = 0;
if( !initialized ) {
cipher_modules_constructor();
setup_pubkey_table();
initialized = 1;
return 1;
}
if( done )
return 0;
done = 1;
for(ct_idx=0, ct = pubkey_table; ct_idx < TABLE_SIZE; ct_idx++,ct++ ) {
if( !ct->name )
break;
}
if( ct_idx >= TABLE_SIZE-1 )
BUG(); /* table already full */
/* now load all extensions */
while( (name = enum_gnupgext_pubkeys( &context, &ct->algo,
&ct->npkey, &ct->nskey, &ct->nenc,
&ct->nsig, &ct->use,
&ct->generate,
&ct->check_secret_key,
&ct->encrypt,
&ct->decrypt,
&ct->sign,
&ct->verify,
&ct->get_nbits )) ) {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == ct->algo )
break;
if( pubkey_table[i].name ) {
log_info("skipping pubkey %d: already loaded\n", ct->algo );
continue;
}
if( !ct->generate ) ct->generate = dummy_generate;
if( !ct->check_secret_key ) ct->check_secret_key =
dummy_check_secret_key;
if( !ct->encrypt ) ct->encrypt = dummy_encrypt;
if( !ct->decrypt ) ct->decrypt = dummy_decrypt;
if( !ct->sign ) ct->sign = dummy_sign;
if( !ct->verify ) ct->verify = dummy_verify;
if( !ct->get_nbits ) ct->get_nbits= dummy_get_nbits;
/* put it into the table */
if( g10_log_verbosity( 2 ) )
log_info("loaded pubkey %d (%s)\n", ct->algo, name);
ct->name = name;
ct_idx++;
ct++;
any = 1;
/* check whether there are more available table slots */
if( ct_idx >= TABLE_SIZE-1 ) {
log_info("pubkey table full; ignoring other extensions\n");
break;
}
}
enum_gnupgext_pubkeys( &context, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL );
return any;
}
/****************
* Map a string to the pubkey algo
*/
int
gcry_pk_map_name( const char *string )
{
int i;
const char *s;
do {
for(i=0; (s=pubkey_table[i].name); i++ )
if( !stricmp( s, string ) )
return pubkey_table[i].algo;
} while( load_pubkey_modules() );
return 0;
}
/****************
* Map a pubkey algo to a string
*/
const char *
gcry_pk_algo_name( int algo )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].name;
} while( load_pubkey_modules() );
return NULL;
}
static void
disable_pubkey_algo( int algo )
{
int i;
for(i=0; i < DIM(disabled_algos); i++ ) {
if( !disabled_algos[i] || disabled_algos[i] == algo ) {
disabled_algos[i] = algo;
return;
}
}
log_fatal("can't disable pubkey algo %d: table full\n", algo );
}
/****************
* a use of 0 means: don't care
*/
static int
check_pubkey_algo( int algo, unsigned use )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
if( (use & GCRY_PK_USAGE_SIGN)
&& !(pubkey_table[i].use & GCRY_PK_USAGE_SIGN) )
return GCRYERR_WRONG_PK_ALGO;
if( (use & GCRY_PK_USAGE_ENCR)
&& !(pubkey_table[i].use & GCRY_PK_USAGE_ENCR) )
return GCRYERR_WRONG_PK_ALGO;
for(i=0; i < DIM(disabled_algos); i++ ) {
if( disabled_algos[i] == algo )
return GCRYERR_INV_PK_ALGO;
}
return 0; /* okay */
}
} while( load_pubkey_modules() );
return GCRYERR_INV_PK_ALGO;
}
/****************
* Return the number of public key material numbers
*/
static int
pubkey_get_npkey( int algo )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].npkey;
} while( load_pubkey_modules() );
return 0;
}
/****************
* Return the number of secret key material numbers
*/
static int
pubkey_get_nskey( int algo )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].nskey;
} while( load_pubkey_modules() );
return 0;
}
/****************
* Return the number of signature material numbers
*/
static int
pubkey_get_nsig( int algo )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].nsig;
} while( load_pubkey_modules() );
return 0;
}
/****************
* Return the number of encryption material numbers
*/
static int
pubkey_get_nenc( int algo )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].nenc;
} while( load_pubkey_modules() );
return 0;
}
static int
pubkey_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return (*pubkey_table[i].generate)( algo, nbits,
skey, retfactors );
} while( load_pubkey_modules() );
return GCRYERR_INV_PK_ALGO;
}
static int
pubkey_check_secret_key( int algo, MPI *skey )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return (*pubkey_table[i].check_secret_key)( algo, skey );
} while( load_pubkey_modules() );
return GCRYERR_INV_PK_ALGO;
}
/****************
* This is the interface to the public key encryption.
