mirror of
git://git.gnupg.org/gnupg.git
synced 2024-11-04 20:38:50 +01:00
6cbc75e712
* include/mpi.h, mpi/mpiutils.c (mpi_set_cond): New. * mpi/mpi-pow.c (SIZE_PRECOMP): Rename from SIZE_B_2I3. (mpi_powm): Access all data in the table and use mpi_set_cond. -- Access to the precomputed table was indexed by a portion of EXPO, which could be mounted by a side channel attack. This change fixes this particular data-dependent access pattern.
759 lines
21 KiB
C
759 lines
21 KiB
C
/* mpi-pow.c - MPI functions
|
|
* Copyright (C) 1994, 1996, 1998, 2000 Free Software Foundation, Inc.
|
|
* Copyright (C) 2013 Werner Koch
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Note: This code is heavily based on the GNU MP Library.
|
|
* Actually it's the same code with only minor changes in the
|
|
* way the data is stored; this is to support the abstraction
|
|
* of an optional secure memory allocation which may be used
|
|
* to avoid revealing of sensitive data due to paging etc.
|
|
* The GNU MP Library itself is published under the LGPL;
|
|
* however I decided to publish this code under the plain GPL.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "mpi-internal.h"
|
|
#include "longlong.h"
|
|
#include <assert.h>
|
|
|
|
/*
|
|
* When you need old implementation, please add compilation option
|
|
* -DUSE_ALGORITHM_SIMPLE_EXPONENTIATION
|
|
* or expose this line:
|
|
#define USE_ALGORITHM_SIMPLE_EXPONENTIATION 1
|
|
*/
|
|
|
|
#if defined(USE_ALGORITHM_SIMPLE_EXPONENTIATION)
|
|
/****************
|
|
* RES = BASE ^ EXP mod MOD
|
|
*/
|
|
void
|
|
mpi_powm( MPI res, MPI base, MPI exponent, MPI mod)
|
|
{
|
|
mpi_ptr_t rp, ep, mp, bp;
|
|
mpi_size_t esize, msize, bsize, rsize;
|
|
int msign, bsign, rsign;
|
|
int esec, msec, bsec, rsec;
|
|
mpi_size_t size;
|
|
int mod_shift_cnt;
|
|
int negative_result;
|
|
mpi_ptr_t mp_marker=NULL, bp_marker=NULL, ep_marker=NULL;
|
|
mpi_ptr_t xp_marker=NULL;
|
|
int assign_rp=0;
|
|
mpi_ptr_t tspace = NULL;
|
|
mpi_size_t tsize=0; /* to avoid compiler warning */
|
|
/* fixme: we should check that the warning is void*/
|
|
|
|
esize = exponent->nlimbs;
|
|
msize = mod->nlimbs;
|
|
size = 2 * msize;
|
|
msign = mod->sign;
|
|
|
|
esec = mpi_is_secure(exponent);
|
|
msec = mpi_is_secure(mod);
|
|
bsec = mpi_is_secure(base);
|
|
rsec = mpi_is_secure(res);
|
|
|
|
rp = res->d;
|
|
ep = exponent->d;
|
|
|
|
if( !msize )
|
|
msize = 1 / msize; /* provoke a signal */
|
|
|
|
if( !esize ) {
|
|
/* Exponent is zero, result is 1 mod MOD, i.e., 1 or 0
|
|
* depending on if MOD equals 1. */
|
|
rp[0] = 1;
|
|
res->nlimbs = (msize == 1 && mod->d[0] == 1) ? 0 : 1;
|
|
res->sign = 0;
|
|
goto leave;
|
|
}
|
|
|
|
/* Normalize MOD (i.e. make its most significant bit set) as required by
|
|
* mpn_divrem. This will make the intermediate values in the calculation
|
|
* slightly larger, but the correct result is obtained after a final
|
|
* reduction using the original MOD value. */
|
|
mp = mp_marker = mpi_alloc_limb_space(msize, msec);
|
|
count_leading_zeros( mod_shift_cnt, mod->d[msize-1] );
|
|
if( mod_shift_cnt )
|
|
mpihelp_lshift( mp, mod->d, msize, mod_shift_cnt );
|
|
else
|
|
MPN_COPY( mp, mod->d, msize );
|
|
|
|
bsize = base->nlimbs;
|
|
bsign = base->sign;
|
|
if( bsize > msize ) { /* The base is larger than the module. Reduce it. */
|
|
/* Allocate (BSIZE + 1) with space for remainder and quotient.
