mirror of
git://git.gnupg.org/gnupg.git
synced 2024-11-04 20:38:50 +01:00
484 lines
11 KiB
C
484 lines
11 KiB
C
/* dsa.c - DSA signature algorithm
|
|
* Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include "util.h"
|
|
#include "mpi.h"
|
|
#include "cipher.h"
|
|
#include "dsa.h"
|
|
|
|
typedef struct {
|
|
MPI p; /* prime */
|
|
MPI q; /* group order */
|
|
MPI g; /* group generator */
|
|
MPI y; /* g^x mod p */
|
|
} DSA_public_key;
|
|
|
|
|
|
typedef struct {
|
|
MPI p; /* prime */
|
|
MPI q; /* group order */
|
|
MPI g; /* group generator */
|
|
MPI y; /* g^x mod p */
|
|
MPI x; /* secret exponent */
|
|
} DSA_secret_key;
|
|
|
|
|
|
static MPI gen_k( MPI q );
|
|
static void test_keys( DSA_secret_key *sk, unsigned qbits );
|
|
static int check_secret_key( DSA_secret_key *sk );
|
|
static void generate( DSA_secret_key *sk, unsigned nbits, MPI **ret_factors );
|
|
static void sign(MPI r, MPI s, MPI input, DSA_secret_key *skey);
|
|
static int verify(MPI r, MPI s, MPI input, DSA_public_key *pkey);
|
|
|
|
|
|
static void (*progress_cb) ( void *, int );
|
|
static void *progress_cb_data;
|
|
|
|
void
|
|
register_pk_dsa_progress ( void (*cb)( void *, int), void *cb_data )
|
|
{
|
|
progress_cb = cb;
|
|
progress_cb_data = cb_data;
|
|
}
|
|
|
|
|
|
static void
|
|
progress( int c )
|
|
{
|
|
if ( progress_cb )
|
|
progress_cb ( progress_cb_data, c );
|
|
else
|
|
fputc( c, stderr );
|
|
}
|
|
|
|
|
|
|
|
/****************
|
|
* Generate a random secret exponent k less than q
|
|
*/
|
|
static MPI
|
|
gen_k( MPI q )
|
|
{
|
|
MPI k = mpi_alloc_secure( mpi_get_nlimbs(q) );
|
|
unsigned int nbits = mpi_get_nbits(q);
|
|
unsigned int nbytes = (nbits+7)/8;
|
|
char *rndbuf = NULL;
|
|
|
|
if( DBG_CIPHER )
|
|
log_debug("choosing a random k ");
|
|
for(;;) {
|
|
if( DBG_CIPHER )
|
|
progress('.');
|
|
|
|
if( !rndbuf || nbits < 32 ) {
|
|
m_free(rndbuf);
|
|
rndbuf = get_random_bits( nbits, 1, 1 );
|
|
}
|
|
else { /* change only some of the higher bits */
|
|
/* we could imporove this by directly requesting more memory
|
|
* at the first call to get_random_bits() and use this the here
|
|
* maybe it is easier to do this directly in random.c */
|
|
char *pp = get_random_bits( 32, 1, 1 );
|
|
memcpy( rndbuf,pp, 4 );
|
|
m_free(pp);
|
|
}
|
|
mpi_set_buffer( k, rndbuf, nbytes, 0 );
|
|
if( mpi_test_bit( k, nbits-1 ) )
|
|
mpi_set_highbit( k, nbits-1 );
|
|
else {
|
|
mpi_set_highbit( k, nbits-1 );
|
|
mpi_clear_bit( k, nbits-1 );
|
|
}
|
|
|
|
if( !(mpi_cmp( k, q ) < 0) ) { /* check: k < q */
|
|
if( DBG_CIPHER )
|
|
progress('+');
|
|
continue; /* no */
|
|
}
|
|
if( !(mpi_cmp_ui( k, 0 ) > 0) ) { /* check: k > 0 */
|
|
if( DBG_CIPHER )
|
|
progress('-');
|
|
continue; /* no */
|
|
}
|
|
break; /* okay */
|
|
}
|
|
m_free(rndbuf);
|
|
if( DBG_CIPHER )
|
|
progress('\n');
|
|
|
|
return k;
|
|
}
|
|
|
|
|
|
static void
|
|
test_keys( DSA_secret_key *sk, unsigned qbits )
|
|
{
|
|
DSA_public_key pk;
|
|
MPI test = mpi_alloc( qbits / BITS_PER_MPI_LIMB );
|
|
MPI out1_a = mpi_alloc( qbits / BITS_PER_MPI_LIMB );
|
|
MPI out1_b = mpi_alloc( qbits / BITS_PER_MPI_LIMB );
|