* Encrypt DATA with PKEY and put it into RESARR which
* should be an array of MPIs of size PUBKEY_MAX_NENC (or less if the
* algorithm allows this - check with pubkey_get_nenc() )
*/
static int
pubkey_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
{
int i, rc;
if( DBG_CIPHER ) {
log_debug("pubkey_encrypt: algo=%d\n", algo );
for(i=0; i < pubkey_get_npkey(algo); i++ )
log_mpidump(" pkey:", pkey[i] );
log_mpidump(" data:", data );
}
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
rc = (*pubkey_table[i].encrypt)( algo, resarr, data, pkey );
goto ready;
}
} while( load_pubkey_modules() );
rc = GCRYERR_INV_PK_ALGO;
ready:
if( !rc && DBG_CIPHER ) {
for(i=0; i < pubkey_get_nenc(algo); i++ )
log_mpidump(" encr:", resarr[i] );
}
return rc;
}
/****************
* This is the interface to the public key decryption.
* ALGO gives the algorithm to use and this implicitly determines
* the size of the arrays.
* result is a pointer to a mpi variable which will receive a
* newly allocated mpi or NULL in case of an error.
*/
static int
pubkey_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
{
int i, rc;
*result = NULL; /* so the caller can always do a mpi_free */
if( DBG_CIPHER ) {
log_debug("pubkey_decrypt: algo=%d\n", algo );
for(i=0; i < pubkey_get_nskey(algo); i++ )
log_mpidump(" skey:", skey[i] );
for(i=0; i < pubkey_get_nenc(algo); i++ )
log_mpidump(" data:", data[i] );
}
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
rc = (*pubkey_table[i].decrypt)( algo, result, data, skey );
goto ready;
}
} while( load_pubkey_modules() );
rc = GCRYERR_INV_PK_ALGO;
ready:
if( !rc && DBG_CIPHER ) {
log_mpidump(" plain:", *result );
}
return rc;
}
/****************
* This is the interface to the public key signing.
* Sign data with skey and put the result into resarr which
* should be an array of MPIs of size PUBKEY_MAX_NSIG (or less if the
* algorithm allows this - check with pubkey_get_nsig() )
*/
static int
pubkey_sign( int algo, MPI *resarr, MPI data, MPI *skey )
{
int i, rc;
if( DBG_CIPHER ) {
log_debug("pubkey_sign: algo=%d\n", algo );
for(i=0; i < pubkey_get_nskey(algo); i++ )
log_mpidump(" skey:", skey[i] );
log_mpidump(" data:", data );
}
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
rc = (*pubkey_table[i].sign)( algo, resarr, data, skey );
goto ready;
}
} while( load_pubkey_modules() );
rc = GCRYERR_INV_PK_ALGO;
ready:
if( !rc && DBG_CIPHER ) {
for(i=0; i < pubkey_get_nsig(algo); i++ )
log_mpidump(" sig:", resarr[i] );
}
return rc;
}
/****************
* Verify a public key signature.
* Return 0 if the signature is good
*/
static int
pubkey_verify( int algo, MPI hash, MPI *data, MPI *pkey,
int (*cmp)(void *, MPI), void *opaquev )
{
int i, rc;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
rc = (*pubkey_table[i].verify)( algo, hash, data, pkey,
cmp, opaquev );
goto ready;
}
} while( load_pubkey_modules() );
rc = GCRYERR_INV_PK_ALGO;
ready:
return rc;
}
/****************
* Convert a S-Exp with either a private or a public key to our
* internal format. Currently we do only support the following
* algorithms:
* dsa
* rsa
* openpgp-dsa
* openpgp-rsa
* openpgp-elg
* openpgp-elg-sig
* Provide a SE with the first element be either "private-key" or
* or "public-key". the followed by a list with its first element
* be one of the above algorithm identifiers and the following
* elements are pairs with parameter-id and value.
* NOTE: we look through the list to find a list beginning with
* "private-key" or "public-key" - the first one found is used.
*
* FIXME: Allow for encrypted secret keys here.
*
* Returns: A pointer to an allocated array of MPIs if the return value is
* zero; the caller has to release this array.