|
|
* (The quotient is (bsize - msize + 1) limbs.) */
|
|
bp = bp_marker = mpi_alloc_limb_space( bsize + 1, bsec );
|
|
MPN_COPY( bp, base->d, bsize );
|
|
/* We don't care about the quotient, store it above the remainder,
|
|
* at BP + MSIZE. */
|
|
mpihelp_divrem( bp + msize, 0, bp, bsize, mp, msize );
|
|
bsize = msize;
|
|
/* Canonicalize the base, since we are going to multiply with it
|
|
* quite a few times. */
|
|
MPN_NORMALIZE( bp, bsize );
|
|
}
|
|
else
|
|
bp = base->d;
|
|
|
|
if( !bsize ) {
|
|
res->nlimbs = 0;
|
|
res->sign = 0;
|
|
goto leave;
|
|
}
|
|
|
|
if( res->alloced < size ) {
|
|
/* We have to allocate more space for RES. If any of the input
|
|
* parameters are identical to RES, defer deallocation of the old
|
|
* space. */
|
|
if( rp == ep || rp == mp || rp == bp ) {
|
|
rp = mpi_alloc_limb_space( size, rsec );
|
|
assign_rp = 1;
|
|
}
|
|
else {
|
|
mpi_resize( res, size );
|
|
rp = res->d;
|
|
}
|
|
}
|
|
else { /* Make BASE, EXPONENT and MOD not overlap with RES. */
|
|
if( rp == bp ) {
|
|
/* RES and BASE are identical. Allocate temp. space for BASE. */
|
|
assert( !bp_marker );
|
|
bp = bp_marker = mpi_alloc_limb_space( bsize, bsec );
|
|
MPN_COPY(bp, rp, bsize);
|
|
}
|
|
if( rp == ep ) {
|
|
/* RES and EXPONENT are identical.
|
|
Allocate temp. space for EXPONENT. */
|
|
ep = ep_marker = mpi_alloc_limb_space( esize, esec );
|
|
MPN_COPY(ep, rp, esize);
|
|
}
|
|
if( rp == mp ) {
|
|
/* RES and MOD are identical. Allocate temporary space for MOD.*/
|
|
assert( !mp_marker );
|
|
mp = mp_marker = mpi_alloc_limb_space( msize, msec );
|
|
MPN_COPY(mp, rp, msize);
|
|
}
|
|
}
|
|
|
|
MPN_COPY( rp, bp, bsize );
|
|
rsize = bsize;
|
|
rsign = bsign;
|
|
|
|
{
|
|
mpi_size_t i;
|
|
mpi_ptr_t xp = xp_marker = mpi_alloc_limb_space( 2 * (msize + 1), msec );
|
|
int c;
|
|
mpi_limb_t e;
|
|
mpi_limb_t carry_limb;
|
|
struct karatsuba_ctx karactx;
|
|
|
|
memset( &karactx, 0, sizeof karactx );
|
|
negative_result = (ep[0] & 1) && base->sign;
|
|
|
|
i = esize - 1;
|
|
e = ep[i];
|
|
count_leading_zeros (c, e);
|
|
e = (e << c) << 1; /* shift the exp bits to the left, lose msb */
|
|
c = BITS_PER_MPI_LIMB - 1 - c;
|
|
|
|
/* Main loop.
