1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-10-30 19:58:44 +01:00
gnupg/sm/encrypt.c
Werner Koch f0e127defb
sm: Flag Brainpool curves as compliant for all other operations.
* sm/fingerprint.c (gpgsm_get_key_algo_info2): Rename to
(gpgsm_get_key_algo_info): this.  Remove the old wrapper.  Adjust all
callers.
* sm/decrypt.c (gpgsm_decrypt): Pass the curve to the compliance
checker.
* sm/encrypt.c (gpgsm_encrypt): Ditto.
* sm/sign.c (gpgsm_sign): Ditto.
* sm/verify.c (gpgsm_verify): Ditto.
--

GnuPG-bug-id: 6253
2023-10-24 14:51:16 +02:00

893 lines
24 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* encrypt.c - Encrypt a message
* Copyright (C) 2001, 2003, 2004, 2007, 2008,
* 2010 Free Software Foundation, Inc.
* Copyright (C) 2001-2019 Werner Koch
* Copyright (C) 2015-2020 g10 Code GmbH
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <time.h>
#include <assert.h>
#include "gpgsm.h"
#include <gcrypt.h>
#include <ksba.h>
#include "keydb.h"
#include "../common/i18n.h"
#include "../common/compliance.h"
struct dek_s {
const char *algoid;
int algo;
gcry_cipher_hd_t chd;
char key[32];
int keylen;
char iv[32];
int ivlen;
};
typedef struct dek_s *DEK;
/* Callback parameters for the encryption. */
struct encrypt_cb_parm_s
{
estream_t fp;
DEK dek;
int eof_seen;
int ready;
int readerror;
int bufsize;
unsigned char *buffer;
int buflen;
};
/* Initialize the data encryption key (session key). */
static int
init_dek (DEK dek)
{
int rc=0, mode, i;
dek->algo = gcry_cipher_map_name (dek->algoid);
mode = gcry_cipher_mode_from_oid (dek->algoid);
if (!dek->algo || !mode)
{
log_error ("unsupported algorithm '%s'\n", dek->algoid);
return gpg_error (GPG_ERR_UNSUPPORTED_ALGORITHM);
}
/* Extra check for algorithms we consider to be too weak for
encryption, although we support them for decryption. Note that
there is another check below discriminating on the key length. */
switch (dek->algo)
{
case GCRY_CIPHER_DES:
case GCRY_CIPHER_RFC2268_40:
log_error ("cipher algorithm '%s' not allowed: too weak\n",
gnupg_cipher_algo_name (dek->algo));
return gpg_error (GPG_ERR_UNSUPPORTED_ALGORITHM);
default:
break;
}
dek->keylen = gcry_cipher_get_algo_keylen (dek->algo);
if (!dek->keylen || dek->keylen > sizeof (dek->key))
return gpg_error (GPG_ERR_BUG);
dek->ivlen = gcry_cipher_get_algo_blklen (dek->algo);
if (!dek->ivlen || dek->ivlen > sizeof (dek->iv))
return gpg_error (GPG_ERR_BUG);
/* Make sure we don't use weak keys. */
if (dek->keylen < 100/8)
{
log_error ("key length of '%s' too small\n", dek->algoid);
return gpg_error (GPG_ERR_UNSUPPORTED_ALGORITHM);
}
rc = gcry_cipher_open (&dek->chd, dek->algo, mode, GCRY_CIPHER_SECURE);
if (rc)
{
log_error ("failed to create cipher context: %s\n", gpg_strerror (rc));
return rc;
}
for (i=0; i < 8; i++)
{
gcry_randomize (dek->key, dek->keylen, GCRY_STRONG_RANDOM );