*
* Example of a DSA public key:
* (private-key
* (dsa
* (p <mpi>)
* (g <mpi>)
* (y <mpi>)
* (x <mpi>)
* )
* )
* The <mpi> are expected to be in GCRYMPI_FMT_USG
*/
static int
sexp_to_key( GCRY_SEXP sexp, int want_private, MPI **retarray, int *retalgo)
{
GCRY_SEXP list, l2;
const char *name;
const char *s;
size_t n;
int i, idx;
int algo;
const char *elems1, *elems2;
GCRY_MPI *array;
/* check that the first element is valid */
list = gcry_sexp_find_token( sexp, want_private? "private-key"
:"public-key", 0 );
if( !list )
return GCRYERR_INV_OBJ; /* Does not contain a public- or private-key object */
l2 = gcry_sexp_cadr( list );
gcry_sexp_release ( list );
list = l2;
name = gcry_sexp_nth_data( list, 0, &n );
if( !name ) {
gcry_sexp_release ( list );
return GCRYERR_INV_OBJ; /* invalid structure of object */
}
for(i=0; (s=algo_info_table[i].name); i++ ) {
if( strlen(s) == n && !memcmp( s, name, n ) )
break;
}
if( !s ) {
gcry_sexp_release ( list );
return GCRYERR_INV_PK_ALGO; /* unknown algorithm */
}
algo = algo_info_table[i].algo;
elems1 = algo_info_table[i].common_elements;
elems2 = want_private? algo_info_table[i].secret_elements
: algo_info_table[i].public_elements;
array = g10_calloc( strlen(elems1)+strlen(elems2)+1, sizeof *array );
if( !array ) {
gcry_sexp_release ( list );
return GCRYERR_NO_MEM;
}
idx = 0;
for(s=elems1; *s; s++, idx++ ) {
l2 = gcry_sexp_find_token( list, s, 1 );
if( !l2 ) {
for(i=0; i<idx; i++)
g10_free( array[i] );
g10_free( array );
gcry_sexp_release ( list );
return GCRYERR_NO_OBJ; /* required parameter not found */
}
array[idx] = gcry_sexp_nth_mpi( l2, 1, GCRYMPI_FMT_USG );
gcry_sexp_release ( l2 );
if( !array[idx] ) {
for(i=0; i<idx; i++)
g10_free( array[i] );
g10_free( array );
gcry_sexp_release ( list );
return GCRYERR_INV_OBJ; /* required parameter is invalid */
}
}
for(s=elems2; *s; s++, idx++ ) {
l2 = gcry_sexp_find_token( list, s, 1 );
if( !l2 ) {
for(i=0; i<idx; i++)
g10_free( array[i] );
g10_free( array );
gcry_sexp_release ( list );
return GCRYERR_NO_OBJ; /* required parameter not found */
}
array[idx] = gcry_sexp_nth_mpi( l2, 1, GCRYMPI_FMT_USG );
gcry_sexp_release ( l2 );
if( !array[idx] ) {
for(i=0; i<idx; i++)
g10_free( array[i] );
g10_free( array );
gcry_sexp_release ( list );
return GCRYERR_INV_OBJ; /* required parameter is invalid */
}
}
gcry_sexp_release ( list );
*retarray = array;
*retalgo = algo;
return 0;
}
static int
sexp_to_sig( GCRY_SEXP sexp, MPI **retarray, int *retalgo)
{
GCRY_SEXP list, l2;
const char *name;
const char *s;
size_t n;
int i, idx;
int algo;
const char *elems;
GCRY_MPI *array;
/* check that the first element is valid */
list = gcry_sexp_find_token( sexp, "sig-val" , 0 );
if( !list )
return GCRYERR_INV_OBJ; /* Does not contain a signature value object */
l2 = gcry_sexp_cadr( list );
gcry_sexp_release ( list );
list = l2;
if( !list )
return GCRYERR_NO_OBJ; /* no cadr for the sig object */
name = gcry_sexp_nth_data( list, 0, &n );
if( !name ) {
gcry_sexp_release ( list );
return GCRYERR_INV_OBJ; /* invalid structure of object */
}
for(i=0; (s=sig_info_table[i].name); i++ ) {
if( strlen(s) == n && !memcmp( s, name, n ) )
break;
}
if( !s ) {
gcry_sexp_release ( list );
return GCRYERR_INV_PK_ALGO; /* unknown algorithm */
}
algo = sig_info_table[i].algo;
elems = sig_info_table[i].elements;
array = g10_calloc( (strlen(elems)+1) , sizeof *array );
if( !array ) {
gcry_sexp_release ( list );
return GCRYERR_NO_MEM;
}
idx = 0;
for(s=elems; *s; s++, idx++ ) {
l2 = gcry_sexp_find_token( list, s, 1 );
if( !l2 ) {
g10_free( array );
gcry_sexp_release ( list );
return GCRYERR_NO_OBJ; /* required parameter not found */
}
array[idx] = gcry_sexp_nth_mpi( l2, 1, GCRYMPI_FMT_USG );
gcry_sexp_release ( l2 );
if( !array[idx] ) {
g10_free( array );
gcry_sexp_release ( list );
return GCRYERR_INV_OBJ; /* required parameter is invalid */
}
}
gcry_sexp_release ( list );
*retarray = array;
*retalgo = algo;
return 0;
}
/****************
* Take sexp and return an array of MPI as used for our internal decrypt
* function.