|
|
*
|
|
* Make the result be pointed to alternately by XP and RP. This
|
|
* helps us avoid block copying, which would otherwise be necessary
|
|
* with the overlap restrictions of mpihelp_divmod. With 50% probability
|
|
* the result after this loop will be in the area originally pointed
|
|
* by RP (==RES->d), and with 50% probability in the area originally
|
|
* pointed to by XP.
|
|
*/
|
|
|
|
for(;;) {
|
|
while( c ) {
|
|
mpi_ptr_t tp;
|
|
mpi_size_t xsize;
|
|
|
|
/*mpihelp_mul_n(xp, rp, rp, rsize);*/
|
|
if( rsize < KARATSUBA_THRESHOLD )
|
|
mpih_sqr_n_basecase( xp, rp, rsize );
|
|
else {
|
|
if( !tspace ) {
|
|
tsize = 2 * rsize;
|
|
tspace = mpi_alloc_limb_space( tsize, 0 );
|
|
}
|
|
else if( tsize < (2*rsize) ) {
|
|
mpi_free_limb_space( tspace );
|
|
tsize = 2 * rsize;
|
|
tspace = mpi_alloc_limb_space( tsize, 0 );
|
|
}
|
|
mpih_sqr_n( xp, rp, rsize, tspace );
|
|
}
|
|
|
|
xsize = 2 * rsize;
|
|
if( xsize > msize ) {
|
|
mpihelp_divrem(xp + msize, 0, xp, xsize, mp, msize);
|
|
xsize = msize;
|
|
}
|
|
|
|
tp = rp; rp = xp; xp = tp;
|
|
rsize = xsize;
|
|
|
|
/* To mitigate the Yarom/Falkner flush+reload cache
|
|
* side-channel attack on the RSA secret exponent, we
|
|
* do the multiplication regardless of the value of
|
|
* the high-bit of E. But to avoid this performance
|
|
* penalty we do it only if the exponent has been
|
|
* stored in secure memory and we can thus assume it
|
|
* is a secret exponent. */
|
|
if (esec || (mpi_limb_signed_t)e < 0) {
|
|
/*mpihelp_mul( xp, rp, rsize, bp, bsize );*/
|
|
if( bsize < KARATSUBA_THRESHOLD ) {
|
|
mpihelp_mul( xp, rp, rsize, bp, bsize );
|
|
}
|
|
else {
|
|
mpihelp_mul_karatsuba_case(
|
|
xp, rp, rsize, bp, bsize, &karactx );
|
|
}
|
|
|
|
xsize = rsize + bsize;
|
|
if( xsize > msize ) {
|
|
mpihelp_divrem(xp + msize, 0, xp, xsize, mp, msize);
|
|
xsize = msize;
|
|
}
|
|
}
|
|
if ((mpi_limb_signed_t)e < 0) {
|
|
tp = rp; rp = xp; xp = tp;
|
|
rsize = xsize;
|
|
}
|
|
e <<= 1;
|
|
c--;
|
|
}
|
|
|
|
i--;
|
|
if( i < 0 )
|
|
break;
|
|
e = ep[i];
|
|
c = BITS_PER_MPI_LIMB;
|
|
}
|
|
|
|
/* We shifted MOD, the modulo reduction argument, left MOD_SHIFT_CNT
|
|
* steps. Adjust the result by reducing it with the original MOD.
|
|
*
|
|
* Also make sure the result is put in RES->d (where it already
|
|
* might be, see above).
