1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-14 13:37:04 +01:00

302 lines
10 KiB
Org Mode
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# HACKING -*- org -*-
#+TITLE: A Hacker's Guide to GnuPG
#+TEXT: Some notes on GnuPG internals
#+STARTUP: showall
#+OPTIONS: ^:{}
* How to contribute
The following stuff explains some basic procedures you need to
follow if you want to contribute code or documentation.
** No more ChangeLog files
Do not modify any of the ChangeLog files in GnuPG. Starting on
December 1st, 2011 we put change information only in the GIT commit
log, and generate a top-level ChangeLog file from logs at "make dist"
time. As such, there are strict requirements on the form of the
commit log messages. The old ChangeLog files have all be renamed to
ChangeLog-2011
** Commit log requirements
Your commit log should always start with a one-line summary, the
second line should be blank, and the remaining lines are usually
ChangeLog-style entries for all affected files. However, it's fine
--- even recommended --- to write a few lines of prose describing the
change, when the summary and ChangeLog entries don't give enough of
the big picture. Omit the leading TABs that you are seeing in a
"real" ChangeLog file, but keep the maximum line length at 72 or
smaller, so that the generated ChangeLog lines, each with its leading
TAB, will not exceed 80 columns. If you want to add text which shall
not be copied to the ChangeLog, separate it by a line consisting of
two dashes at the begin of a line.
Typo fixes and documentation updates don't need a ChangeLog Entry,
thus you would use a commit message like
#+begin_example
Fix type in a comment
--
#+end_example
The marker line here is important; without it the first line would
appear in the ChangeLog.
** License policy
GnuPG is licensed under the GPLv3+ with some files under a mixed
LGPLv3+/GPLv2+ license. It is thus important, that all contributed
code allows for an update of the license; for example we can't
accept code under the GPLv2(only).
GnuPG used to have a strict policy of requiring copyright
assignments to the FSF. To avoid this major organizational overhead
and to allow inclusion of code, not copyrighted by the FSF, this
policy has been relaxed on 2013-03-29. It is now also possible to
contribute code by asserting that the contribution is in accordance
to the "Libgcrypt Developer's Certificate of Origin" as found in the
file "DCO". (Except for a slight wording change, this DCO is
identical to the one used by the Linux kernel.)
If your want to contribute code or documentation to GnuPG and you
didn't signed a copyright assignment with the FSF in the past, you
need to take these simple steps:
- Decide which mail address you want to use. Please have your real
name in the address and not a pseudonym. Anonymous contributions
can only be done if you find a proxy who certifies for you.
- If your employer or school might claim ownership of code written
by you; you need to talk to them to make sure that you have the
right to contribute under the DCO.
- Send an OpenPGP signed mail to the gnupg-devel@gnupg.org mailing
list from your mail address. Include a copy of the DCO as found
in the official master branch. Insert your name and email address
into the DCO in the same way you want to use it later. Example:
Signed-off-by: Joe R. Hacker <joe@example.org>
(If you really need it, you may perform simple transformations of
the mail address: Replacing "@" by " at " or "." by " dot ".)
- That's it. From now on you only need to add a "Signed-off-by:"
line with your name and mail address to the commit message. It is
recommended to send the patches using a PGP/MIME signed mail.
** Coding standards
Please follow the GNU coding standards. If you are in doubt consult
the existing code as an example. Do no re-indent code without a
need. If you really need to do it, use a separate commit for such a
change.
* Windows
** How to build an installer for Windows
Your best bet is to use a decent Debian System for development.
You need to install a long list of tools for building. This list
still needs to be compiled. However, the build process will stop
if a tool is missing. GNU make is required (on non GNU systems
often installed as "gmake"). The installer requires a couple of
extra software to be available either as tarballs or as local git
repositories. In case this file here is part of a gnupg-w32-2.*.xz
complete tarball as distributed from the same place as a binary
installer, all such tarballs are already included.
Cd to the GnuPG source directory and use one of one of these
command:
- If sources are included (gnupg-w32-*.tar.xz)
make -f build-aux/speedo.mk WHAT=this installer
- To build from tarballs
make -f build-aux/speedo.mk WHAT=release TARBALLS=TARDIR installer
- To build from local GIT repos
make -f build-aux/speedo.mk WHAT=git TARBALLS=TARDIR installer
Note that also you need to supply tarballs with supporting
libraries even if you build from git. The makefile expects only
the core GnuPG software to be available as local GIT repositories.
speedo.mk has the versions of the tarballs and the branch names of
the git repositories. In case of problems, don't hesitate to ask
on the gnupg-devel mailing for help.
* Debug hints
See the manual for some hints.
* Standards
** RFCs
1423 Privacy Enhancement for Internet Electronic Mail:
Part III: Algorithms, Modes, and Identifiers.