*/
static int
sexp_to_enc( GCRY_SEXP sexp, MPI **retarray, int *retalgo)
{
GCRY_SEXP list, l2;
const char *name;
const char *s;
size_t n;
int i, idx;
int algo;
const char *elems;
GCRY_MPI *array;
/* check that the first element is valid */
list = gcry_sexp_find_token( sexp, "enc-val" , 0 );
if( !list )
return GCRYERR_INV_OBJ; /* Does not contain a encrypted value object */
l2 = gcry_sexp_cadr( list );
gcry_sexp_release ( list );
list = l2;
if( !list ) {
gcry_sexp_release ( list );
return GCRYERR_NO_OBJ; /* no cdr for the data object */
}
name = gcry_sexp_nth_data( list, 0, &n );
if( !name ) {
gcry_sexp_release ( list );
return GCRYERR_INV_OBJ; /* invalid structure of object */
}
for(i=0; (s=enc_info_table[i].name); i++ ) {
if( strlen(s) == n && !memcmp( s, name, n ) )
break;
}
if( !s ) {
gcry_sexp_release ( list );
return GCRYERR_INV_PK_ALGO; /* unknown algorithm */
}
algo = enc_info_table[i].algo;
elems = enc_info_table[i].elements;
array = g10_calloc( (strlen(elems)+1) , sizeof *array );
if( !array ) {
gcry_sexp_release ( list );
return GCRYERR_NO_MEM;
}
idx = 0;
for(s=elems; *s; s++, idx++ ) {
l2 = gcry_sexp_find_token( list, s, 1 );
if( !l2 ) {
g10_free( array );
gcry_sexp_release ( list );
return GCRYERR_NO_OBJ; /* required parameter not found */
}
array[idx] = gcry_sexp_nth_mpi( l2, 1, GCRYMPI_FMT_USG );
gcry_sexp_release ( l2 );
if( !array[idx] ) {
g10_free( array );
gcry_sexp_release ( list );
return GCRYERR_INV_OBJ; /* required parameter is invalid */
}
}
gcry_sexp_release ( list );
*retarray = array;
*retalgo = algo;
return 0;
}
/****************
* Do a PK encrypt operation
*
* Caller has to provide a public key as the SEXP pkey and data as a SEXP
* with just one MPI in it. The function returns a a sexp which may
* be passed tp to pk_decrypt.
* Later versions of this functions may take more complex input data.
*
* Returns: 0 or an errorcode.
*
* s_data = (<mpi>)
* s_pkey = <key-as-defined-in-sexp_to_key>
* r_ciph = (enc-val
* (<algo>
* (<param_name1> <mpi>)
* ...