|
|
*/
|
|
if( mod_shift_cnt ) {
|
|
carry_limb = mpihelp_lshift( res->d, rp, rsize, mod_shift_cnt);
|
|
rp = res->d;
|
|
if( carry_limb ) {
|
|
rp[rsize] = carry_limb;
|
|
rsize++;
|
|
}
|
|
}
|
|
else {
|
|
MPN_COPY( res->d, rp, rsize);
|
|
rp = res->d;
|
|
}
|
|
|
|
if( rsize >= msize ) {
|
|
mpihelp_divrem(rp + msize, 0, rp, rsize, mp, msize);
|
|
rsize = msize;
|
|
}
|
|
|
|
/* Remove any leading zero words from the result. */
|
|
if( mod_shift_cnt )
|
|
mpihelp_rshift( rp, rp, rsize, mod_shift_cnt);
|
|
MPN_NORMALIZE (rp, rsize);
|
|
|
|
mpihelp_release_karatsuba_ctx( &karactx );
|
|
}
|
|
|
|
if( negative_result && rsize ) {
|
|
if( mod_shift_cnt )
|
|
mpihelp_rshift( mp, mp, msize, mod_shift_cnt);
|
|
mpihelp_sub( rp, mp, msize, rp, rsize);
|
|
rsize = msize;
|
|
rsign = msign;
|
|
MPN_NORMALIZE(rp, rsize);
|
|
}
|
|
res->nlimbs = rsize;
|
|
res->sign = rsign;
|
|
|
|
leave:
|
|
if( assign_rp ) mpi_assign_limb_space( res, rp, size );
|
|
if( mp_marker ) mpi_free_limb_space( mp_marker );
|
|
if( bp_marker ) mpi_free_limb_space( bp_marker );
|
|
if( ep_marker ) mpi_free_limb_space( ep_marker );
|
|
if( xp_marker ) mpi_free_limb_space( xp_marker );
|
|
if( tspace ) mpi_free_limb_space( tspace );
|
|
}
|
|
#else /*!USE_ALGORITHM_SIMPLE_EXPONENTIATION */
|
|
|
|
/**
|
|
* Internal function to compute
|
|
*
|
|
* X = R * S mod M
|
|
*
|
|
* and set the size of X at the pointer XSIZE_P.
|
|
* Use karatsuba structure at KARACTX_P.
|
|
*
|
|
* Condition:
|
|
* RSIZE >= SSIZE
|
|
* Enough space for X is allocated beforehand.
|
|
*
|
|
* For generic cases, we can/should use mpi_mulm.
|
|
* This function is use for specific internal case.
|
|
*/
|
|
static void
|
|
mul_mod (mpi_ptr_t xp, mpi_size_t *xsize_p,
|
|
mpi_ptr_t rp, mpi_size_t rsize,
|
|
mpi_ptr_t sp, mpi_size_t ssize,
|
|
mpi_ptr_t mp, mpi_size_t msize,
|
|
struct karatsuba_ctx *karactx_p)
|
|
{
|
|
if( ssize < KARATSUBA_THRESHOLD )
|
|
mpihelp_mul ( xp, rp, rsize, sp, ssize );
|
|
else
|
|
mpihelp_mul_karatsuba_case (xp, rp, rsize, sp, ssize, karactx_p);
|
|
|
|
if (rsize + ssize > msize)
|
|
{
|
|
mpihelp_divrem (xp + msize, 0, xp, rsize + ssize, mp, msize);
|
|
*xsize_p = msize;
|
|
}
|
|
else
|
|
*xsize_p = rsize + ssize;
|
|
}
|
|
|
|
#define SIZE_PRECOMP ((1 << (5 - 1)))
|
|
|
|
/****************
|
|
* RES = BASE ^ EXPO mod MOD
|
|
*
|
|
* To mitigate the Yarom/Falkner flush+reload cache side-channel
|
|
* attack on the RSA secret exponent, we don't use the square
|
|
* routine but multiplication.