rc = gcry_cipher_setkey (dek->chd, dek->key, dek->keylen);
if (gpg_err_code (rc) != GPG_ERR_WEAK_KEY)
break;
log_info(_("weak key created - retrying\n") );
}
if (rc)
{
log_error ("failed to set the key: %s\n", gpg_strerror (rc));
gcry_cipher_close (dek->chd);
dek->chd = NULL;
return rc;
}
gcry_create_nonce (dek->iv, dek->ivlen);
rc = gcry_cipher_setiv (dek->chd, dek->iv, dek->ivlen);
if (rc)
{
log_error ("failed to set the IV: %s\n", gpg_strerror (rc));
gcry_cipher_close (dek->chd);
dek->chd = NULL;
return rc;
}
return 0;
}
/* Encrypt an RSA session key. */
static int
encode_session_key (DEK dek, gcry_sexp_t * r_data)
{
gcry_sexp_t data;
char *p;
int rc;
p = xtrymalloc (64 + 2 * dek->keylen);
if (!p)
return gpg_error_from_syserror ();
strcpy (p, "(data\n (flags pkcs1)\n (value #");
bin2hex (dek->key, dek->keylen, p + strlen (p));
strcat (p, "#))\n");
rc = gcry_sexp_sscan (&data, NULL, p, strlen (p));
xfree (p);
*r_data = data;
return rc;
}
/* Encrypt DEK using ECDH. S_PKEY is the public key. On success the
* result is stored at R_ENCVAL. Example of a public key:
*
* (public-key (ecc (curve "1.3.132.0.34") (q #04B0[...]B8#)))
*
*/
static gpg_error_t
ecdh_encrypt (DEK dek, gcry_sexp_t s_pkey, gcry_sexp_t *r_encval)
{
gpg_error_t err;
gcry_sexp_t l1;
char *curvebuf = NULL;
const char *curve;
unsigned int curvebits;
const char *encr_algo_str;
const char *wrap_algo_str;
int hash_algo, cipher_algo;
unsigned int keylen, hashlen;
unsigned char key[32];
gcry_sexp_t s_data = NULL;
gcry_sexp_t s_encr = NULL;
gcry_buffer_t ioarray[2] = { {0}, {0} };
unsigned char *secret; /* Alias for ioarray[0]. */
unsigned int secretlen;
unsigned char *pubkey; /* Alias for ioarray[1]. */
unsigned int pubkeylen;
gcry_cipher_hd_t cipher_hd = NULL;
unsigned char *result = NULL;
unsigned int resultlen;
*r_encval = NULL;
/* Figure out the encryption and wrap algo OIDs. */
/* Get the curve name if any, */
l1 = gcry_sexp_find_token (s_pkey, "curve", 0);
if (l1)
{
curvebuf = gcry_sexp_nth_string (l1, 1);
gcry_sexp_release (l1);
}
if (!curvebuf)
{
err = gpg_error (GPG_ERR_INV_CURVE);
log_error ("%s: invalid public key: no curve\n", __func__);
goto leave;
}
/* We need to use our OpenPGP mapping to turn a curve name into its
* canonical numerical OID. We also use this to get the size of the
* curve which we need to figure out a suitable hash algo. We
* should have a Libgcrypt function to do this; see bug report #4926. */
curve = openpgp_curve_to_oid (curvebuf, &curvebits, NULL);
if (!curve)
{
err = gpg_error (GPG_ERR_UNKNOWN_CURVE);
log_error ("%s: invalid public key: %s\n", __func__, gpg_strerror (err));
goto leave;
}
xfree (curvebuf);
curvebuf = NULL;
/* Our mapping matches the recommended algorithms from RFC-5753 but
* not supporing the short curves which would require 3DES. */