* (<param_namen> <mpi>)
* ))
*/
int
gcry_pk_encrypt( GCRY_SEXP *r_ciph, GCRY_SEXP s_data, GCRY_SEXP s_pkey )
{
MPI *pkey, data, *ciph;
const char *algo_name, *algo_elems;
int i, rc, algo;
/* get the key */
rc = sexp_to_key( s_pkey, 0, &pkey, &algo );
if( rc ) {
return rc;
}
/* get the name and the required size of the return value */
for(i=0; (algo_name = enc_info_table[i].name); i++ ) {
if( enc_info_table[i].algo == algo )
break;
}
if( !algo_name ) {
release_mpi_array( pkey );
return GCRYERR_INV_PK_ALGO;
}
algo_elems = enc_info_table[i].elements;
/* get the stuff we want to encrypt */
data = gcry_sexp_nth_mpi( s_data, 0, 0 );
if( !data ) {
release_mpi_array( pkey );
return GCRYERR_INV_OBJ;
}
/* Now we can encrypt data to ciph */
ciph = g10_xcalloc( (strlen(algo_elems)+1) , sizeof *ciph );
rc = pubkey_encrypt( algo, ciph, data, pkey );
release_mpi_array( pkey );
mpi_free( data );
if( rc ) {
release_mpi_array( ciph );
g10_free( ciph );
return rc;
}
/* We did it. Now build the return list */
{
char *string, *p;
size_t nelem, needed= strlen(algo_name) + 20;
/* count elements, so that we can allocate enough space */
for(nelem=0; algo_elems[nelem]; nelem++ )
needed += 10; /* 6 + a safety margin */
/* build the string */
string = p = g10_xmalloc ( needed );
p = stpcpy ( p, "(enc-val(" );
p = stpcpy ( p, algo_name );
for(i=0; algo_elems[i]; i++ ) {
*p++ = '(';
*p++ = algo_elems[i];
p = stpcpy ( p, "%m)" );
}
strcpy ( p, "))" );
/* and now the ugly part: we don't have a function to
* pass an array to a format string, so we have to do it this way :-(
*/
switch ( nelem ) {
case 1: rc = gcry_sexp_build ( r_ciph, NULL, string,
ciph[0]
); break;
case 2: rc = gcry_sexp_build ( r_ciph, NULL, string,
ciph[0], ciph[1]
); break;
case 3: rc = gcry_sexp_build ( r_ciph, NULL, string,
ciph[0], ciph[1], ciph[2]
); break;
case 4: rc = gcry_sexp_build ( r_ciph, NULL, string,
ciph[0], ciph[1], ciph[2], ciph[3]
); break;
case 5: rc = gcry_sexp_build ( r_ciph, NULL, string,
ciph[0], ciph[1], ciph[2], ciph[3], ciph[4]
); break;
case 6: rc = gcry_sexp_build ( r_ciph, NULL, string,
ciph[0], ciph[1], ciph[2], ciph[3], ciph[4], ciph[5]
); break;
default: BUG ();
}
if ( rc )
BUG ();
g10_free ( string );
}
release_mpi_array( ciph );
g10_free( ciph );
return 0;
}
/****************
* Do a PK decrypt operation
*
* Caller has to provide a secret key as the SEXP skey and data in a format
* as created by gcry_pk_encrypt. Currently the function returns
* simply a MPI. Later versions of this functions may return a more
* complex data structure.
*
* Returns: 0 or an errorcode.
*
* s_data = (enc-val
* (<algo>
* (<param_name1> <mpi>)
* ...
* (<param_namen> <mpi>)
* ))
* s_skey = <key-as-defined-in-sexp_to_key>
* r_plain= (<mpi>) FIXME: Return a more structered value
*/
int
gcry_pk_decrypt( GCRY_SEXP *r_plain, GCRY_SEXP s_data, GCRY_SEXP s_skey )
{
MPI *skey, *data, plain;
int rc, algo, dataalgo;
rc = sexp_to_key( s_skey, 1, &skey, &algo );
if( rc ) {
return rc;
}
rc = sexp_to_enc( s_data, &data, &dataalgo );
if( rc ) {
release_mpi_array( skey );
return rc;
}
if( algo != dataalgo ) {
release_mpi_array( skey );
release_mpi_array( data );
return -1; /* fixme: add real errornumber - algo does not match */
}
rc = pubkey_decrypt( algo, &plain, data, skey );
if( rc ) {
release_mpi_array( skey );
release_mpi_array( data );
return -1; /* fixme: add real errornumber - decryption failed */
}
if ( gcry_sexp_build( r_plain, NULL, "%m", plain ) )
BUG ();
mpi_free( plain );
release_mpi_array( data );
release_mpi_array( skey );
return 0;
}
/****************
* Create a signature.
*
* Caller has to provide a secret key as the SEXP skey and data expressed
* as a SEXP list hash with only one element which should instantly be
* available as a MPI. Later versions of this functions may provide padding
* and other things depending on data.
*
* Returns: 0 or an errorcode.
* In case of 0 the function returns a new SEXP with the
* signature value; the structure of this signature depends on the
* other arguments but is always suitable to be passed to
* gcry_pk_verify
*
* s_hash = (<mpi>)
* s_skey = <key-as-defined-in-sexp_to_key>
* r_sig = (sig-val
* (<algo>
* (<param_name1> <mpi>)
* ...