|
|
*
|
|
* Reference:
|
|
* Handbook of Applied Cryptography
|
|
* Algorithm 14.83: Modified left-to-right k-ary exponentiation
|
|
*/
|
|
void
|
|
mpi_powm (MPI res, MPI base, MPI expo, MPI mod)
|
|
{
|
|
/* Pointer to the limbs of the arguments, their size and signs. */
|
|
mpi_ptr_t rp, ep, mp, bp;
|
|
mpi_size_t esize, msize, bsize, rsize;
|
|
int msign, bsign, rsign;
|
|
/* Flags telling the secure allocation status of the arguments. */
|
|
int esec, msec, bsec;
|
|
/* Size of the result including space for temporary values. */
|
|
mpi_size_t size;
|
|
/* Helper. */
|
|
int mod_shift_cnt;
|
|
int negative_result;
|
|
mpi_ptr_t mp_marker = NULL;
|
|
mpi_ptr_t bp_marker = NULL;
|
|
mpi_ptr_t ep_marker = NULL;
|
|
mpi_ptr_t xp_marker = NULL;
|
|
mpi_ptr_t precomp[SIZE_PRECOMP]; /* Pre-computed array: BASE^1, ^3, ^5, ... */
|
|
mpi_size_t precomp_size[SIZE_PRECOMP];
|
|
mpi_size_t W;
|
|
mpi_ptr_t base_u;
|
|
mpi_size_t base_u_size;
|
|
mpi_size_t max_u_size;
|
|
|
|
esize = expo->nlimbs;
|
|
msize = mod->nlimbs;
|
|
size = 2 * msize;
|
|
msign = mod->sign;
|
|
|
|
if (esize * BITS_PER_MPI_LIMB > 512)
|
|
W = 5;
|
|
else if (esize * BITS_PER_MPI_LIMB > 256)
|
|
W = 4;
|
|
else if (esize * BITS_PER_MPI_LIMB > 128)
|
|
W = 3;
|
|
else if (esize * BITS_PER_MPI_LIMB > 64)
|
|
W = 2;
|
|
else
|
|
W = 1;
|
|
|
|
esec = mpi_is_secure(expo);
|
|
msec = mpi_is_secure(mod);
|
|
bsec = mpi_is_secure(base);
|
|
|
|
rp = res->d;
|
|
ep = expo->d;
|
|
|
|
if (!msize)
|
|
msize = 1 / msize; /* provoke a signal */
|
|
|
|
if (!esize)
|
|
{
|
|
/* Exponent is zero, result is 1 mod MOD, i.e., 1 or 0 depending
|
|
on if MOD equals 1. */
|
|
res->nlimbs = (msize == 1 && mod->d[0] == 1) ? 0 : 1;
|
|
if (res->nlimbs)
|
|
{
|
|
RESIZE_IF_NEEDED (res, 1);
|
|
rp = res->d;
|
|
rp[0] = 1;
|
|
}
|
|
res->sign = 0;
|
|
goto leave;
|
|
}
|
|
|
|
/* Normalize MOD (i.e. make its most significant bit set) as
|
|
required by mpn_divrem. This will make the intermediate values
|
|
in the calculation slightly larger, but the correct result is
|
|
obtained after a final reduction using the original MOD value. */
|
|
mp = mp_marker = mpi_alloc_limb_space(msize, msec);
|
|
count_leading_zeros (mod_shift_cnt, mod->d[msize-1]);
|
|
if (mod_shift_cnt)
|
|
mpihelp_lshift (mp, mod->d, msize, mod_shift_cnt);
|
|
else
|
|
MPN_COPY( mp, mod->d, msize );
|
|
|
|
bsize = base->nlimbs;
|
|
bsign = base->sign;
|
|
if (bsize > msize)
|
|
{
|
|
/* The base is larger than the module. Reduce it.
|
|
|
|
Allocate (BSIZE + 1) with space for remainder and quotient.