|
|
|
pk.p = sk->p;
|
|
pk.q = sk->q;
|
|
pk.g = sk->g;
|
|
pk.y = sk->y;
|
|
/*mpi_set_bytes( test, qbits, get_random_byte, 0 );*/
|
|
{ char *p = get_random_bits( qbits, 0, 0 );
|
|
mpi_set_buffer( test, p, (qbits+7)/8, 0 );
|
|
m_free(p);
|
|
}
|
|
|
|
sign( out1_a, out1_b, test, sk );
|
|
if( !verify( out1_a, out1_b, test, &pk ) )
|
|
log_fatal("DSA:: sign, verify failed\n");
|
|
|
|
mpi_free( test );
|
|
mpi_free( out1_a );
|
|
mpi_free( out1_b );
|
|
}
|
|
|
|
|
|
|
|
/****************
|
|
* Generate a DSA key pair with a key of size NBITS
|
|
* Returns: 2 structures filled with all needed values
|
|
* and an array with the n-1 factors of (p-1)
|
|
*/
|
|
static void
|
|
generate( DSA_secret_key *sk, unsigned nbits, MPI **ret_factors )
|
|
{
|
|
MPI p; /* the prime */
|
|
MPI q; /* the 160 bit prime factor */
|
|
MPI g; /* the generator */
|
|
MPI y; /* g^x mod p */
|
|
MPI x; /* the secret exponent */
|
|
MPI h, e; /* helper */
|
|
unsigned qbits;
|
|
byte *rndbuf;
|
|
|
|
assert( nbits >= 512 && nbits <= 1024 );
|
|
|
|
qbits = 160;
|
|
p = generate_elg_prime( 1, nbits, qbits, NULL, ret_factors );
|
|
/* get q out of factors */
|
|
q = mpi_copy((*ret_factors)[0]);
|
|
if( mpi_get_nbits(q) != qbits )
|
|
BUG();
|
|
|
|
/* find a generator g (h and e are helpers)*/
|
|
/* e = (p-1)/q */
|
|
e = mpi_alloc( mpi_get_nlimbs(p) );
|
|
mpi_sub_ui( e, p, 1 );
|
|
mpi_fdiv_q( e, e, q );
|
|
g = mpi_alloc( mpi_get_nlimbs(p) );
|
|
h = mpi_alloc_set_ui( 1 ); /* we start with 2 */
|
|
do {
|
|
mpi_add_ui( h, h, 1 );
|
|
/* g = h^e mod p */
|
|
mpi_powm( g, h, e, p );
|
|
} while( !mpi_cmp_ui( g, 1 ) ); /* continue until g != 1 */
|
|
|
|
/* select a random number which has these properties:
|
|
* 0 < x < q-1
|
|
* This must be a very good random number because this
|
|
* is the secret part. */
|
|
if( DBG_CIPHER )
|
|
log_debug("choosing a random x ");
|
|
assert( qbits >= 160 );
|
|
x = mpi_alloc_secure( mpi_get_nlimbs(q) );
|
|
mpi_sub_ui( h, q, 1 ); /* put q-1 into h */
|
|
rndbuf = NULL;
|
|
do {
|
|
if( DBG_CIPHER )
|
|
progress('.');
|
|
if( !rndbuf )
|
|
rndbuf = get_random_bits( qbits, 2, 1 );
|
|
else { /* change only some of the higher bits (= 2 bytes)*/
|
|
char *r = get_random_bits( 16, 2, 1 );
|
|
memcpy(rndbuf, r, 16/8 );
|
|
m_free(r);
|
|
}
|
|
mpi_set_buffer( x, rndbuf, (qbits+7)/8, 0 );
|
|
mpi_clear_highbit( x, qbits+1 );
|
|
} while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, h )<0 ) );
|
|
m_free(rndbuf);
|
|
mpi_free( e );
|
|
mpi_free( h );
|
|
|
|
/* y = g^x mod p */
|
|
y = mpi_alloc( mpi_get_nlimbs(p) );
|
|
mpi_powm( y, g, x, p );
|
|
|
|
if( DBG_CIPHER ) {
|
|
progress('\n');
|
|
log_mpidump("dsa p= ", p );
|
|
log_mpidump("dsa q= ", q );
|
|
log_mpidump("dsa g= ", g );
|
|
log_mpidump("dsa y= ", y );
|
|
log_mpidump("dsa x= ", x );
|
|
}
|
|
|
|
/* copy the stuff to the key structures */
|
|
sk->p = p;
|
|
sk->q = q;
|
|
sk->g = g;
|
|
sk->y = y;
|
|
sk->x = x;
|
|
|
|
/* now we can test our keys (this should never fail!) */
|
|
test_keys( sk, qbits );
|
|
}
|
|
|
|
|
|
|
|
/****************
|
|
* Test whether the secret key is valid.