* (<param_namen> <mpi>)
* ))
*/
int
gcry_pk_sign( GCRY_SEXP *r_sig, GCRY_SEXP s_hash, GCRY_SEXP s_skey )
{
MPI *skey, hash;
MPI *result;
int i, algo, rc;
const char *algo_name, *algo_elems;
rc = sexp_to_key( s_skey, 1, &skey, &algo );
if( rc )
return rc;
/* get the name and the required size of the result array */
for(i=0; (algo_name = sig_info_table[i].name); i++ ) {
if( sig_info_table[i].algo == algo )
break;
}
if( !algo_name ) {
release_mpi_array( skey );
return -4; /* oops: unknown algorithm */
}
algo_elems = sig_info_table[i].elements;
/* get the stuff we want to sign */
hash = gcry_sexp_nth_mpi( s_hash, 0, 0 );
if( !hash ) {
release_mpi_array( skey );
return -1; /* fixme: get a real errorcode for this */
}
result = g10_xcalloc( (strlen(algo_elems)+1) , sizeof *result );
rc = pubkey_sign( algo, result, hash, skey );
release_mpi_array( skey );
mpi_free( hash );
if( rc ) {
g10_free( result );
return rc;
}
{
char *string, *p;
size_t nelem, needed= strlen(algo_name) + 20;
/* count elements, so that we can allocate enough space */
for(nelem=0; algo_elems[nelem]; nelem++ )
needed += 10; /* 6 + a safety margin */
/* build the string */
string = p = g10_xmalloc ( needed );
p = stpcpy ( p, "(sig-val(" );
p = stpcpy ( p, algo_name );
for(i=0; algo_elems[i]; i++ ) {
*p++ = '(';
*p++ = algo_elems[i];
p = stpcpy ( p, "%m)" );
}
strcpy ( p, "))" );
/* and now the ugly part: we don't have a function to
* pass an array to a format string, so we have to do it this way :-(
*/
switch ( nelem ) {
case 1: rc = gcry_sexp_build ( r_sig, NULL, string,
result[0]
); break;
case 2: rc = gcry_sexp_build ( r_sig, NULL, string,
result[0], result[1]
); break;
case 3: rc = gcry_sexp_build ( r_sig, NULL, string,
result[0], result[1], result[2]
); break;
case 4: rc = gcry_sexp_build ( r_sig, NULL, string,
result[0], result[1], result[2], result[3]
); break;
case 5: rc = gcry_sexp_build ( r_sig, NULL, string,
result[0], result[1], result[2], result[3], result[4]
); break;
case 6: rc = gcry_sexp_build ( r_sig, NULL, string,
result[0], result[1], result[2], result[3], result[4], result[5]
); break;
default: BUG ();
}
if ( rc )
BUG ();
g10_free ( string );
}
release_mpi_array( result );
g10_free( result );
return 0;
}
/****************
* Verify a sgnature. Caller has to supply the public key pkey,
* the signature sig and his hashvalue data. Public key has to be
* a standard public key given as an S-Exp, sig is a S-Exp as returned
* from gcry_pk_sign and data must be an S-Exp like the one in sign too.
*/
int
gcry_pk_verify( GCRY_SEXP s_sig, GCRY_SEXP s_hash, GCRY_SEXP s_pkey )
{
MPI *pkey, hash, *sig;
int algo, sigalgo;
int rc;
rc = sexp_to_key( s_pkey, 0, &pkey, &algo );
if( rc )
return rc;
rc = sexp_to_sig( s_sig, &sig, &sigalgo );
if( rc ) {
release_mpi_array( pkey );
return rc;
}
if( algo != sigalgo ) {
release_mpi_array( pkey );
release_mpi_array( sig );
return -1; /* fixme: add real errornumber - algo does not match */
}
hash = gcry_sexp_nth_mpi( s_hash, 0, 0 );
if( !hash ) {
release_mpi_array( pkey );
release_mpi_array( sig );
return -1; /* fixme: get a real errorcode for this */
}
rc = pubkey_verify( algo, hash, sig, pkey, NULL, NULL );
release_mpi_array( pkey );
release_mpi_array( sig );
mpi_free(hash);
return rc;
}
/****************
* Test a key. This may be used either for a public or a secret key
* to see whether internal structre is valid.
*
* Returns: 0 or an errorcode.
*
* s_key = <key-as-defined-in-sexp_to_key>
*/
int
gcry_pk_testkey( GCRY_SEXP s_key )
{
MPI *key;
int rc, algo;
/* Note we currently support only secret key checking */
rc = sexp_to_key( s_key, 1, &key, &algo );
if( rc ) {
return rc;
}
rc = pubkey_check_secret_key( algo, key );
release_mpi_array( key );
return rc;
}
/****************
* Create a public key pair and return it in r_key.