|
|
(The quotient is (bsize - msize + 1) limbs.) */
|
|
bp = bp_marker = mpi_alloc_limb_space( bsize + 1, bsec );
|
|
MPN_COPY ( bp, base->d, bsize );
|
|
/* We don't care about the quotient, store it above the
|
|
* remainder, at BP + MSIZE. */
|
|
mpihelp_divrem( bp + msize, 0, bp, bsize, mp, msize );
|
|
bsize = msize;
|
|
/* Canonicalize the base, since we are going to multiply with it
|
|
quite a few times. */
|
|
MPN_NORMALIZE( bp, bsize );
|
|
}
|
|
else
|
|
bp = base->d;
|
|
|
|
if (!bsize)
|
|
{
|
|
res->nlimbs = 0;
|
|
res->sign = 0;
|
|
goto leave;
|
|
}
|
|
|
|
|
|
/* Make BASE, EXPO and MOD not overlap with RES. */
|
|
if ( rp == bp )
|
|
{
|
|
/* RES and BASE are identical. Allocate temp. space for BASE. */
|
|
assert (!bp_marker);
|
|
bp = bp_marker = mpi_alloc_limb_space( bsize, bsec );
|
|
MPN_COPY(bp, rp, bsize);
|
|
}
|
|
if ( rp == ep )
|
|
{
|
|
/* RES and EXPO are identical. Allocate temp. space for EXPO. */
|
|
ep = ep_marker = mpi_alloc_limb_space( esize, esec );
|
|
MPN_COPY(ep, rp, esize);
|
|
}
|
|
if ( rp == mp )
|
|
{
|
|
/* RES and MOD are identical. Allocate temporary space for MOD.*/
|
|
assert (!mp_marker);
|
|
mp = mp_marker = mpi_alloc_limb_space( msize, msec );
|
|
MPN_COPY(mp, rp, msize);
|
|
}
|
|
|
|
/* Copy base to the result. */
|
|
if (res->alloced < size)
|
|
{
|
|
mpi_resize (res, size);
|
|
rp = res->d;
|
|
}
|
|
|
|
/* Main processing. */
|
|
{
|
|
mpi_size_t i, j, k;
|
|
mpi_ptr_t xp;
|
|
mpi_size_t xsize;
|
|
int c;
|
|
mpi_limb_t e;
|
|
mpi_limb_t carry_limb;
|
|
struct karatsuba_ctx karactx;
|
|
mpi_ptr_t tp;
|
|
|
|
xp = xp_marker = mpi_alloc_limb_space( 2 * (msize + 1), msec );
|
|
|
|
memset( &karactx, 0, sizeof karactx );
|
|
negative_result = (ep[0] & 1) && bsign;
|
|
|
|
/* Precompute PRECOMP[], BASE^(2 * i + 1), BASE^1, ^3, ^5, ... */
|
|
if (W > 1) /* X := BASE^2 */
|
|
mul_mod (xp, &xsize, bp, bsize, bp, bsize, mp, msize, &karactx);
|
|
base_u = precomp[0] = mpi_alloc_limb_space (bsize, esec);
|
|
base_u_size = max_u_size = precomp_size[0] = bsize;
|
|
MPN_COPY (precomp[0], bp, bsize);
|
|
for (i = 1; i < (1 << (W - 1)); i++)
|
|
{ /* PRECOMP[i] = BASE^(2 * i + 1) */
|
|
if (xsize >= base_u_size)
|
|
mul_mod (rp, &rsize, xp, xsize, base_u, base_u_size,
|
|
mp, msize, &karactx);
|
|
else
|
|
mul_mod (rp, &rsize, base_u, base_u_size, xp, xsize,
|
|
mp, msize, &karactx);
|
|
base_u = precomp[i] = mpi_alloc_limb_space (rsize, esec);
|
|
base_u_size = precomp_size[i] = rsize;
|
|
if (max_u_size < base_u_size)
|
|
max_u_size = base_u_size;
|
|
MPN_COPY (precomp[i], rp, rsize);
|
|
}
|
|
|
|
base_u = mpi_alloc_limb_space (max_u_size, esec);
|
|
|
|
i = esize - 1;
|
|
|
|
/* Main loop.