if (curvebits < 255)
{
err = gpg_error (GPG_ERR_UNKNOWN_CURVE);
log_error ("%s: curve '%s' is not supported\n", __func__, curve);
goto leave;
}
else if (curvebits <= 256)
{
/* dhSinglePass-stdDH-sha256kdf-scheme */
encr_algo_str = "1.3.132.1.11.1";
wrap_algo_str = "2.16.840.1.101.3.4.1.5";
hash_algo = GCRY_MD_SHA256;
hashlen = 32;
cipher_algo = GCRY_CIPHER_AES128;
keylen = 16;
}
else if (curvebits <= 384)
{
/* dhSinglePass-stdDH-sha384kdf-scheme */
encr_algo_str = "1.3.132.1.11.2";
wrap_algo_str = "2.16.840.1.101.3.4.1.25";
hash_algo = GCRY_MD_SHA384;
hashlen = 48;
cipher_algo = GCRY_CIPHER_AES256;
keylen = 24;
}
else
{
/* dhSinglePass-stdDH-sha512kdf-scheme*/
encr_algo_str = "1.3.132.1.11.3";
wrap_algo_str = "2.16.840.1.101.3.4.1.45";
hash_algo = GCRY_MD_SHA512;
hashlen = 64;
cipher_algo = GCRY_CIPHER_AES256;
keylen = 32;
}
/* Create a secret and an ephemeral key. */
{
char *k;
k = gcry_random_bytes_secure ((curvebits+7)/8, GCRY_STRONG_RANDOM);
if (DBG_CRYPTO)
log_printhex (k, (curvebits+7)/8, "ephm. k .:");
err = gcry_sexp_build (&s_data, NULL, "%b", (int)(curvebits+7)/8, k);
xfree (k);
}
if (err)
{
log_error ("%s: error building ephemeral secret: %s\n",
__func__, gpg_strerror (err));
goto leave;
}
err = gcry_pk_encrypt (&s_encr, s_data, s_pkey);
if (err)
{
log_error ("%s: error encrypting ephemeral secret: %s\n",
__func__, gpg_strerror (err));
goto leave;
}
err = gcry_sexp_extract_param (s_encr, NULL, "&se",
&ioarray+0, ioarray+1, NULL);
if (err)
{
log_error ("%s: error extracting ephemeral key and secret: %s\n",
__func__, gpg_strerror (err));
goto leave;
}
secret = ioarray[0].data;
secretlen = ioarray[0].len;
pubkey = ioarray[1].data;
pubkeylen = ioarray[1].len;
if (DBG_CRYPTO)
{
log_printhex (pubkey, pubkeylen, "pubkey ..:");
log_printhex (secret, secretlen, "secret ..:");
}
/* Extract X coordinate from SECRET. */
if (secretlen < 5) /* 5 because N could be reduced to (n-1)/2. */
err = gpg_error (GPG_ERR_BAD_DATA);
else if (*secret == 0x04)
{
secretlen--;
memmove (secret, secret+1, secretlen);
if ((secretlen & 1))
{
err = gpg_error (GPG_ERR_BAD_DATA);
goto leave;
}
secretlen /= 2;
}
else if (*secret == 0x40 || *secret == 0x41)
{
secretlen--;
memmove (secret, secret+1, secretlen);
}
else
err = gpg_error (GPG_ERR_BAD_DATA);
if (err)
goto leave;
if (DBG_CRYPTO)
log_printhex (secret, secretlen, "ECDH X ..:");
/* Derive a KEK (key wrapping key) using MESSAGE and SECRET_X.
* According to SEC1 3.6.1 we should check that
* SECRETLEN + UKMLEN + 4 < maxhashlen
* However, we have no practical limit on the hash length and thus
* there is no point in checking this. The second check that
* KEYLEN < hashlen*(2^32-1)
* is obviously also not needed. Because with our allowed
* parameters KEYLEN is always less or equal to HASHLEN so that we
* do not need to iterate at all.