* How the key is created depends on s_parms:
* (genkey
* (algo
* (parameter_name_1 ....)
* ....
* (parameter_name_n ....)
* ))
* The key is returned in a format depending on the
* algorithm. Both, private and secret keys are returned
* and optionally some additional informatin.
* For elgamal we return this structure:
* (key-data
* (public-key
* (elg
* (p <mpi>)
* (g <mpi>)
* (y <mpi>)
* )
* )
* (private-key
* (elg
* (p <mpi>)
* (g <mpi>)
* (y <mpi>)
* (x <mpi>)
* )
* )
* (misc-key-info
* (pm1-factors n1 n2 ... nn)
* )
* )
*/
int
gcry_pk_genkey( GCRY_SEXP *r_key, GCRY_SEXP s_parms )
{
GCRY_SEXP list, l2;
const char *name;
const char *s;
size_t n;
int rc, i;
const char *algo_name;
int algo;
char sec_elems[20], pub_elems[20]; /* fixme: check bounds */
GCRY_MPI skey[10], *factors;
unsigned int nbits;
list = gcry_sexp_find_token( s_parms, "genkey", 0 );
if( !list )
return GCRYERR_INV_OBJ; /* Does not contain genkey data */
l2 = gcry_sexp_cadr( list );
gcry_sexp_release ( list );
list = l2;
if( !list )
return GCRYERR_NO_OBJ; /* no cdr for the genkey */
name = gcry_sexp_nth_data( list, 0, &n );
if( !name ) {
gcry_sexp_release ( list );
return GCRYERR_INV_OBJ; /* algo string missing */
}
for(i=0; (s=algo_info_table[i].name); i++ ) {
if( strlen(s) == n && !memcmp( s, name, n ) )
break;
}
if( !s ) {
gcry_sexp_release ( list );
return GCRYERR_INV_PK_ALGO; /* unknown algorithm */
}
algo = algo_info_table[i].algo;
algo_name = algo_info_table[i].name;
strcpy( pub_elems, algo_info_table[i].common_elements );
strcat( pub_elems, algo_info_table[i].public_elements );
strcpy( sec_elems, algo_info_table[i].common_elements );
strcat( sec_elems, algo_info_table[i].secret_elements );
l2 = gcry_sexp_find_token( list, "nbits", 0 );
gcry_sexp_release ( list );
list = l2;
if( !list )
return GCRYERR_NO_OBJ; /* no nbits parameter */
name = gcry_sexp_nth_data( list, 1, &n );
if( !name ) {
gcry_sexp_release ( list );
return GCRYERR_INV_OBJ; /* nbits without a cdr */
}
{
char *p = g10_xmalloc(n+1);
memcpy(p, name, n );
p[n] = 0;
nbits = (unsigned int)strtol( p, NULL, 0 );
g10_free( p );
}
gcry_sexp_release ( list );
rc = pubkey_generate( algo, nbits, skey, &factors );
if( rc ) {
return rc;
}
{
char *string, *p;
size_t nelem=0, needed=0;
GCRY_MPI mpis[30];
/* count elements, so that we can allocate enough space */
for(i=0; pub_elems[i]; i++, nelem++ )
needed += 10; /* 6 + a safety margin */
for(i=0; sec_elems[i]; i++, nelem++ )
needed += 10; /* 6 + a safety margin */
for(i=0; factors[i]; i++, nelem++ )
needed += 10; /* 6 + a safety margin */
needed += 2* strlen(algo_name) + 300;
if ( nelem > DIM(mpis) )
BUG ();
/* build the string */
nelem = 0;
string = p = g10_xmalloc ( needed );
p = stpcpy ( p, "(key-data" );
p = stpcpy ( p, "(public-key(" );
p = stpcpy ( p, algo_name );
for(i=0; pub_elems[i]; i++ ) {
*p++ = '(';
*p++ = pub_elems[i];
p = stpcpy ( p, "%m)" );
mpis[nelem++] = skey[i];
}
p = stpcpy ( p, "))" );
p = stpcpy ( p, "(private-key(" );
p = stpcpy ( p, algo_name );
for(i=0; sec_elems[i]; i++ ) {
*p++ = '(';
*p++ = sec_elems[i];
p = stpcpy ( p, "%m)" );
mpis[nelem++] = skey[i];
}
p = stpcpy ( p, "))" );
/* Very ugly hack to make release_mpi_array() work FIXME */
skey[i] = NULL;
p = stpcpy ( p, "(misc-key-info(pm1-factors" );
for(i=0; factors[i]; i++ ) {
p = stpcpy ( p, "%m" );
mpis[nelem++] = factors[i];
}
strcpy ( p, ")))" );
while ( nelem < DIM(mpis) )
mpis[nelem++] = NULL;
/* and now the ugly part: we don't have a function to
* pass an array to a format string, so we have just pass everything
* we have. which normally should be no problem as only those
* with a corresponding %m are used
*/
if ( gcry_sexp_build ( r_key, NULL, string,
mpis[0], mpis[1], mpis[2], mpis[3], mpis[4], mpis[5],
mpis[6], mpis[7], mpis[8], mpis[9], mpis[10], mpis[11],
mpis[12], mpis[13], mpis[14], mpis[15], mpis[16], mpis[17],
mpis[18], mpis[19], mpis[20], mpis[21], mpis[22], mpis[23],
mpis[24], mpis[25], mpis[26], mpis[27], mpis[28], mpis[29]
) )
BUG ();
assert ( DIM(mpis) == 30 );
g10_free ( string );
}
release_mpi_array ( skey );
release_mpi_array ( factors );
return 0;
}
/****************
* Get the number of nbits from the public key
* Hmmm: Should we have really this function or is it
* better to have a more general function to retrieve
* different propoerties of the key?