|
|
|
|
Make the result be pointed to alternately by XP and RP. This
|
|
helps us avoid block copying, which would otherwise be
|
|
necessary with the overlap restrictions of mpihelp_divmod. With
|
|
50% probability the result after this loop will be in the area
|
|
originally pointed by RP (==RES->d), and with 50% probability
|
|
in the area originally pointed to by XP. */
|
|
rsign = 0;
|
|
if (W == 1)
|
|
{
|
|
rsize = bsize;
|
|
}
|
|
else
|
|
{
|
|
rsize = msize;
|
|
MPN_ZERO (rp, rsize);
|
|
}
|
|
MPN_COPY ( rp, bp, bsize );
|
|
|
|
e = ep[i];
|
|
count_leading_zeros (c, e);
|
|
e = (e << c) << 1;
|
|
c = BITS_PER_MPI_LIMB - 1 - c;
|
|
|
|
j = 0;
|
|
|
|
for (;;)
|
|
if (e == 0)
|
|
{
|
|
j += c;
|
|
i--;
|
|
if ( i < 0 )
|
|
{
|
|
c = 0;
|
|
break;
|
|
}
|
|
|
|
e = ep[i];
|
|
c = BITS_PER_MPI_LIMB;
|
|
}
|
|
else
|
|
{
|
|
int c0;
|
|
mpi_limb_t e0;
|
|
|
|
count_leading_zeros (c0, e);
|
|
e = (e << c0);
|
|
c -= c0;
|
|
j += c0;
|
|
|
|
if (c >= W)
|
|
{
|
|
e0 = (e >> (BITS_PER_MPI_LIMB - W));
|
|
e = (e << W);
|
|
c -= W;
|
|
}
|
|
else
|
|
{
|
|
i--;
|
|
if ( i < 0 )
|
|
{
|
|
e = (e >> (BITS_PER_MPI_LIMB - c));
|
|
break;
|
|
}
|
|
|
|
c0 = c;
|
|
e0 = (e >> (BITS_PER_MPI_LIMB - W))
|
|
| (ep[i] >> (BITS_PER_MPI_LIMB - W + c0));
|
|
e = (ep[i] << (W - c0));
|
|
c = BITS_PER_MPI_LIMB - W + c0;
|
|
}
|
|
|
|
count_trailing_zeros (c0, e0);
|
|
e0 = (e0 >> c0) >> 1;
|
|
|
|
for (j += W - c0; j; j--)
|
|
{
|
|
mul_mod (xp, &xsize, rp, rsize, rp, rsize, mp, msize, &karactx);
|
|
tp = rp; rp = xp; xp = tp;
|
|
rsize = xsize;
|
|
}
|
|
|
|
/*
|
|
* base_u <= precomp[e0]
|
|
* base_u_size <= precomp_size[e0];
|
|
*/
|
|
base_u_size = 0;
|
|
for (k = 0; k < (1<< (W - 1)); k++)
|
|
{
|
|
struct gcry_mpi w, u;
|
|
w.alloced = w.nlimbs = precomp_size[k];
|
|
u.alloced = u.nlimbs = precomp_size[k];
|
|
w.nbits = w.nlimbs * BITS_PER_MPI_LIMB;
|
|
u.nbits = u.nlimbs * BITS_PER_MPI_LIMB;
|
|
w.sign = u.sign = 0;
|
|
w.flags = u.flags = 0;
|
|
w.d = base_u;
|
|
u.d = precomp[k];
|
|
|
|
mpi_set_cond (&w, &u, k == e0);
|
|
base_u_size |= (precomp_size[k] & ((mpi_size_t)0 - (k == e0)) );
|
|
}
|
|
mul_mod (xp, &xsize, rp, rsize, base_u, base_u_size,
|
|
mp, msize, &karactx);
|
|
tp = rp; rp = xp; xp = tp;
|
|
rsize = xsize;
|
|
|
|
j = c0;
|
|
}
|
|
|
|
if (c != 0)
|
|
{
|
|
j += c;
|
|
count_trailing_zeros (c, e);
|
|
e = (e >> c);
|
|
j -= c;
|
|
}
|
|
|
|
while (j--)
|
|
{
|
|
mul_mod (xp, &xsize, rp, rsize, rp, rsize, mp, msize, &karactx);
|
|