*/
log_assert (gcry_md_get_algo_dlen (hash_algo) == hashlen);
{
gcry_md_hd_t hash_hd;
err = gcry_md_open (&hash_hd, hash_algo, 0);
if (err)
goto leave;
gcry_md_write(hash_hd, secret, secretlen);
gcry_md_write(hash_hd, "\x00\x00\x00\x01", 4); /* counter */
err = hash_ecc_cms_shared_info (hash_hd, wrap_algo_str, keylen, NULL, 0);
gcry_md_final (hash_hd);
log_assert (keylen <= sizeof key && keylen <= hashlen);
memcpy (key, gcry_md_read (hash_hd, 0), keylen);
gcry_md_close (hash_hd);
if (err)
goto leave;
}
if (DBG_CRYPTO)
log_printhex (key, keylen, "KEK .....:");
/* Wrap the key. */
if ((dek->keylen % 8) || dek->keylen < 16)
{
log_error ("%s: can't use a session key of %u bytes\n",
__func__, dek->keylen);
err = gpg_error (GPG_ERR_BAD_DATA);
goto leave;
}
resultlen = dek->keylen + 8;
result = xtrymalloc_secure (resultlen);
if (!result)
{
err = gpg_error_from_syserror ();
goto leave;
}
err = gcry_cipher_open (&cipher_hd, cipher_algo, GCRY_CIPHER_MODE_AESWRAP, 0);
if (err)
{
log_error ("%s: failed to initialize AESWRAP: %s\n",
__func__, gpg_strerror (err));
goto leave;
}
err = gcry_cipher_setkey (cipher_hd, key, keylen);
wipememory (key, sizeof key);
if (err)
{
log_error ("%s: failed in gcry_cipher_setkey: %s\n",
__func__, gpg_strerror (err));
goto leave;
}
err = gcry_cipher_encrypt (cipher_hd, result, resultlen,
dek->key, dek->keylen);
if (err)
{
log_error ("%s: failed in gcry_cipher_encrypt: %s\n",
__func__, gpg_strerror (err));
goto leave;
}
if (DBG_CRYPTO)
log_printhex (result, resultlen, "w(CEK) ..:");
err = gcry_sexp_build (r_encval, NULL,
"(enc-val(ecdh(e%b)(s%b)(encr-algo%s)(wrap-algo%s)))",
(int)pubkeylen, pubkey,
(int)resultlen, result,
encr_algo_str,
wrap_algo_str,
NULL);
if (err)
log_error ("%s: failed building final S-exp: %s\n",
__func__, gpg_strerror (err));
leave:
gcry_cipher_close (cipher_hd);
wipememory (key, sizeof key);
xfree (result);
xfree (ioarray[0].data);
xfree (ioarray[1].data);
gcry_sexp_release (s_data);
gcry_sexp_release (s_encr);
xfree (curvebuf);
return err;
}
/* Encrypt the DEK under the key contained in CERT and return it as a
* canonical S-expressions at ENCVAL. PK_ALGO is the public key
* algorithm which the caller has already retrieved from CERT. */
static int
encrypt_dek (const DEK dek, ksba_cert_t cert, int pk_algo,
unsigned char **encval)
{
gcry_sexp_t s_ciph, s_data, s_pkey;
int rc;
ksba_sexp_t buf;
size_t len;
*encval = NULL;
/* get the key from the cert */
buf = ksba_cert_get_public_key (cert);
if (!buf)
{
log_error ("no public key for recipient\n");
return gpg_error (GPG_ERR_NO_PUBKEY);
}
len = gcry_sexp_canon_len (buf, 0, NULL, NULL);
if (!len)
{
log_error ("libksba did not return a proper S-Exp\n");
return gpg_error (GPG_ERR_BUG);
}
rc = gcry_sexp_sscan (&s_pkey, NULL, (char*)buf, len);
xfree (buf); buf = NULL;
if (rc)
{
log_error ("gcry_sexp_scan failed: %s\n", gpg_strerror (rc));
return rc;
}
if (DBG_CRYPTO)
{
log_printsexp (" pubkey:", s_pkey);
log_printhex (dek->key, dek->keylen, "CEK .....:");
}
/* Put the encoded cleartext into a simple list. */