*/
unsigned int
gcry_pk_get_nbits( GCRY_SEXP key )
{
int rc, i, algo;
MPI *keyarr;
unsigned int nbits = 0;
rc = sexp_to_key( key, 0, &keyarr, &algo );
if( rc == GCRYERR_INV_OBJ )
rc = sexp_to_key( key, 0, &keyarr, &algo );
if( rc )
return 0;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
nbits = (*pubkey_table[i].get_nbits)( algo, keyarr );
goto leave;
}
} while( load_pubkey_modules() );
if( is_RSA(algo) ) /* we always wanna see the length of a key :-) */
nbits = mpi_get_nbits( keyarr[0] );
leave:
release_mpi_array( keyarr );
return nbits;
}
int
gcry_pk_ctl( int cmd, void *buffer, size_t buflen)
{
switch( cmd ) {
case GCRYCTL_DISABLE_ALGO:
/* this one expects a buffer pointing to an
* integer with the algo number.
*/
if( !buffer || buflen != sizeof(int) )
return set_lasterr( GCRYERR_INV_CIPHER_ALGO );
disable_pubkey_algo( *(int*)buffer );
break;
default:
return set_lasterr( GCRYERR_INV_OP );
}
return 0;
}
/****************
* Return information about the given algorithm
* WHAT select the kind of information returned:
* GCRYCTL_TEST_ALGO:
* Returns 0 when the specified algorithm is available for use.
* Buffer must be NULL, nbytes may have the address of a variable
* with the required usage of the algorithm. It may be 0 for don't
* care or a combination of the GCRY_PK_USAGE_xxx flags;
* GCRYCTL_GET_ALGO_USAGE:
* Return the usage glafs for the give algo. An invalid alog
* does return 0. Disabled algos are ignored here becuase we
* only want to know whether the algo is at all capable of
* the usage.
*
* On error the value -1 is returned and the error reason may be
* retrieved by gcry_errno().
* Note: Because this function is in most caes used to return an
* integer value, we can make it easier for the caller to just look at
* the return value. The caller will in all cases consult the value
* and thereby detecting whether a error occured or not (i.e. while checking
* the block size)
*/
int
gcry_pk_algo_info( int algo, int what, void *buffer, size_t *nbytes)
{
switch( what ) {
case GCRYCTL_TEST_ALGO: {
int use = nbytes? *nbytes: 0;
if( buffer ) {
set_lasterr( GCRYERR_INV_ARG );
return -1;
}
if( check_pubkey_algo( algo, use ) ) {
set_lasterr( GCRYERR_INV_PK_ALGO );
return -1;
}
}
break;
case GCRYCTL_GET_ALGO_USAGE:
do {
int i;
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].use;
} while( load_pubkey_modules() );
return 0;
case GCRYCTL_GET_ALGO_NPKEY: return pubkey_get_npkey( algo );
case GCRYCTL_GET_ALGO_NSKEY: return pubkey_get_nskey( algo );
case GCRYCTL_GET_ALGO_NSIGN: return pubkey_get_nsig( algo );
case GCRYCTL_GET_ALGO_NENCR: return pubkey_get_nenc( algo );
default:
set_lasterr( GCRYERR_INV_OP );
return -1;
}
return 0;
}