mirror of
git://git.gnupg.org/gnupg.git
synced 2025-01-23 15:07:03 +01:00
194 lines
4.9 KiB
C
194 lines
4.9 KiB
C
/* primegen.c - prime number generator
|
|
* Copyright (c) 1997 by Werner Koch (dd9jn)
|
|
*
|
|
* This file is part of G10.
|
|
*
|
|
* G10 is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* G10 is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include "util.h"
|
|
#include "mpi.h"
|
|
#include "cipher.h"
|
|
|
|
static int no_of_small_prime_numbers;
|
|
static int is_not_prime( MPI n, unsigned nbits, int steps, int *count );
|
|
static MPI gen_prime( unsigned nbits, int mode );
|
|
|
|
|
|
/****************
|
|
* Generate a prime number (stored in secure memory)
|
|
*/
|
|
MPI
|
|
generate_secret_prime( unsigned nbits )
|
|
{
|
|
return gen_prime( nbits, 1 );
|
|
}
|
|
|
|
MPI
|
|
generate_public_prime( unsigned nbits )
|
|
{
|
|
return gen_prime( nbits, 0 );
|
|
}
|
|
|
|
static MPI
|
|
gen_prime( unsigned nbits, int secret )
|
|
{
|
|
unsigned nlimbs;
|
|
MPI prime, val_2, val_3, result;
|
|
int i;
|
|
unsigned x, step;
|
|
unsigned count1, count2;
|
|
int *mods;
|
|
|
|
if( DBG_CIPHER )
|
|
log_debug("generate a prime of %u bits ", nbits );
|
|
|
|
if( !no_of_small_prime_numbers ) {
|
|
for(i=0; small_prime_numbers[i]; i++ )
|
|
no_of_small_prime_numbers++;
|
|
}
|
|
mods = m_alloc( no_of_small_prime_numbers * sizeof *mods );
|
|
/* make nbits fit into MPI implementation */
|
|
nlimbs = (nbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB;
|
|
assert( nlimbs );
|
|
val_2 = mpi_alloc( nlimbs );
|
|
mpi_set_ui(val_2, 2);
|
|
val_3 = mpi_alloc( nlimbs );
|
|
mpi_set_ui(val_3, 3);
|
|
result = mpi_alloc( nlimbs );
|
|
prime = secret? mpi_alloc_secure( nlimbs ): mpi_alloc( nlimbs );
|
|
count1 = count2 = 0;
|
|
/* enter (endless) loop */
|
|
for(;;) {
|
|
/* generate a random number */
|
|
mpi_set_bytes( prime, nbits, get_random_byte, 2 );
|
|
/* set high order bit to 1, set low order bit to 1 */
|
|
mpi_set_bit( prime, nbits-1 );
|
|
mpi_set_bit( prime, 0 );
|
|
|
|
/* calculate all remainders */
|
|
for(i=0; (x = small_prime_numbers[i]); i++ )
|
|
mods[i] = mpi_fdiv_r_ui(NULL, prime, x);
|
|
|
|
for(step=0; step < 20000; step += 2 ) {
|
|
/* check against all the small primes we have in mods */
|
|
count1++;
|
|
for(i=0; (x = small_prime_numbers[i]); i++ ) {
|
|
while( mods[i] + step >= x )
|
|
mods[i] -= x;
|
|
if( !(mods[i] + step) )
|
|
break;
|
|
}
|
|
if( x )
|
|
continue; /* found a multiple of a already known prime */
|
|
fputc('.', stderr);
|
|
|
|
mpi_add_ui( prime, prime, step );
|
|
|
|
/* do a Fermat test */
|
|
count2++;
|
|
mpi_powm( result, val_2, prime, prime );
|
|
if( mpi_cmp_ui(result, 2) )
|
|
continue; /* stepping (fermat test failed) */
|
|
fputc('+', stderr);
|
|
|
|
/* perform stronger tests */
|
|
if( !is_not_prime(prime, nbits, 5, &count2 ) ) {
|
|
if( !mpi_test_bit( prime, nbits-1 ) ) {
|
|
if( DBG_CIPHER ) {
|
|
fputc('\n', stderr);
|
|
log_debug("overflow in prime generation\n");
|
|
break; /* step loop, cont with a new prime */
|
|
}
|
|
}
|
|
|
|
fputc('\n', stderr);
|
|
if( DBG_CIPHER ) {
|
|
log_debug("performed %u simple and %u stronger tests\n",
|
|
count1, count2 );
|
|
log_mpidump("found prime: ", prime );
|
|
}
|
|
|
|
mpi_free(val_2);
|
|
mpi_free(val_3);
|
|
mpi_free(result);
|
|
m_free(mods);
|
|
return prime;
|
|
}
|
|
}
|
|
fputc(':', stderr); /* restart with a new random value */
|
|
}
|
|
}
|
|
|
|
|
|
/****************
|
|
* Return 1 if n is not a prime
|
|
*/
|
|
static int
|
|
is_not_prime( MPI n, unsigned nbits, int steps, int *count )
|
|
{
|
|
MPI x = mpi_alloc( mpi_get_nlimbs( n ) );
|
|
MPI y = mpi_alloc( mpi_get_nlimbs( n ) );
|
|
MPI z = mpi_alloc( mpi_get_nlimbs( n ) );
|
|
MPI nminus1 = mpi_alloc( mpi_get_nlimbs( n ) );
|
|
MPI a2 = mpi_alloc_set_ui( 2 );
|
|
MPI q;
|
|
unsigned i, j, k;
|
|
int rc = 1;
|
|
|
|
mpi_sub_ui( nminus1, n, 1 );
|
|
|
|
/* find q and k, so that n = 1 + 2^k * q */
|
|
q = mpi_copy( nminus1 );
|
|
k = mpi_trailing_zeros( q );
|
|
mpi_tdiv_q_2exp(q, q, k);
|
|
|
|
for(i=0 ; i < steps; i++ ) {
|
|
++*count;
|
|
do {
|
|
mpi_set_bytes( x, nbits, get_random_byte, 0 );
|
|
} while( mpi_cmp( x, n ) < 0 && mpi_cmp_ui( x, 1 ) > 0 );
|
|
mpi_powm( y, x, q, n);
|
|
if( mpi_cmp_ui(y, 1) && mpi_cmp( y, nminus1 ) ) {
|
|
for( j=1; j < k; j++ ) {
|
|
mpi_powm(y, y, a2, n);
|
|
if( !mpi_cmp_ui( y, 1 ) )
|
|
goto leave; /* not a prime */
|
|
if( !mpi_cmp( y, nminus1 ) )
|
|
break; /* may be a prime */
|
|
}
|
|
if( j == k )
|
|
goto leave;
|
|
}
|
|
fputc('+', stderr);
|
|
}
|
|
rc = 0; /* may be a prime */
|
|
|
|
leave:
|
|
mpi_free( x );
|
|
mpi_free( y );
|
|
mpi_free( z );
|
|
mpi_free( nminus1 );
|
|
mpi_free( q );
|
|
|
|
return rc;
|
|
}
|
|
|