s_data = NULL; /* (avoid compiler warning) */
if (pk_algo == GCRY_PK_ECC)
{
if (!(opt.compat_flags & COMPAT_ALLOW_ECC_ENCR))
rc = gpg_error (GPG_ERR_NOT_SUPPORTED);
else
rc = ecdh_encrypt (dek, s_pkey, &s_ciph);
}
else
{
rc = encode_session_key (dek, &s_data);
if (rc)
{
log_error ("encode_session_key failed: %s\n", gpg_strerror (rc));
return rc;
}
if (DBG_CRYPTO)
log_printsexp (" data:", s_data);
/* pass it to libgcrypt */
rc = gcry_pk_encrypt (&s_ciph, s_data, s_pkey);
}
gcry_sexp_release (s_data);
gcry_sexp_release (s_pkey);
if (DBG_CRYPTO)
log_printsexp ("enc-val:", s_ciph);
/* Reformat it. */
if (!rc)
{
rc = make_canon_sexp (s_ciph, encval, NULL);
gcry_sexp_release (s_ciph);
}
return rc;
}
/* do the actual encryption */
static int
encrypt_cb (void *cb_value, char *buffer, size_t count, size_t *nread)
{
struct encrypt_cb_parm_s *parm = cb_value;
int blklen = parm->dek->ivlen;
unsigned char *p;
size_t n;
*nread = 0;
if (!buffer)
return -1; /* not supported */
if (parm->ready)
return -1;
if (count < blklen)
BUG ();
if (!parm->eof_seen)
{ /* fillup the buffer */
p = parm->buffer;
for (n=parm->buflen; n < parm->bufsize; n++)
{
int c = es_getc (parm->fp);
if (c == EOF)
{
if (es_ferror (parm->fp))
{
parm->readerror = errno;
return -1;
}
parm->eof_seen = 1;
break;
}
p[n] = c;
}
parm->buflen = n;
}
n = parm->buflen < count? parm->buflen : count;
n = n/blklen * blklen;
if (n)
{ /* encrypt the stuff */
gcry_cipher_encrypt (parm->dek->chd, buffer, n, parm->buffer, n);
*nread = n;
/* Who cares about cycles, take the easy way and shift the buffer */
parm->buflen -= n;
memmove (parm->buffer, parm->buffer+n, parm->buflen);
}
else if (parm->eof_seen)
{ /* no complete block but eof: add padding */
/* fixme: we should try to do this also in the above code path */
int i, npad = blklen - (parm->buflen % blklen);
p = parm->buffer;
for (n=parm->buflen, i=0; n < parm->bufsize && i < npad; n++, i++)
p[n] = npad;
gcry_cipher_encrypt (parm->dek->chd, buffer, n, parm->buffer, n);
*nread = n;
parm->ready = 1;
}
return 0;
}
/* Perform an encrypt operation.
Encrypt the data received on DATA-FD and write it to OUT_FP. The
recipients are take from the certificate given in recplist; if this
is NULL it will be encrypted for a default recipient */
int
gpgsm_encrypt (ctrl_t ctrl, certlist_t recplist, int data_fd, estream_t out_fp)
{
int rc = 0;
gnupg_ksba_io_t b64writer = NULL;
gpg_error_t err;
ksba_writer_t writer;
ksba_reader_t reader = NULL;
ksba_cms_t cms = NULL;
ksba_stop_reason_t stopreason;
KEYDB_HANDLE kh = NULL;
struct encrypt_cb_parm_s encparm;
DEK dek = NULL;
int recpno;
estream_t data_fp = NULL;
certlist_t cl;
int count;
int compliant;
memset (&encparm, 0, sizeof encparm);
audit_set_type (ctrl->audit, AUDIT_TYPE_ENCRYPT);
/* Check that the certificate list is not empty and that at least
one certificate is not flagged as encrypt_to; i.e. is a real
recipient. */
for (cl = recplist; cl; cl = cl->next)
if (!cl->is_encrypt_to)
break;
if (!cl)
{
log_error(_("no valid recipients given\n"));