1489 Registration of a Cyrillic Character Set.
1750 Randomness Recommendations for Security.
1991 PGP Message Exchange Formats (obsolete)
2144 The CAST-128 Encryption Algorithm.
2279 UTF-8, a transformation format of ISO 10646.
2440 OpenPGP (obsolete).
3156 MIME Security with Pretty Good Privacy (PGP).
4880 Current OpenPGP specification.
6337 Elliptic Curve Cryptography (ECC) in OpenPGP
* Various information
** Directory Layout
- ./ :: Readme, configure
- ./agent :: Gpg-agent and related tools
- ./doc :: Documentation
- ./g10 :: Gpg program here called gpg2
- ./sm :: Gpgsm program
- ./jnlib :: Not used (formerly used utility functions)
- ./common :: Utility functions
- ./kbx :: Keybox library
- ./scd :: Smartcard daemon
- ./scripts :: Scripts needed by configure and others
- ./dirmngr :: The directory manager
** Detailed Roadmap
This list of file is not up to date!
- g10/gpg.c :: Main module with option parsing and all the stuff you
have to do on startup. Also has the exout handler
and some helper functions.
- g10/sign.c :: Create signature and optionally encrypt
- g10/parse-packet.c ::
- g10/build-packet.c ::
- g10/free-packet.c :: Parsing and creating of OpenPGP message packets.
- g10/getkey.c :: Key selection code
- g10/pkclist.c :: Build a list of public keys
- g10/skclist.c :: Build a list of secret keys
- g10/ringedit.c :: Keyring I/O
- g10/keydb.h ::
- g10/keyid.c :: Helper functions to get the keyid, fingerprint etc.
- g10/trustdb.c ::
- g10/trustdb.h ::
- g10/tdbdump.c :: Management of the trustdb.gpg
- g10/tdbio.c ::
- g10/tdbio.h :: I/O handling for the trustdb.gpg
- g10/compress.c :: Filter to handle compression
- g10/filter.h :: Declarations for all filter functions
- g10/delkey.c :: Delete a key
- g10/kbnode.c :: Helper for the KBNODE linked list
- g10/main.h :: Prototypes and some constants
- g10/mainproc.c :: Message processing
- g10/armor.c :: Ascii armor filter
- g10/mdfilter.c :: Filter to calculate hashs
- g10/textfilter.c :: Filter to handle CR/LF and trailing white space
- g10/cipher.c :: En-/Decryption filter
- g10/misc.c :: Utlity functions
- g10/options.h :: Structure with all the command line options
and related constants
- g10/openfile.c :: Create/Open Files
- g10/hkp.h :: Keyserver access
- g10/hkp.c :: Ditto.
- g10/packet.h :: Defintion of OpenPGP structures.
- g10/passphrase.c :: Passphrase handling code
- g10/pubkey-enc.c ::
- g10/seckey-cert.c ::
- g10/seskey.c ::
- g10/import.c ::
- g10/export.c ::
- g10/comment.c ::
- g10/status.c ::
- g10/status.h ::
- g10/sign.c ::
- g10/plaintext.c ::
- g10/encr-data.c ::
- g10/encode.c ::
- g10/revoke.c ::
- g10/keylist.c ::
- g10/sig-check.c ::
- g10/signal.c ::
- g10/helptext.c ::
- g10/verify.c ::
- g10/decrypt.c ::
- g10/keyedit.c ::
- g10/dearmor.c ::
- g10/keygen.c ::
** Memory allocation
Use only the functions:
- xmalloc
- xmalloc_secure
- xtrymalloc
- xtrymalloc_secure
- xcalloc
- xcalloc_secure
- xtrycalloc
- xtrycalloc_secure
- xrealloc
- xtryrealloc
- xstrdup
- xtrystrdup
- xfree
The *secure versions allocated memory in the secure memory. That is,
swapping out of this memory is avoided and is gets overwritten on
free. Use this for passphrases, session keys and other sensitive
material. This memory set aside for secure memory is linited to a few
k. In general the function don't print a memeory message and
terminate the process if there is not enough memory available. The
"try" versions of the functions return NULL instead.
** Logging
TODO
** Option parsing
GnuPG does not use getopt or GNU getopt but functions of it's own.
See util/argparse.c for details. The advantage of these functions is
that it is more easy to display and maintain the help texts for the
options. The same option table is also used to parse resource files.
** What is an IOBUF
This is the data structure used for most I/O of gnupg. It is similar
to System V Streams but much simpler. Because OpenPGP messages are
nested in different ways; the use of such a system has big advantages.
Here is an example, how it works: If the parser sees a packet header
with a partial length, it pushes the block_filter onto the IOBUF to
handle these partial length packets: from now on you don't have to
worry about this. When it sees a compressed packet it pushes the
uncompress filter and the next read byte is one which has already been
uncompressed by this filter. Same goes for enciphered packet,
plaintext packets and so on. The file g10/encode.c might be a good
staring point to see how it is used - actually this is the other way:
constructing messages using pushed filters but it may be easier to
understand.