|
|
* Returns: if this is a valid key.
|
|
*/
|
|
static int
|
|
check_secret_key( DSA_secret_key *sk )
|
|
{
|
|
int rc;
|
|
MPI y = mpi_alloc( mpi_get_nlimbs(sk->y) );
|
|
|
|
mpi_powm( y, sk->g, sk->x, sk->p );
|
|
rc = !mpi_cmp( y, sk->y );
|
|
mpi_free( y );
|
|
return rc;
|
|
}
|
|
|
|
|
|
|
|
/****************
|
|
* Make a DSA signature from HASH and put it into r and s.
|
|
*
|
|
* Without generating the k this function runs in
|
|
* about 26ms on a 300 Mhz Mobile Pentium
|
|
*/
|
|
|
|
static void
|
|
sign(MPI r, MPI s, MPI hash, DSA_secret_key *skey )
|
|
{
|
|
MPI k;
|
|
MPI kinv;
|
|
MPI tmp;
|
|
|
|
/* select a random k with 0 < k < q */
|
|
k = gen_k( skey->q );
|
|
|
|
/* r = (a^k mod p) mod q */
|
|
mpi_powm( r, skey->g, k, skey->p );
|
|
mpi_fdiv_r( r, r, skey->q );
|
|
|
|
/* kinv = k^(-1) mod q */
|
|
kinv = mpi_alloc( mpi_get_nlimbs(k) );
|
|
mpi_invm(kinv, k, skey->q );
|
|
|
|
/* s = (kinv * ( hash + x * r)) mod q */
|
|
tmp = mpi_alloc( mpi_get_nlimbs(skey->p) );
|
|
mpi_mul( tmp, skey->x, r );
|
|
mpi_add( tmp, tmp, hash );
|
|
mpi_mulm( s , kinv, tmp, skey->q );
|
|
|
|
mpi_free(k);
|
|
mpi_free(kinv);
|
|
mpi_free(tmp);
|
|
}
|
|
|
|
|
|
/****************
|
|
* Returns true if the signature composed from R and S is valid.
|
|
*
|
|
* Without the checks this function runs in
|
|
* about 31ms on a 300 Mhz Mobile Pentium
|
|
*/
|
|
static int
|
|
verify(MPI r, MPI s, MPI hash, DSA_public_key *pkey )
|
|
{
|
|
int rc;
|
|
MPI w, u1, u2, v;
|
|
MPI base[3];
|
|
MPI exp[3];
|
|
|
|
|
|
if( !(mpi_cmp_ui( r, 0 ) > 0 && mpi_cmp( r, pkey->q ) < 0) )
|
|
return 0; /* assertion 0 < r < q failed */
|
|
if( !(mpi_cmp_ui( s, 0 ) > 0 && mpi_cmp( s, pkey->q ) < 0) )
|
|
return 0; /* assertion 0 < s < q failed */
|
|
|
|
w = mpi_alloc( mpi_get_nlimbs(pkey->q) );
|
|
u1 = mpi_alloc( mpi_get_nlimbs(pkey->q) );
|
|
u2 = mpi_alloc( mpi_get_nlimbs(pkey->q) );
|
|
v = mpi_alloc( mpi_get_nlimbs(pkey->p) );
|
|
|
|
/* w = s^(-1) mod q */
|
|
mpi_invm( w, s, pkey->q );
|
|
|
|
/* u1 = (hash * w) mod q */
|
|
mpi_mulm( u1, hash, w, pkey->q );
|
|
|
|
/* u2 = r * w mod q */
|
|
mpi_mulm( u2, r, w, pkey->q );
|
|
|
|
/* v = g^u1 * y^u2 mod p mod q */
|
|
base[0] = pkey->g; exp[0] = u1;
|
|
base[1] = pkey->y; exp[1] = u2;
|
|
base[2] = NULL; exp[2] = NULL;
|
|
mpi_mulpowm( v, base, exp, pkey->p );
|
|
mpi_fdiv_r( v, v, pkey->q );
|
|
|
|
rc = !mpi_cmp( v, r );
|
|
|
|
mpi_free(w);
|
|
mpi_free(u1);
|
|
mpi_free(u2);
|
|
mpi_free(v);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*********************************************
|
|
************** interface ******************
|
|
*********************************************/
|
|
|
|
int
|
|
dsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
|
|
{
|
|
DSA_secret_key sk;
|
|
|
|
if( algo != PUBKEY_ALGO_DSA )
|
|
return G10ERR_PUBKEY_ALGO;
|
|
|
|
generate( &sk, nbits, retfactors );
|
|
skey[0] = sk.p;
|
|
skey[1] = sk.q;
|
|
skey[2] = sk.g;
|
|
skey[3] = sk.y;
|
|
skey[4] = sk.x;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
dsa_check_secret_key( int algo, MPI *skey )
|
|
{
|
|
DSA_secret_key sk;
|
|
|
|
if( algo != PUBKEY_ALGO_DSA )
|
|
return G10ERR_PUBKEY_ALGO;
|
|
if( !skey[0] || !skey[1] || !skey[2] || !skey[3] || !skey[4] )
|
|
return G10ERR_BAD_MPI;
|
|
|
|
sk.p = skey[0];
|
|
sk.q = skey[1];
|
|
sk.g = skey[2];
|
|
sk.y = skey[3];
|
|
sk.x = skey[4];
|
|
if( !check_secret_key( &sk ) )
|
|
return G10ERR_BAD_SECKEY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int
|
|
dsa_sign( int algo, MPI *resarr, MPI data, MPI *skey )
|
|
{
|
|
DSA_secret_key sk;
|
|
|
|
if( algo != PUBKEY_ALGO_DSA )
|
|
return G10ERR_PUBKEY_ALGO;
|
|
if( !data || !skey[0] || !skey[1] || !skey[2] || !skey[3] || !skey[4] )
|
|
return G10ERR_BAD_MPI;
|
|
|
|
sk.p = skey[0];
|
|
sk.q = skey[1];
|
|
sk.g = skey[2];
|
|
sk.y = skey[3];
|
|
sk.x = skey[4];
|
|
resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.p ) );
|
|
resarr[1] = mpi_alloc( mpi_get_nlimbs( sk.p ) );
|
|
sign( resarr[0], resarr[1], data, &sk );
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
dsa_verify( int algo, MPI hash, MPI *data, MPI *pkey,
|
|
int (*cmp)(void *, MPI), void *opaquev )
|
|
{
|
|
DSA_public_key pk;
|
|
|
|
if( algo != PUBKEY_ALGO_DSA )
|
|
return G10ERR_PUBKEY_ALGO;
|
|
if( !data[0] || !data[1] || !hash
|
|
|| !pkey[0] || !pkey[1] || !pkey[2] || !pkey[3] )
|
|
return G10ERR_BAD_MPI;
|
|
|
|
pk.p = pkey[0];
|
|
pk.q = pkey[1];
|
|
pk.g = pkey[2];
|
|
pk.y = pkey[3];
|
|
if( !verify( data[0], data[1], hash, &pk ) )
|
|
return G10ERR_BAD_SIGN;
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
unsigned
|
|
dsa_get_nbits( int algo, MPI *pkey )
|
|
{
|
|
if( algo != PUBKEY_ALGO_DSA )
|
|
return 0;
|
|
return mpi_get_nbits( pkey[0] );
|
|
}
|
|
|
|
|
|
/****************
|
|
* Return some information about the algorithm. We need algo here to
|
|
* distinguish different flavors of the algorithm.
|
|
* Returns: A pointer to string describing the algorithm or NULL if
|
|
* the ALGO is invalid.
|
|
* Usage: Bit 0 set : allows signing
|
|
* 1 set : allows encryption
|
|
*/
|
|
const char *
|
|
dsa_get_info( int algo, int *npkey, int *nskey, int *nenc, int *nsig,
|
|
int *use )
|
|
{
|
|
*npkey = 4;
|
|
*nskey = 5;
|
|
*nenc = 0;
|
|
*nsig = 2;
|
|
|
|
switch( algo ) {
|
|
case PUBKEY_ALGO_DSA: *use = PUBKEY_USAGE_SIG; return "DSA";
|
|
default: *use = 0; return NULL;
|
|
}
|
|
}
|
|
|
|
|