gpgsm_status (ctrl, STATUS_NO_RECP, "0");
audit_log_i (ctrl->audit, AUDIT_GOT_RECIPIENTS, 0);
rc = gpg_error (GPG_ERR_NO_PUBKEY);
goto leave;
}
for (count = 0, cl = recplist; cl; cl = cl->next)
count++;
audit_log_i (ctrl->audit, AUDIT_GOT_RECIPIENTS, count);
kh = keydb_new ();
if (!kh)
{
log_error (_("failed to allocate keyDB handle\n"));
rc = gpg_error (GPG_ERR_GENERAL);
goto leave;
}
/* Fixme: We should use the unlocked version of the es functions. */
data_fp = es_fdopen_nc (data_fd, "rb");
if (!data_fp)
{
rc = gpg_error_from_syserror ();
log_error ("fdopen() failed: %s\n", strerror (errno));
goto leave;
}
err = ksba_reader_new (&reader);
if (err)
rc = err;
if (!rc)
rc = ksba_reader_set_cb (reader, encrypt_cb, &encparm);
if (rc)
goto leave;
encparm.fp = data_fp;
ctrl->pem_name = "ENCRYPTED MESSAGE";
rc = gnupg_ksba_create_writer
(&b64writer, ((ctrl->create_pem? GNUPG_KSBA_IO_PEM : 0)
| (ctrl->create_base64? GNUPG_KSBA_IO_BASE64 : 0)),
ctrl->pem_name, out_fp, &writer);
if (rc)
{
log_error ("can't create writer: %s\n", gpg_strerror (rc));
goto leave;
}
gnupg_ksba_set_progress_cb (b64writer, gpgsm_progress_cb, ctrl);
if (ctrl->input_size_hint)
gnupg_ksba_set_total (b64writer, ctrl->input_size_hint);
err = ksba_cms_new (&cms);
if (err)
{
rc = err;
goto leave;
}
err = ksba_cms_set_reader_writer (cms, reader, writer);
if (err)
{
log_error ("ksba_cms_set_reader_writer failed: %s\n",
gpg_strerror (err));
rc = err;
goto leave;
}
audit_log (ctrl->audit, AUDIT_GOT_DATA);
/* We are going to create enveloped data with uninterpreted data as
inner content */
err = ksba_cms_set_content_type (cms, 0, KSBA_CT_ENVELOPED_DATA);
if (!err)
err = ksba_cms_set_content_type (cms, 1, KSBA_CT_DATA);
if (err)
{
log_error ("ksba_cms_set_content_type failed: %s\n",
gpg_strerror (err));
rc = err;
goto leave;
}
/* Check compliance. */
if (!gnupg_cipher_is_allowed
(opt.compliance, 1, gcry_cipher_map_name (opt.def_cipher_algoid),
gcry_cipher_mode_from_oid (opt.def_cipher_algoid)))
{
log_error (_("cipher algorithm '%s' may not be used in %s mode\n"),
opt.def_cipher_algoid,
gnupg_compliance_option_string (opt.compliance));
rc = gpg_error (GPG_ERR_CIPHER_ALGO);
goto leave;
}
if (!gnupg_rng_is_compliant (opt.compliance))
{
rc = gpg_error (GPG_ERR_FORBIDDEN);
log_error (_("%s is not compliant with %s mode\n"),
"RNG",
gnupg_compliance_option_string (opt.compliance));
gpgsm_status_with_error (ctrl, STATUS_ERROR,
"random-compliance", rc);
goto leave;
}
/* Create a session key */
dek = xtrycalloc_secure (1, sizeof *dek);
if (!dek)
rc = out_of_core ();
else
{
dek->algoid = opt.def_cipher_algoid;
rc = init_dek (dek);
}
if (rc)
{
log_error ("failed to create the session key: %s\n",
gpg_strerror (rc));
goto leave;
}
err = ksba_cms_set_content_enc_algo (cms, dek->algoid, dek->iv, dek->ivlen);
if (err)
{
log_error ("ksba_cms_set_content_enc_algo failed: %s\n",
gpg_strerror (err));
rc = err;
goto leave;
}
encparm.dek = dek;
/* Use a ~8k (AES) or ~4k (3DES) buffer */
encparm.bufsize = 500 * dek->ivlen;