tp = rp; rp = xp; xp = tp;
|
|
rsize = xsize;
|
|
}
|
|
|
|
if (e != 0)
|
|
{
|
|
base_u_size = 0;
|
|
for (k = 0; k < (1<< (W - 1)); k++)
|
|
{
|
|
struct gcry_mpi w, u;
|
|
w.alloced = w.nlimbs = precomp_size[k];
|
|
u.alloced = u.nlimbs = precomp_size[k];
|
|
w.nbits = w.nlimbs * BITS_PER_MPI_LIMB;
|
|
u.nbits = u.nlimbs * BITS_PER_MPI_LIMB;
|
|
w.sign = u.sign = 0;
|
|
w.flags = u.flags = 0;
|
|
w.d = base_u;
|
|
u.d = precomp[k];
|
|
|
|
mpi_set_cond (&w, &u, k == (e>>1));
|
|
base_u_size |= (precomp_size[k] & ((mpi_size_t)0 - (k == (e>>1))) );
|
|
}
|
|
|
|
mul_mod (xp, &xsize, rp, rsize, base_u, base_u_size,
|
|
mp, msize, &karactx);
|
|
tp = rp; rp = xp; xp = tp;
|
|
rsize = xsize;
|
|
|
|
for (; c; c--)
|
|
{
|
|
mul_mod (xp, &xsize, rp, rsize, rp, rsize, mp, msize, &karactx);
|
|
tp = rp; rp = xp; xp = tp;
|
|
rsize = xsize;
|
|
}
|
|
}
|
|
|
|
/* We shifted MOD, the modulo reduction argument, left
|
|
MOD_SHIFT_CNT steps. Adjust the result by reducing it with the
|
|
original MOD.
|
|
|
|
Also make sure the result is put in RES->d (where it already
|
|
might be, see above). */
|
|
if ( mod_shift_cnt )
|
|
{
|
|
carry_limb = mpihelp_lshift( res->d, rp, rsize, mod_shift_cnt);
|
|
rp = res->d;
|
|
if ( carry_limb )
|
|
{
|
|
rp[rsize] = carry_limb;
|
|
rsize++;
|
|
}
|
|
}
|
|
else if (res->d != rp)
|
|
{
|
|
MPN_COPY (res->d, rp, rsize);
|
|
rp = res->d;
|
|
}
|
|
|
|
if ( rsize >= msize )
|
|
{
|
|
mpihelp_divrem(rp + msize, 0, rp, rsize, mp, msize);
|
|
rsize = msize;
|
|
}
|
|
|
|
/* Remove any leading zero words from the result. */
|
|
if ( mod_shift_cnt )
|
|
mpihelp_rshift (rp, rp, rsize, mod_shift_cnt);
|
|
MPN_NORMALIZE (rp, rsize);
|
|
|
|
mpihelp_release_karatsuba_ctx (&karactx );
|
|
for (i = 0; i < (1 << (W - 1)); i++)
|
|
mpi_free_limb_space (precomp[i]);
|
|
mpi_free_limb_space (base_u);
|
|
}
|
|
|
|
/* Fixup for negative results. */
|
|
if ( negative_result && rsize )
|
|
{
|
|
if ( mod_shift_cnt )
|
|
mpihelp_rshift (mp, mp, msize, mod_shift_cnt);
|
|
mpihelp_sub (rp, mp, msize, rp, rsize);
|
|
rsize = msize;
|
|
rsign = msign;
|
|
MPN_NORMALIZE(rp, rsize);
|
|
}
|
|
assert (res->d == rp);
|
|
res->nlimbs = rsize;
|
|
res->sign = rsign;
|
|
|
|
leave:
|
|
if (mp_marker)
|
|
mpi_free_limb_space (mp_marker);
|
|
if (bp_marker)
|
|
mpi_free_limb_space (bp_marker);
|
|
if (ep_marker)
|
|
mpi_free_limb_space (ep_marker);
|
|
if (xp_marker)
|
|
mpi_free_limb_space (xp_marker);
|
|
}
|
|
#endif /*!USE_ALGORITHM_SIMPLE_EXPONENTIATION */
|
|
|