encparm.buffer = xtrymalloc (encparm.bufsize);
if (!encparm.buffer)
{
rc = out_of_core ();
goto leave;
}
audit_log_s (ctrl->audit, AUDIT_SESSION_KEY, dek->algoid);
compliant = gnupg_cipher_is_compliant (CO_DE_VS, dek->algo,
GCRY_CIPHER_MODE_CBC);
/* Gather certificates of recipients, encrypt the session key for
each and store them in the CMS object */
for (recpno = 0, cl = recplist; cl; recpno++, cl = cl->next)
{
unsigned char *encval;
unsigned int nbits;
int pk_algo;
char *curve = NULL;
/* Check compliance. */
pk_algo = gpgsm_get_key_algo_info (cl->cert, &nbits, &curve);
if (!gnupg_pk_is_compliant (opt.compliance, pk_algo, 0,
NULL, nbits, curve))
{
char kidstr[10+1];
snprintf (kidstr, sizeof kidstr, "0x%08lX",
gpgsm_get_short_fingerprint (cl->cert, NULL));
log_info (_("WARNING: key %s is not suitable for encryption"
" in %s mode\n"),
kidstr,
gnupg_compliance_option_string (opt.compliance));
}
/* Fixme: When adding ECC we need to provide the curvename and
* the key to gnupg_pk_is_compliant. */
if (compliant
&& !gnupg_pk_is_compliant (CO_DE_VS, pk_algo, 0, NULL, nbits, curve))
compliant = 0;
xfree (curve);
curve = NULL;
rc = encrypt_dek (dek, cl->cert, pk_algo, &encval);
if (rc)
{
audit_log_cert (ctrl->audit, AUDIT_ENCRYPTED_TO, cl->cert, rc);
log_error ("encryption failed for recipient no. %d: %s\n",
recpno, gpg_strerror (rc));
goto leave;
}
err = ksba_cms_add_recipient (cms, cl->cert);
if (err)
{
audit_log_cert (ctrl->audit, AUDIT_ENCRYPTED_TO, cl->cert, err);
log_error ("ksba_cms_add_recipient failed: %s\n",
gpg_strerror (err));
rc = err;
xfree (encval);
goto leave;
}
err = ksba_cms_set_enc_val (cms, recpno, encval);
xfree (encval);
audit_log_cert (ctrl->audit, AUDIT_ENCRYPTED_TO, cl->cert, err);
if (err)
{
log_error ("ksba_cms_set_enc_val failed: %s\n",
gpg_strerror (err));
rc = err;
goto leave;
}
}
if (compliant && gnupg_gcrypt_is_compliant (CO_DE_VS))
gpgsm_status (ctrl, STATUS_ENCRYPTION_COMPLIANCE_MODE,
gnupg_status_compliance_flag (CO_DE_VS));
else if (opt.require_compliance
&& opt.compliance == CO_DE_VS)
{
log_error (_("operation forced to fail due to"
" unfulfilled compliance rules\n"));
gpgsm_errors_seen = 1;
rc = gpg_error (GPG_ERR_FORBIDDEN);
goto leave;
}
/* Main control loop for encryption. */
recpno = 0;
do
{
err = ksba_cms_build (cms, &stopreason);
if (err)
{
log_error ("creating CMS object failed: %s\n", gpg_strerror (err));
rc = err;
goto leave;
}
}
while (stopreason != KSBA_SR_READY);
if (encparm.readerror)
{
log_error ("error reading input: %s\n", strerror (encparm.readerror));
rc = gpg_error (gpg_err_code_from_errno (encparm.readerror));
goto leave;
}
rc = gnupg_ksba_finish_writer (b64writer);
if (rc)
{
log_error ("write failed: %s\n", gpg_strerror (rc));
goto leave;
}
audit_log (ctrl->audit, AUDIT_ENCRYPTION_DONE);
if (!opt.quiet)
log_info ("encrypted data created\n");
leave:
ksba_cms_release (cms);
gnupg_ksba_destroy_writer (b64writer);
ksba_reader_release (reader);
keydb_release (kh);
xfree (dek);
es_fclose (data_fp);
xfree (encparm.buffer);
return rc;
}